# 3D Face ## Surveys & Doctoral Thesis - Face Image Analysis using a Multiple Features Fitting Strategy(2005, Basel) - 3D Face Modelling for 2D+3D Face Recognition(2007, Surrey) - Image Based 3D Face Reconstruction: A Survey(IJIG2009, Georgios Stylianou, Andreas Lanitis, EUC, CUT) `early 3D facial acquisition approaches` - animation reconstruction of deformable surfaces(2010, Hao Li, ETHz) - Inverse Rendering of Faces with a 3D Morphable Model(2012, Oswald Aldrian, York) - Digital Geometry Processing Theory and Applications(2012, Kun Zhou, Zhengjiang, 中文) - ***State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications*** **State of the Art on 3D Reconstruction with RGB-D Cameras**(EG2018, MZ, CT, MPI, Stanford, TUM, Disney, Technicolor, UEN) [[talks]](http://web.stanford.edu/~zollhoef/papers/EG18_FaceSTAR/page.html) ## Papers & Codes ### Reconstruction&3D Alignment&Correspondences #### 1998 - 2015 - A Morphable Model For The Synthesis Of 3D Faces (SIGGRAPH1998, [V Blanz](https://scholar.google.com.hk/citations?user=jYCidWgAAAAJ&hl=zh-CN&oi=sra), [T Vetter](https://scholar.google.com.hk/citations?user=HKLgZpYAAAAJ&hl=zh-CN&oi=sra) , MPI) `3dmm,analysis-by-synthesis(cascaded, coarse to fine, using texture information), mid-detail ` - Efficient, Robust and Accurate Fitting of a 3D Morphable Model (ICCV2003, S Romdhani, [T Vetter](https://scholar.google.com.hk/citations?user=HKLgZpYAAAAJ&hl=zh-CN&oi=sra) , Basel) `3dmm, fitting Algorithm needs: Efficient, Robust, Accurate, Automatic. Mid-detail` - Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior (CVPR2005, S Romdhani, [T Vetter](https://scholar.google.com.hk/citations?user=HKLgZpYAAAAJ&hl=zh-CN&oi=sra) , Basel) `3dmm, multiple features` - A 3D Face Model for Pose and Illumination Invariant Face Recognition (AVSS2009, Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. , Basel) [[data](BFM)](https://faces.cs.unibas.ch/bfm/) - 3D Face Reconstruction from a Single Image Using a Single Reference Face Shape (TPAMI2011, [I Kemelmacher-Shlizerman](https://scholar.google.com.hk/citations?user=P97vI1EAAAAJ&hl=zh-CN&oi=sra), Basri R, UW) `template, sfs, texture information, mid-detail` - Face Reconstruction in the Wild (ICCV2011, Kemelmacher-Shlizerman I, Seitz S M , UW) `collection, sparse correspondence, warp template, low-rank approximation(photometric stereo, for expression normalization), mid-detail ` - A FACS Valid 3D Dynamic Action Unit Database with Applications to 3D Dynamic Morphable Facial Modeling (ICCV2011, Cosker D, Krumhuber E, Hilton A. , UofSurrey) `aam, expression` - Viewing Real-World Faces in 3D (ICCV2013, [T Hassner](https://scholar.google.com.hk/citations?user=ehe5pyIAAAAJ&hl=zh-CN&oi=sra), Open U Israel) `template, sparse correspondence, pose adjustment, depth optimization(SIFT) ` - Improving 3D Face Details based on Normal Map of Hetero-source Images (CVPRW2014, Yang, C., Chen, J., Su, N., & Su, G. , Tsinghua University) - Total Moving Face Reconstruction (LNCS2014, Suwajanakorn S, Kemelmacher-Shlizerman I, Seitz S M. , Washington) `video(collections), template, average shape, pose estimation, 3d flow(correspondence), refinement, high-detail ` - FaceWarehouse: a 3D Facial Expression Database for Visual Computing (VCG2014, Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K., Zhejiang) [[data]]() - Intrinsic Face Image Decomposition with Human Face Priors (ECCV2014, Li C, Zhou K, Lin S , Zhejiang) - Fitting 3D Morphable Models using Local Features (ICIP2015, Huber, P., Feng, Z. H., Christmas, W., Kittler, J., & Ratsch, M, Surrey) `sparse correspondence, 3dmm, regression` - What Makes Tom Hanks Look Like Tom Hanks (ICCV2015, Suwajanakorn S, Seitz S M, Kemelmacher-Shlizerman