NOTE: This repository is not maintained and should not be used. Most of the design patterns implemented in this repository are not really needed when writing idomatic Python.
from pypattyrn.creational.singleton import Singleton
class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!
...
PyPattyrn is a python package aiming to make it easier and faster to implement design patterns into your own projects.
Design patterns by nature cannot be directly translated into code as they are just a description of how to solve a particular problem. However, many of the common design patterns have boilerplate code that is common throughout all implementations of the pattern. This package captures that common code and makes it easy to use so that you dont have to write it yourself in all your projects.
pip install pypattyrn
or
git clone https://github.com/tylerlaberge/PyPattyrn.git
cd PyPattyrn
python setup.py install
Patterns which deal with communication between objects.
Pass a request along a chain of objects until the request is handled.
from pypattyrn.behavioral.chain import Chain, ChainLink
class ConcreteChainLinkThree(ChainLink): # This object is a ChainLink
def handle(self, request): # Implement the handle method.
if request == 'handle_three':
return "Handled in chain link three"
else:
return self.successor_handle(request) # If this ChainLink can't handle the request,
# ask its successor to handle it.
# (Has no successor so will raise AttributeError)
# (This exception is caught and will call a Chains fail method)
class ConcreteChainLinkTwo(ChainLink): # This object is a ChainLink
def __init__(self): # Override init to set a successor on initialization.
super().__init__() # first call ChainLinks init
self.set_successor(ConcreteChainLinkThree()) # Set the successor of this chain link
# to a ConcreteChainLinkThree instance.
def handle(self, request): # Implement the handle method.
if request == 'handle_two':
return "Handled in chain link two"
else:
return self.successor_handle(request) # If this ChainLink can't handle a request
# ask its successor to handle it
# (the ConcreteChainLinkThree instance).
class ConcreteChainLinkOne(ChainLink): # This object is a ChainLink
def __init__(self):
super().__init__()
self.set_successor(ConcreteChainLinkTwo()) # Set the successor of this ChainLink
# to a ConcreteChainLinkTwo instance.
def handle(self, request): # Implement the handle method.
if request == 'handle_one':
return "Handled in chain link one"
else:
return self.successor_handle(request) # If this ChainLink can't handle a request
# ask its successor to handle it
# (the ConcreteChainLinkTwo instance).
class ConcreteChain(Chain): # This object is a Chain
def __init__(self): # Override init to initialize a Chain with the starting chain link.
super().__init__(ConcreteChainLinkOne()) # Initialize this Chain with a start chain link.
# (a ConcreteChainLinkOne instance)
def fail(self): # Implement the fail method, this is called if no chain links could handle a request.
return 'Fail'
chain = ConcreteChain()
assert "Handled in chain link one" == chain.handle("handle_one")
assert "Handled in chain link two" == chain.handle("handle_two")
assert "Handled in chain link three" == chain.handle("handle_three")
assert "Fail" == chain.handle('handle_four')
Encapsulate information for performing an action into an object.
from pypattyrn.behavioral.command import Receiver, Command, Invoker
class Thermostat(Receiver): # This object is a Receiver.
# Contains methods for commands to use.
def raise_temp(self, amount):
return "Temperature raised by {0} degrees".format(amount)
def lower_temp(self, amount):
return "Temperature lowered by {0} degrees".format(amount)
class RaiseTempCommand(Command): # This object is a Command.
def __init__(self, receiver, amount=5): # Override init to include a temperature amount argument.
super().__init__(receiver)
self.amount = amount
def execute(self): # Implement the execute method.
return self._receiver.action('raise_temp', self.amount) # Call on the Receiver's action method with
# the name of the method to call and args.
# (Raises the temperature by 5 degrees.)
def unexecute(self): # Implement the unexecute method.
return self._receiver.action('lower_temp', self.amount) # Calls on the Receiver to lower
# the temperature by 5 degrees.
class LowerTempCommand(Command): # This object is a Command.
def __init__(self, receiver, amount=5):
super().__init__(receiver)
self.amount = amount
def execute(self):
return self._receiver.action('lower_temp', self.amount) # Call on the receiver to lower the
# temperature by 5 degrees.
def unexecute(self):
return self._receiver.action('raise_temp', self.amount) # Call on the receiver to raise the
# temperature by 5 degrees.
class Worker(Invoker): # This object is the Invoker
def __init__(self): # Override init to initialize an Invoker with Commands to accept.
