
In [16]: # plotting
%matplotlib inline 
from matplotlib import pyplot as plt; 

# scientific 
import numpy as np; 

In [17]: from notebook.services.config import ConfigManager
cm = ConfigManager() 
cm.update('livereveal', { 
              'theme': 'simple', 
              'transition': 'none',
              'start_slideshow_at': 'beginning', 
}); 
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Supervised Learning
Goal

Given data  in feature sapce and the labels 
Learn to predict  from 

Labels could be discrete or continuous
Discrete-valued labels: Classification
Continuous-valued labels: Regression

Notation
In this lecture, we will use

Data  (scalar- or vector-valued)
Features  for data 
Continuous-valued labels  (target values)

We will interchangeably use

 to denote the  training example.
 to denote the  target value.



Linear Regression (1d inputs)
Consider 1d case (e.g. D=1)

Given a set of observations 
and corresponding target values 

We want to learn a function  to predict future values.

Regression: Noisy Data

In [18]: # plot sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
plt.plot(xx, np.sin(xx), '-g'); 

x = np.linspace(0, 2*np.pi, 13); 
# np.random.randn generates gaussian samples 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5;  

# plot data 
plt.plot(x,y, 'or'); 

Regression: 0th Order Polynomial



In [4]: # Here were are going to take advantage of numpy's 'polyfit' functi

on 
# This implements a "polynomial fitting" algorithm 
# coeffs are the optimal coefficients of the polynomial 
coeffs = np.polyfit(x, y, 0); # 0 is the degree of the poly 

# We construct poly(), the polynomial with "learned" coefficients 
poly = np.poly1d(coeffs); 

plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

Regression: 1st Order Polynomial



In [5]: coeffs = np.polyfit(x, y, 1); # Now let's try degree = 1 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

Regression: 3rd Order Polynomial

In [6]: coeffs = np.polyfit(x, y, 3); # Now degree = 3 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

In [ ]:   



Linear Regression (General Case)
The function  is linear in parameters .

Goal: Find the best value for the weights, .
For simplicity, add a bias term .

Basis Functions
The basis functions  need not be linear.

In [7]: def set_nice_plot_labels(axs):
    axs[0].set_title(r"$ \phi_j(x) = x^j$", fontsize=18, y=1.08); 
    axs[0].set_xlabel("Polynomial", fontsize=18); 
    axs[1].set_title(r"$ \phi_j(x) = \exp\left( - \frac{(x-\mu_j)^
2}{2s^2} \right)$", fontsize=18, y=1.08); 
    axs[1].set_xlabel("Gaussian", fontsize=18); 
    axs[2].set_title(r"$ \phi_j(x) = (1  + \exp\left(\frac{\mu_j-x}
{s}\right))^{-1}$", fontsize=18, y=1.08); 
    axs[2].set_xlabel("Sigmoid", fontsize=18); 



In [8]: x = np.linspace(-1,1,100); 
f, axs = plt.subplots(1, 3, sharex=True, figsize=(12,4)); 
for j in range(8): 
    axs[0].plot(x, np.power(x,j)); 
    axs[1].plot(x, np.exp( - (x - j/7 + 0.5)**2 / 2*5**2 )); 
    axs[2].plot(x, 1 / (1 + np.exp( - (x - j/5 + 0.5) * 5)) ); 
     
set_nice_plot_labels(axs) # I'm hiding some helper code that adds l
abels



Least Squares: Objective Function

Minimize the residual error over the training data.



Apply the chain rule:

Least Squares: Vectorized Gradient

Least Squares: Gradient Calculation
To minimize the error, take partial derivatives w.r.t. each weight :



Batch Gradient Descent
Given dataset  and initial guess , repeat until convergence:

where

Stochastic Gradient Descent
Main Idea: Instead of computing batch gradient (over entire training data), just compute gradient for
individual example and update.

Repeat until convergence:

for  do:  

where



Closed Form Solution
Main Idea: Compute gradient and set to gradient to zero, solving in closed form.

Objective function:

We will derive the gradient using matrix calculus.