I. , Washington) `collection, template, average model, 3D flow, correspondence, deformation vector, TPS, expression sililarity weighted, high-frequency details, Laplacian pyramid ` - Unconstrained Realtime Facial Performance Capture (CVPR2015, Hsieh, P. L., Ma, C., Yu, J., & Li, H. , USC) `video,image collections, occlusion, segmentation, landmarks ` - Unconstrained 3D Face Reconstruction (CVPR2015, Roth, J., Tong, Y., & Liu, X, MSU) `collection, sparse correspondence(landmarks), template, photometric stereo(SVD), matrix completion, ` - Pose-Invariant 3D Face Alignment (ICCV2015, Jourabloo, A., & Liu, X., MSU) `alignment, dense correspondence, visibility, cascaded regressor, 3DPDM. ` - Discriminative 3D Morphable Model Fitting (CVPR2015) #### 2016 **#CVPR** * Large-pose Face Alignment via CNN-based Dense 3D Model Fitting (CVPR2016, Jourabloo, A., & Liu, X., MSU) `alignment, 3dmm ` * Automated 3D Face Reconstruction from Multiple Images using Quality Measures (CVPR2016, Piotraschke, M., & Blanz, V , Siegen) * A Robust Multilinear Model Learning Framework for 3D Faces (CVPR2016, Bolkart, T., & Wuhrer, S., Saarland) * Face Alignment Across Large Poses: A 3D Solution (CVPR2016, Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. , MSU, CASIA) * Adaptive 3D Face Reconstruction from Unconstrained Photo Collections (CVPR2016, Roth, J., Tong, Y., & Liu, X, MSU) `landmarks, 3dmm, coarse-to-fine,photometric stereo, time: 7 minutes ` * Augmented Blendshapes for Real-time Simultaneous 3D Head Modeling and Facial Motion Capture (CVPR2016, Thomas, D., & Taniguchi, R. I. , Kyushu University) * A 3D Morphable Model learnt from 10,000 faces (CVPR2016, Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D., ICL) **#ECCV** * Joint Face Alignment and 3D Face Reconstruction (ECCV2016, Liu, F., Zeng, D., Zhao, Q., & Liu, X, MSU, Sichuan U) `alignment, landmarks` * Real-Time Facial Segmentation and Performance Capture from RGB Input (ECCV2016, Saito, S., Li, T., & Li, H. , USC) `occlusions, tracking` **#Others** - 3D Face Reconstruction by Learning from Synthetic Data (3DV2016, Richardson, E., Sela, M., & Kimmel, R, IIT) `3dmm, cnn, regress 3dmm parameters, sfs` - Face Reconstruction on Mobile Devices Using a Height Map Shape Model and Fast Regularization (3DV2016, Maninchedda, F., Häne, C., Oswald, M. R., & Pollefeys, M., ETH) - A Multiresolution 3D Morphable Face Model and Fitting Framework [[code]](https://github.com/patrikhuber/eos) (IJCV2016, Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W. J., ... & Kittler, J. ,Surrey) - Rapid Photorealistic Blendshape Modeling from RGB-D Sensors (2016, USC) - 3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media (2016, Anbarjafari, G., Haamer, R. E., Lusi, I., Tikk, T., & Valgma, L. , Turkey) `landmarks, uv texture, region` #### 2017 **#CVPR** * 3D Face Morphable Models “In-the-Wild” (CVPR2017, Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., & Zafeiriou, S., ICL) `3dmm, register, UV` * Face Normals “in-the-wild” using Fully Convolutional Networks (CVPR2017, Trigeorgis, G., Snape, P., Kokkinos, I., & Zafeiriou, S. , ICL) * Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network (CVPR2017, Tran, A. T., Hassner, T., Masi, I., & Medioni, G. , USC) * Fast 3D Reconstruction of Faces with Glasses (CVPR2017, Maninchedda, F., Oswald, M. R., & Pollefeys, M., ETH) * DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild (CVPR2017, Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., & Kokkinos, I. , ICL) `dense correspondence, uv` * Learning Detailed Face Reconstruction from a Single Image (CVPR2017, Richardson, E., Sela, M., Or-El, R., & Kimmel, R. , Washington) * End-to-end 3D face reconstruction with deep neural networks (CVPR2017, Dou, P., Shah, S. K., & Kakadiaris, I. A., UofHouston) `3dmm, dl, directly learn 3dmm parameters` * A Generative Model for Depth-based Robust 3D Facial Pose Tracking (CVPR2017, Cai, L. S. J., Pavlovic, T. J. C. V., & Ngan, K. N. , CUHK) `occlusions` **#ICCV** * 3D Morphable Models as Spatial Transformer Networks (ICCV2017, Bas, A., Huber, P., Smith, W. A., Awais, M., & Kittler, J. , York, Surrey ) `dl, cnn, uv texture, landmarks, stn, 3dmm` * Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses (ICCV2017, Bhagavatula, C., Zhu, C., Luu, K., & Savvides, M., CMU) * Pose-Invariant Face Alignment with a Single CNN (ICCV2017, Jourabloo, A., Ye, M., Liu, X., & Ren, L. , MSU) `alignment, 3dmm, dl, cnn` * Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression [code](https://github.com/AaronJackson/vrn) (ICCV2017, Jackson, A. S., Bulat, A., Argyriou, V., & Tzimiropoulos, G. , Nottingham) `end-to-end, 3dmm, dl, cnn, landmarks, voxel ` * Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation (ICCV2017, Sela, M., Richardson, E., & Kimmel, R. , IIT) * MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction (ICCV2017, Tewari, A., Zollhöfer, M., Kim, H., Garrido, P., Bernard, F., Pérez, P., & Theobalt, C. , MPI) * Dense Face Alignment [code](http://cvlab.cse.msu.edu/project-pifa.html) (ICCVW2017, Liu, Y., Jourabloo, A., Ren, W., & Liu, X. , MSU) * Realtime Dynamic 3D Facial Reconstruction for Monocular Video In-the-Wild (ICCVW2017) * Learning Dense Facial Correspondences in Unconstrained Images (ICCV2017, Yu, R., Saito, S., Li, H., Ceylan, D., & Li, H.  , USC) `dense correspondence` **#others** * Large Scale 3D Morphable Models [[data](LSFM)](https://faces.cs.unibas.ch/bfm/) (IJCV2017, Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. , ICL) `for alignment, template, cnn, dl, sparse correspondence, landmarks, tps warping ` * What does 2D geometric information really tell us about 3D face shape? (2017, Bas, A., & Smith, W. A ) `shape from landmarks, shape from contours` * Pix2Face: Direct 3D Face Model Estimation (2017) `dense correspondence, 3dmm` * 3D Face Reconstruction with Geometry Details from a Single Image (TIP2017, Jiang, L., Zhang, J., Deng, B., Li, H., & Liu, L. , USC, USTC) `coarse-to-fine, landmarks, corrective deformatio, sfs ` #### 2018 **#CVPR** * Unsupervised Training for 3D Morphable Model Regression [code](https://github.com/google/tf_mesh_renderer) (CVPR2018, Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., & Freeman, W. T , Google) - 4DFAB: A Large Scale 4D Database for Facial Expression Analysis and Biometric Applications [data]( ) (CVPR2018, Cheng, S., Kotsia, I., Pantic, M., & Zafeiriou, S., ICL) - Sparse Photometric 3D Face Reconstruction Guided by Morphable Models (CVPR2018, Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., & Yu, J.  , shanghaitech) `5 input images, 3dmm, shadow processing, light calibration, photometric stereo, denoising ` - Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition (CVPR2018, Liu, F., Zhu, R., Zeng, D., Zhao, Q., & Liu, X. , MSU, Sichuan) - Mesoscopic Facial Geometry Inference Using Deep Neural Networks (CVPR2018, Hao Li, USC) `high-detail, dl, scan, uv texture, displacement ` - Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz (CVPR2018, Tewari, A., Zollhöfer, M., Garrido, P., Bernard, F., Kim, H., Pérez, P., & Theobalt, C., MPI) - SfSNet : Learning Shape, Reflectance and Illuminance of Faces in the Wild (CVPR2018, Sengupta, S., Kanazawa, A., Castillo, C. D., & Jacobs, D.  , Maryland, UCB ) - Probabilistic Joint Face-Skull Modelling for Facial Reconstruction (CVPR2018, Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. , Basel) - Alive Caricature from 2D to 3D (CVPR2018, Wu, Q., Zhang, J., Lai, Y. K., Zheng, J., & Cai, J, USTC) - Nonlinear 3D Face Morphable Model (CVPR2018, Tran, L., & Liu, X. , MSU) - InverseFaceNet: Deep Monocular Inverse Face Rendering (CVPR2018, Kim, H., Zollhöfer, M., Tewari, A., Thies, J., Richardt, C., & Theobalt, C. , MPI) `Self-Supervised Bootstrapping` - Extreme 3D Face Reconstruction: Looking Past Occlusions (CVPR2018, Tran, A. T., Hassner, T., Masi, I., Paz, E., Nirkin, Y., & Medioni, G. , USC) - Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies (CVPR2018, best student paper, Joo, H., Simon, T., & Sheikh, Y. , CMU) - Modeling Facial Geometry using Compositional VAEs (CVPR2018, Bagautdinov, T., Wu, C., Saragih, J., Fua, P., & Sheikh, Y., EPEL, FRL ) **#ECCV** * 3D Face Reconstruction from Light Field Images: A Model-free Approach (ECCV2018, Feng, M., Gilani, S. Z., Wang, Y., & Mian, A., Western Australia, Hunan) `epopolar plane images` * Generating 3D Faces using Convolutional Mesh Autoencoders [[code]](https://github.com/anuragranj/coma) (ECCV2018, Ranjan, A., Bolkart, T., Sanyal, S., & Black, M. J., MPI) * Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network [[code]](https://github.com/YadiraF/PRNet) (ECCV2018, Feng, Y., Wu, F., Shao, X., Wang, Y., & Zhou, X., SJTU) **#others** * Morphable Face Models - An Open Framework (FG2018, Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schönborn, S., & Vetter, T. , Basel) * CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images [[data&code]](https://github.com/Juyong/3DFace) (TPAMI2018, Yudong Guo, Juyong Zhang, Jianfei Cai, Boyi Jiang, Jianmin Zheng, USTC) * Multilinear Autoencoder for 3D Face Model Learning(WACV 2018, Universite Grenoble Alpes (LJK), France) `3d scan to registered mesh. dl. height map ` * On Face Segmentation, Face Swapping, and Face Perception(AFGR,2018, HT) * Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild(FG2018) [data]( ) **#arxiv** * Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition(2017, Feng Liu, Xiaoming Liu) * Convolutional Point-set Representation: A Convolutional Bridge Between a Densely Annotated Image and 3D Face Alignment(20180317) * Unsupervised Depth Estimation, 3D Face Rotation and Replacement(20180325) ### Production-level Reconstruction > more in computer graphics - High-Quality Single-Shot Capture of Facial Geometry(TOG2010, ETHZ, Disney) `cg, high-detail,stereo system, calibration, surface refinement, normal direction, mesoscopic ` - Multiview Face Capture using Polarized Spherical Gradient Illumination(TOG2011) `image collecitons` - High-Quality Passive Facial Performance Capture using Anchor Frames(SIGGRAPH2011, ETHZ, Disney) `cg, stereo,anchor frame, tracking, mesh progration, physical movement, motion estimation, refinement ` - Lightweight binocular facial perfor- mance capture under uncontrolled lighting(TOG2012, MPI) `cg, high-detail, stereo, template,flow,data term, geometry term, smoothness term, mesh tracking, motion refinement, shape refinement, sfs ` - Reconstructing Detailed Dynamic Face Geometry from Monocular Video(TOG2013, MPI) `cg, dynamic, high-detail, blend model, sparse correspondence, dense correspondence(appearance matching, LBP), pose estimation , shape refinement, sfs ` - 3D Shape Regression for Real-time Facial Animation(TOG2013, ZJU) - Real-Time High-Fidelity Facial Performance Capture (TOG2015, ZJU) `cg, landmarks, optical flow, train a regressor to learn detail ` - Dynamic 3D Avatar Creation from Hand-held Video Input(TOG2015, EPEL) `cg, dynamic, mobile, high-detail, avatar, 3dmm,sparse correspondence, eye mesh, tracking, refinement, sfs, detail map ` - Reconstruction of Personalized 3D Face Rigs from Monocular Video(TOG2016, MPI) `parametric shape prior, coarse-scale reconstruction, fine-scale(sfs), coase->medium->fine, 