super().__init__([LowerTempCommand, RaiseTempCommand]) # Initialize the Invoker with the
# LowerTempCommand and RaiseTempCommand classes.
thermostat = Thermostat() # Create a Receiver.
worker = Worker() # Create an Invoker.
assert "Temperature lowered by 5 degrees" == worker.execute(LowerTempCommand(thermostat)) # Have the Invoker execute a LowerTempCommand
# which uses the thermostat Receiver.
assert "Temperature raised by 5 degrees" == worker.execute(RaiseTempCommand(thermostat)) # Have the Invoker execute a RaiseTempCommand
# which uses the thermostat Receiver.
assert "Temperature lowered by 5 degrees" == worker.undo() # Undo the previous command (Calls the RaiseTempCommand unexecute method.)
A way of sequentially accessing elements in a collection.
from pypattyrn.behavioral.iterator import Iterable, Iterator
class Counter(Iterable): # This object is an Iterable
def __init__(self, max):
self.count = 0
self.max = max
def __next__(self): # Implement the __next__ method.
self.count += 1 # Increment the count
if self.count > self.max:
raise StopIteration() # make sure to raise StopIteration at the appropriate time.
else:
return self.count - 1 # Return the count
class CounterIterator(Iterator): # This object is an Iterator
def __init__(self): # Override init to initialize an Iterator with the Counter object.
super().__init__(Counter(10)) # Initialize the iterator with a Counter that goes to 10.
counter_iterator = CounterIterator() # Create a CounterIterator.
for count in counter_iterator: # You can loop through it how you would expect.
print(count) # 0, 1, 2, 3, ..., 9
An intermediary for managing communications between many objects.
from pypattyrn.behavioral.mediator import Mediator
class Dog(object):
sound = ''
def set_sound(self, sound):
self.sound = sound
class Cat(object):
sound = ''
def set_sound(self, sound):
self.sound = sound
dog = Dog()
cat = Cat()
mediator = Mediator() # Create a Mediator object.
mediator.connect('set_dog_sound', dog.set_sound) # Connect the signal 'set_dog_sound' to the dog.set_sound method.
mediator.connect('set_cat_sound', cat.set_sound) # Connect the signal 'set_cat_sound' to the cat.set_sound method.
mediator.connect('set_sound', dog.set_sound) # Also connect the signal 'set_sound' to the dog.set_sound method.
mediator.connect('set_sound', cat.set_sound) # Also connect the signal 'set_sound' to the cat.set_sound method.
mediator.signal('set_sound', 'foo') # Send out the signal 'set_sound'
# with an argument to be passed to the connected methods.
# (Sets dog.sound and cat.sound to 'foo')
assert 'foo' == dog.sound
assert 'foo' == cat.sound
mediator.signal('set_dog_sound', 'woof') # Send out the signal 'set_dog_sound'
# (Sets dog.sound to 'woof')
mediator.signal('set_cat_sound', 'meow') # Send out the signal 'set_cat_sound'
# (Sets cat.sound to 'meow')
assert 'woof' == dog.sound
assert 'meow' == cat.sound
mediator.disconnect('set_sound', dog.set_sound) # Disconnect the method dog.sound from the signal 'set_sound'
mediator.signal('set_sound', 'bar') # Send out the signal 'set_sound'
# (Only sets cat.sound to 'bar' because we disconnected dog.sound)
assert 'woof' == dog.sound
assert 'bar' == cat.sound
Save the state of an object and rollback to it at a later time.
from pypattyrn.behavioral.memento import Originator
class Cat(Originator): # This object is an Originator
def __init__(self, name):
self.name = name
cat = Cat('Tom') # Initialize a Cat with the name 'Tom'
assert cat.name == 'Tom'
cat_memento = cat.commit() # Save the cats current state to a Memento object.
cat.name = 'jerry' # Change the cats name to 'jerry'
assert cat.name == 'jerry'
cat.rollback(cat_memento) # Restore the cats state to the memento object we saved.
assert 'Tom' == cat.name # The cats name was changed back to 'Tom' as expected.
