
In [ ]: # plotting
%matplotlib inline 
from matplotlib import pyplot as plt; 
if "bmh" in plt.style.available: plt.style.use("bmh"); 

# scientific 
import numpy as np; 
import scipy as scp; 
import scipy.stats; 

# rise config 
from notebook.services.config import ConfigManager
cm = ConfigManager() 
cm.update('livereveal', { 
              'theme': 'simple', 
              'start_slideshow_at': 'selected', 
}) 

EECS 545: Machine Learning
Lecture 05: Linear Regression II

Instructor: Jacob Abernethy
Date: January 25, 2015

Lecture Exposition Credit: Benjamin Bray

Logistics
HW1 due today! HW2 released tonight.
HW2 requires submission to a Kaggle contest (more soon)
Coming up on Wed.:

New method of serving lecture materials
Opportunities for extra credit + improving course materials

No class on February 3!



Outline for today

Review of Least Squares and curve fitting

Overfitting + Regularization + Least Squares

Review of Maximum Likelihood estimation

Maximum Likelihood interpretation of linear regression

Locally-weighted linear regression

Logistic Regression

Least Squares: Gradient via Matrix Calculus
Compute the gradient and set to zero

Solve the resulting normal equation:

This is the Moore-Penrose pseudoinverse,  applied to solve the

linear system .

Back to curve-fitting examples...

Polynomial Curve Fitting



In [2]: # plot sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
plt.plot(xx, np.sin(xx), '-g'); 
# plot data 
x = np.linspace(0, 2*np.pi, 13); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
plt.plot(x,y, 'or'); 

0th Order Polynomial



In [3]: coeffs = np.polyfit(x, y, 0); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

3rd Order Polynomial

In [4]: coeffs = np.polyfit(x, y, 3); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

12th Order Polynomial



In [5]: coeffs = np.polyfit(x, y, 12); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 



Overfitting

Root-Mean-Square (RMS) Error: 



Polynomial Coefficients

Data Set Size: 
(12th order polynomial)



In [6]: # sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
# data 
N = 15; 
x = np.linspace(0, 2*np.pi, N); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
# fit
coeffs = np.polyfit(x, y, 12); poly = np.poly1d(coeffs); 
# plt.bar(range(13),coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

Data Set Size: 
(12th order polynomial)



In [7]: # sine wave 
xx = np.linspace(0, 2*np.pi, 100); 
# data 
N = 100; 
x = np.linspace(0, 2*np.pi, N); 
y = np.sin(x) + np.random.randn(x.shape[0]) / 5; 
# fit
coeffs = np.polyfit(x, y, 12); 
poly = np.poly1d(coeffs); 
plt.plot(xx, np.sin(xx), "-g", x, y, "or", xx, poly(xx), "-b"); 

How do we choose the degree of our polynomial?

Rule of Thumb
For a small number of datapoints, use a low degree

Otherwise, the model will overfit!

As you obtain more data, you can gradually increase the degree

Add more features to represent more data

Warning: Your model is still limited by the finite amount of data available. The optimal

model for finite data cannot be an infinite-dimensional polynomial!)

Use regularization to control model complexity.

Regularized Linear Regression



Regularized Least Squares
Consider the error function 

Data term 
Regularization term 

With the sum-of-squares error function and quadratic regularizer,

This is minimized by

Regularized Least Squares: Derivation
Compute gradient and set to zero:

Therefore, we get 

Regularized Least Squares: Derivation
Recall that our objective function is



Regularized Least Squares: Norms
We can make use of the various  norms for different regularizers:



Regularized Least Squares: Comparison
Lasso tends to generate sparser solutions than a quadratic regularizer (more on Lasso later)



L2 Regularization: 



L2 Regularization: 



L2 Regularization:  vs 

NOTE: For simplicity of presentation, we divided the data into training set and test set. However, it’s not
legitimate to find the optimal hyperparameter based on the test set. We will talk about legitimate ways of
doing this when we cover model selection and cross-validation.



L2 Regularization: Polynomial Coefficients



Regularized Least Squares: Summary
Simple modification of linear regression
L2 Regularization controls the tradeoff between fitting error and complexity.

Small L2 regularization results in complex models, but with risk of overfitting
Large L2 regularization results in simple models, but with risk of underfitting

It is important to find an optimal regularization that balances between the two

Break time!

Maximum Likelihood & MAP
Maximum Likelihood: Pick the parameters under which the data is most probable under our model.

Maximum a Posteriori: Pick the parameters under which the data is most probable, weighted by our
prior beliefs.



Maximum Likelihood Interpretation of Least Squares
Regression

Gaussian Distribution

TIP: Scipy contains useful methods for dealing with common distributions in the 
scipy.stats module (http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html)!

Gaussian Distribution

In [8]: # parameters 
mean, variance = 0, 5; 

xvals = np.linspace(mean-5, mean+5, 100); 

# get pdf from scipy.stats 
plt.plot(xvals, scp.stats.norm.pdf(xvals)) 

Out[8]: [<matplotlib.lines.Line2D at 0x107537190>]



Maximum Likelihood 
Assume a stochastic model

This gives the following likelihood function:

Maximum Likelihood 
With inputs  and target values , the data likelihood is

Log Likelihood
We will now show that the log likelihood is

where 

Note: Bishop book drops  from the notation

Details of Derivation

From  we have



Details of Derivation

Maximize the Likelihood
Maximizing the likelihood is equivalent to minimizing the sum of squared errors
Set gradient log-likelihood to zero,

This is summarized by the relation 



Locally-Weighted Linear Regression

Locally-Weighted Linear Regression
Main Idea: When predicting , give high weights for neighbors of .