3dmm, corrective ` - Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks(ASCA2017, USC) - Multi-View Stereo on Consistent Face Topology(EG2017, USC) `cg, high-detail, landmarks, template, pose estimation, refinement` - Avatar Digitization From a Single Image For Real-Time Rendering(SIGGRAPH Asia 2017, USC) `cg, avatar, segmentation, head, hair, 3DMM, landmarks, texture completion ` - Learning a model of facial shape and expression from 4D scans(TOG2017, USC, MPI) - DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling(SIGGRAPH2017) - High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained Image(SIGGRAPH2018, USC) ### Texture > 3D-aid texture generation/ UV texture completion > Keys: GAN - Face Synthesis from Facial Identity Features(CVPR2017, google) `3dmm, dl, landmarks` - Photorealistic Facial Texture Inference Using Deep Neural Networks(CVPR2017, Hao Li, USC) `texture completion` - UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition(CVPR2018, SZ, ICL) `gan, 3dmm, uv texture completion` - Multi-Attribute Robust Component Analysis for Facial UV Maps(2017, SZ, ICL) - Realistic Dynamic Facial Textures from a Single Image using GANs(CVPR2017, Hao Li, USC, DeepMind) - Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model(2018) - Side Information for Face Completion: a Robust PCA Approach(20180120, SZ, ICL) ​ ### Transfer&Reenactment(Applications) - Face Transfer with Multilinear Models (SIGGRAPH2005) `Cartesian product(ID x EX x VI)` - Online Modeling For Realtime Facial Animation(TOG2013) `rgbd, blendshape, corrective field ` - Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation(SIGGRAPH2014) - Real-time Expression Transfer for Facial Reenactment(SIGGRAPH AISA 2015) - Face2Face: Real-time Face Capture and Reenactment of RGB Videos(CVPR2016) `capture, transfer, 3dmm, landmarks, texture, expression, mouth retrieval ` - Synthesizing Obama: Learning Lip Sync from Audio(SIGGRAPH2017) - Deep Video Portrait(SIGGRAPH2018) - HeadOn: Real-time Reenactment of Human Portrait Videos(SIGGRAPH2018) ### 3D-aid 2D face recognition - Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification(ECCV2012, Columbia University) - Face Recognition from a Single Training Image under Arbitrary Unknown Lighting Using Spherical Harmonics(PAMI2006) - 3D-aided face recognition robust to expression and pose variations (CVPR2014) - Effective 3D based Frontalization for Unconstrained Face Recognition(ICPR2016, MICC, Florence) - Effective Face Frontalization in Unconstrained Images(CVPR2015, TH, Israel) - Do We Really Need to Collect Millions of Faces for Effective Face Recognition(ECCV2016, TH, USC, Israel) - High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(CVPR2015) - When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition(2017) - Towards Large-Pose Face Frontalization in the Wild - Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization (ICCV2011, Cambridge, MA, USA) ### 3D face recognition - Face Identification across Different Poses and Illuminations with a 3D Morphable Model(Automatic Face and Gesture Recognition2002, VB&TV) - Preliminary Face Recognition Grand Challenge Results(2006) - expression Invariant 3D Face Recognition with a Morphable Model(FG2008, TV, Basel) - Bosphorus Database for 3D Face Analysis(2008)[data]() - Robust Learning from Normals for 3D face recognition(ECCV2012, SZ, ICL) - Static and dynamic 3D facial expression recognition: A comprehensive survey(IVC2012, SZ, LijunYin) - Deep 3D Face Identification(2017, USC) - Robust Face Recognition with Deeply Normalized Depth Images (2018) `depth image(front&neural)` - Learning from Millions of 3D Scans for Large-scale 3D Face Recognition(CVPR2018, Western Australia)