Encapsulate the absence of an object into an object with neutral behavior.
from pypattyrn.behavioral.null import Null
# You can initialize a Null object with any parameters.
try:
Null()
Null('value')
Null('value', param='value')
except:
raise AssertionError()
null = Null()
# Attempting to set parameters won't do anything and won't error
try:
null.foo = 'foo'
null.foo.bar = 'bar'
except:
raise AssertionError()
# Calling on a null object in any way will just return that null object.
assert null == null()
assert null == null('value')
assert null == null('value', param='value')
assert null == null.foo
assert null == null.foo.bar
assert null == null.foo.bar.method1()
assert null == null.foo.bar.method1().method2('foo', bar='bar').attr3
assert str(null) == '' # Null objects string representation is the empty string.
assert repr(null) == '' # Null objects repr is the empty string.
assert bool(null) is False # Null object evaluates to False as a boolean.
# Trying to delete attributes doesn't do anything and won't error.
try:
del null.foo
del null.foo.bar
except:
raise AssertionError()
Notify many objects when a single object's state changes.
from pypattyrn.behavioral.observer import Observable, Observer
class ConcreteObservable(Observable): # This object is an Observable.
_kinda_private_var = 'I am kinda private'
__private_var = 'I am more private'
def change_state(self, **kwargs): # Some method to change this objects state and notify observers.
for key, value in kwargs.items():
setattr(self, key, value) # Change the objects state.
self.notify() # Notify all observers of the change in state.
# Will call the update method of each attached observer with kwargs that come
# from this objects __dict__ attribute, minus any private variables (starts with __ or _)
class ConcreteObserver(Observer): # This object is an Observer.
updated_state = None
def update(self, **state): # Implement the update method.
# Called when an attached observable calls its notify method.
self.updated_state = state
observable = ConcreteObservable() # Create an Observable
observer_1 = ConcreteObserver() # Create Observers
observer_2 = ConcreteObserver()
observer_3 = ConcreteObserver()
observable.attach(observer_1) # Attach each of the Observers to the Observable
observable.attach(observer_2)
observable.attach(observer_3)
observable.change_state(foo='foo', bar='bar') # Change the Observable's state.
# Also calls notify which will call each Observers update method.
expected_state = {'foo': 'foo', 'bar': 'bar'}
# Make sure each Observers state was changed accordingly when the notify method was called by the Observable.
assert sorted(expected_state.keys()) == sorted(observer_1.updated_state.keys()) and \
sorted(expected_state.values()) == sorted(observer_1.updated_state.values())
assert sorted(expected_state.keys()) == sorted(observer_2.updated_state.keys()) and \
sorted(expected_state.values()) == sorted(observer_2.updated_state.values())
assert sorted(expected_state.keys()) == sorted(observer_3.updated_state.keys()) and \
sorted(expected_state.values()) == sorted(observer_3.updated_state.values())
observable.detach(observer_1) # Detach Observer 1 from the Observable
observable.change_state(bar='foobar') # Change the Observables state.
expected_state_2 = {'foo': 'foo', 'bar': 'foobar'}
# Make sure each Observers state was changed accordingly when notify was called by the Observable,
# Except for observer_1 because we detached that Observer from the Observable.
assert sorted(expected_state_2.keys()) != sorted(observer_1.updated_state.keys()) or \
sorted(expected_state_2.values()) != sorted(observer_1.updated_state.values())
assert sorted(expected_state_2.keys()) == sorted(observer_2.updated_state.keys()) and \
sorted(expected_state_2.values()) == sorted(observer_2.updated_state.values())
assert sorted(expected_state_2.keys()) == sorted(observer_3.updated_state.keys()) and \
sorted(expected_state_2.values()) == sorted(observer_3.updated_state.values())
Add new operations to an existing class without modifying it.
from pypattyrn.behavioral.visitor import Visitee, Visitor
class A(Visitee): # This object is a Visitee
pass
class B(A): # This object is an A, which also makes this a Visitee.
pass
class C(B): # This object is a B, which also makes this a Visitee.
pass
class D(Visitee): # This object is a Visitee
pass
class NodeVisitor(Visitor): # This object is a Visitor
def generic_visit(self, node, *args, **kwargs): # Implement the generic visit method.