Regularized Least Squares
Consider the regularized error function

With squared error and  regularization, we get

Solving regularized least squares can be viewed as a MAP estimate of  with a Gaussian prior
on ,



Regular vs. Locally-Weighted Linear Regression

Regular vs. Locally-Weighted Linear Regression
Linear Regression

1. Fit  to minimize   

2. Output 

Locally-weighted Linear Regression

1. Fit  to minimize  for some weights   

2. Output 



Locally-Weighted Linear Regression
The standard choice for weights  uses the Gaussian Kernel, with kernel width 

Note  depends on both  (query point); must solve linear regression for each query point .
Can be reformulated as a modified version of least squares problem.

Locally-Weighted Linear Regression
Choice of kernel width matters.

(requires hyperparameter tuning!)

The estimator is minimized when kernel includes as many training points as can be
accomodated by the model. Too large a kernel includes points that degrade the fit; too
small a kernel neglects points that increase confidence in the fit.

Supervised Learning
Classification



Supervised Learning
Goal:

Given data  in feature space with labels 
Learn to predict  from 

Labels could be discrete or continuous
Discrete: Classification
Continuous: Regression

Classification Problem: Representation
Given an input vector , assign it to one of  distinct classes , where .
The case  is Binary Classification

 means 
 means  (or sometimes 

For the case , use one-hot encoding,

Classification Problem: Data
Training: Learn a classifier  from data,

Testing: Evaluate learned classifier on test data,



Classification Problem: Testing
Testing data

The learning algorithm produces predictions

To estimate classification error, use e.g. zero-one loss:

Classification Problems: Strategies
Nearest-Neighbors: Given query data , find closest training points and do a majority vote.
Discriminant Functions: Learn a function  mapping  to some class .
Probabilistic Model: Learn the distributions 

Discriminative Models directly model  and learn parameters from the training
set.
Generative Models learn class-conditional densities  and priors 

Logistic Regression

Probabilistic Discriminative Models
Model decision boundary as a function of input 

Learn  over data (e.g maximum likelihood)
Directly predict class labels from inputs

Later: Probabilistic Generative Models
Learn  over data, then use Bayes' rule to predict 

Logistic Regression
Models the class posterior using a sigmoid applied to a linear function of the feature vector:

We can solve the paramter  by maximizing the likelihood of the training data.



In [9]: def sigmoid(a):  return 1 / (1 + np.exp(-a)); 

xvals = np.linspace(-10,10,100); 
plt.plot(xvals, sigmoid(xvals)); 

Sigmoid and Logit Functions
Its inverse is the logit function or the log-odds ratio,

Sigmoid and Logit Functions
The logistic sigmoid function is



In [10]: def logit(sigma): return np.log(sigma / (1-sigma)); 

xvals = np.linspace(0.001, 0.999, 100); 
plt.plot(xvals, logit(xvals)); 

Sigmoid and Logit Functions
The sigmoid function generalizes to the normalized exponential or softmax function:

Likelihood Function
Depending on the label , the likelihood  is defined as

With a clever trick, the likelihood becomes

Logistic Regression
For a data set  where , the likelihood function is

where 
Minimize the loss function  to maximize the likelihood



Derivation: 

Logistic Regression: Gradient Descent

We have just shown that the gradient of the loss is

This resembles the gradient expression from linear regression with least squares!

Newton's Method: Overview

Goal: Minimize a general function  in one dimension by solving for

Newton's Method: To find roots of , Repeat until convergence:



Newton's Method: Geometric Intuition
Find the roots of  by following its tangent lines. The tangent line to  at  has
equation

Set next iterate  to be root of tangent line:

Newton's Method: Geometric Intuition



In [11]: # custom newton's method -- see Canvas 
from newton_plot import *; 

def fn(x): return np.exp(x) - x**2; 
def d1(x): return np.exp(x) - 2*x; 
def d2(x): return np.exp(x) - 2; 

lst = []; 
print("Newton's Method:", newton_exact(d1, d2, 10, lst=lst, max
n=4)); 
plot_optimization(plt.gca(), fn, d1, lst, xlim=(6,12), ylim=(-4000, 
30000), tangents=True); 

Newton's Method did not converge. 
("Newton's Method:", 6.018373602193873) 



In [12]: # custom newton's method -- see Canvas 
from newton_plot import *; 

def fn(x): return x**3; 
def d1(x): return 3 * x**2; 
def d2(x): return 6 * x; 

lst = []; 
print("Newton's Method:", newton_exact(d1, d2, -1, lst=lst, max
n=4)); 
plot_optimization(plt.gca(), fn, d1, lst, xlim=(-1.5,1.5), ylim=
(-2,2), tangents=True); 

Newton's Method did not converge. 
("Newton's Method:", -0.0625) 

Newton's Method: Recap
To minimize , find roots of  via Newton's Method.

Repeat until convergence:



Newton's Method: Multivariate Case
Replace second derivative with the Hessian Matrix,

Newton update becomes:

Recall: Linear Regression
For linear regression, least squares has a closed-form solution:

This generalizes to weighted least squares, with diagonal weight matrix ,

Logistic Regression: Newton's Method
For logistic regression, however,  is nonlinear, and no closed-form solution
exists.

We must iterate!
Newton's method is a good choice in many cases.

Iterative Solution
Apply Newton's method to solve 
This involves least squares with weights 
Since  depends on , and vice-versa, we get...

Iteratively-Reweighted Least Squares (IRLS)

Repeat Until Convergence:  
1.   
2. 