Closed Form Solution: Derivation

Closed Form Solution: Data Matrix
The design matrix is a matrix , applying

the  basis functions (columns)

to  data points (rows)

Goal: 



Matrix Calculus: The Gradient
Suppose that , that is, the function 

takes as input a matrix 
returns a real value

Then, the gradient of  with respect to  is:

Matrix Calculus: The Gradient
Note that the size of  is always the same as the size of . In particular, for vectors ,

The gradient is a linear operator from :

Closed Form: Recap
Idea so far:

Compute gradient and set to zero
Solve the equation in a closed form using matrix calculus

Need to compute the first derivative of objective  in matrix form!



Gradient: Linear Functions
The gradient of the linear function  is

In a more compact form,

Gradient: Quadratic Forms
Every symmetric  corresponds to a quadratic form:

The partial derivatives are

Compact form 

Digression: Moore-Penrose Pseudoinverse
When we have a matrix  that is non-invertible or not even square, we might want to invert
anyway
For these situations we use , the Moore-Penrose Pseudoinverse of 
When  has lin. indep. columns then 
In general, we can get  by SVD: if we write  then , where  is
obtained by taking reciprocals of non-zero entries of .



Least Squares: Gradient via Matrix Calculus
Compute the gradient and set to zero

Solve the resulting normal equation:

This is the Moore-Penrose pseudoinverse,  applied to solve the
linear system .

Least Squares: Geometric Interpretation
Assume data much larger than basis dim (i.e. )
View target vals  as a vector in -dim space

The  basis functions span the -dim subspace
 minimizes squared err from  in subspace

Proj of  onto -dim subspace spanned by basis funcs



Back to curve-fitting examples...

Polynomial Curve Fitting

In [9]: # plot sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
plt.plot(xx, np.sin(xx), '-g'); 

# plot data 
x = np.linspace(0, 2*np.pi, 13); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
plt.plot(x,y, 'or'); 

0th Order Polynomial



In [10]: coeffs = np.polyfit(x, y, 0); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

3rd Order Polynomial

In [11]: coeffs = np.polyfit(x, y, 3); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

12th Order Polynomial



In [12]: coeffs = np.polyfit(x, y, 12); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

Overfitting

Root-Mean-Square (RMS) Error: 



Polynomial Coefficients

Data Set Size: 
(12th order polynomial)



In [13]: # sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
# data 
N = 15; 
x = np.linspace(0, 2*np.pi, N); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
# fit
coeffs = np.polyfit(x, y, 12); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

Data Set Size: 
(12th order polynomial)



In [15]: # sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
# data 
N = 100; 
x = np.linspace(0, 2*np.pi, N); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
# fit
coeffs = np.polyfit(x, y, 12); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

How do we choose the degree of our polynomial?

Rule of Thumb
For a small number of datapoints, use a low degree

Otherwise, the model will overfit!

As you obtain more data, you can gradually increase the degree

Add more features to represent more data

Warning: Your model is still limited by the finite amount of data available. The optimal

model for finite data cannot be an infinite-dimensional polynomial!)

Use regularization to control model complexity.

Regularized Linear Regression



Regularized Least Squares
Consider the error function 

Data term 
Regularization term 

With the sum-of-squares error function and quadratic regularizer, $$ ⧵widetilde{E}(w) = ⧵frac12
⧵sum_{n=1}^N (y(x_n, w) - t_n)^2

⧵boxed{⧵frac{⧵lambda}{2} || w ||^2} $$
This is minimized by

Regularized Least Squares: Derivation
Recall that our objective function is

Regularized Least Squares: Derivation
Compute gradient and set to zero:

Therefore, we get 



Regularized Least Squares: Norms
We can make use of the various  norms for different regularizers:



Regularized Least Squares: Comparison
Lasso tends to generate sparser solutions than a quadratic regularizer.



L2 Regularization: 



L2 Regularization: 



L2 Regularization:  vs 

NOTE: For simplicity of presentation, we divided the data into training set and test set.
However, it’s not legitimate to find the optimal hyperparameter based on the test set. We
will talk about legitimate ways of doing this when we cover model selection and cross-
validation.



L2 Regularization: Polynomial Coefficients

Regularized Least Squares: Summary
Simple modification of linear regression
L2 Regularization controls the tradeoff between fitting error and complexity.

Small L2 regularization results in complex models, but with risk of overfitting
Large L2 regularization results in simple models, but with risk of underfitting

It is important to find an optimal regularization that balances between the two