# This is called when there is no visit_ method
# implemented for a particular visitee.
return 'generic_visit ' + node.__class__.__name__
def visit_b(self, node, *args, **kwargs): # Called when this object visits a Visitee of class 'B'.
return 'visit_b ' + node.__class__.__name__
def visit_d(self, node, *args, **kwargs): # Called when this object visits a Visitee of class 'D'.
return 'visit_d {0} args: {1} kwargs: {2}'.format(node.__class__.__name__, args, kwargs)
# Create Visitee's
node_a = A()
node_b = B()
node_c = C()
node_d = D()
# Create Visitor
node_visitor = NodeVisitor()
assert 'generic_visit A' == node_a.accept(node_visitor) # Visit node_a with the Visitor.
# Since the visitor does not have a visit_a method,
# generic_visit is called.
assert 'visit_b B' == node_b.accept(node_visitor) # Visit node_b with the Visitor.
# Calls the visitors visit_b method.
assert 'visit_b C' == node_c.accept(node_visitor) # Visit node_c with the Visitor.
# Even though the visitor does not have a visit_c method,
# since node_c inherits B, the Visitors visit_b method is called.
# Visit node_d with the Visitor. Calls the visitors visit_d method.
assert "visit_d D args: ('foo', 'bar') kwargs: {'foobar': 'foobar'}" == node_d.accept(node_visitor,
'foo', 'bar',
foobar='foobar')
Patterns which deal with object creation.
Separate object construction from its representation.
from pypattyrn.creational.builder import Builder, Director
class Building(object): # The object being constructed.
def __init__(self):
self.floor = None
self.size = None
def __repr__(self):
return 'Floor: {0.floor} | Size: {0.size}'.format(self)
class HomeBuilder(Builder): # A base Builder class for constructing homes.
def __init__(self):
super().__init__(Building()) # Initialize the Builder class with a Building instance.
self._register('floor', self._build_floor) # Register the keyword 'floor' with the _build_floor method.
self._register('size', self._build_size) # Register the keyword 'size' with the _build_size method.
def _build_floor(self):
pass
def _build_size(self):
pass
class HouseBuilder(HomeBuilder): # A concrete HomeBuilder class for constructing houses
def _build_floor(self):
self.constructed_object.floor = 'One' # Alter the Building's floor attribute.
def _build_size(self):
self.constructed_object.size = 'Big' # Alter the Building's size attribute.
class FlatBuilder(HomeBuilder): # A concrete HomeBuilder class for constructing flats
def _build_floor(self):
self.constructed_object.floor = 'More than one' # Alter the Building's floor attribute.
def _build_size(self):
self.constructed_object.size = 'Small' # Alter the Building's size attribute.
class HomeDirector(Director): # A Director class for managing home construction.
def construct(self):
self.builder.build('floor') # Build the floor part of the Building by using the keyword 'floor'
self.builder.build('size') # Build the size part of the Building by using the keyword 'size'
home_director = HomeDirector()
home_director.builder = HouseBuilder() # Use the house builder.
home_director.construct() # Construct the house.
house = home_director.get_constructed_object() # Get the constructed house.
print(repr(house)) #Floor: One | Size: Big
home_director.builder = FlatBuilder() # Use the flat builder.
home_director.construct() # Construct the flat.
house = home_director.get_constructed_object() # Get the constructed flat.
print(repr(house)) #Floor: More than one | Size: Small
An interface for creating an object.
from pypattyrn.creational.factory import Factory # This is just an interface
class Cat(object):
def speak(self):
print('meow')
class Dog(object):
def speak(self):
print('woof')
class AnimalFactory(Factory): # A factory class for creating animals.
def create(self, animal_type): # Implement the abstract create method.
if animal_type == 'cat':
return Cat()
elif animal_type == 'dog':
return Dog()
else:
return None
animal_factory = AnimalFactory()
cat = animal_factory.create('cat')
dog = animal_factory.create('dog')
cat.speak() # 'meow'
dog.speak() # 'woof'
Create an instance from a family of factories.
from pypattyrn.creational.factory import Factory, AbstractFactory
class Cat(object):
def speak(self):
print('meow')
class Dog(object):
def speak(self):
print('woof')
class Ant(object):
def march(self):
print('march')
class Fly(object):
def fly(self):
print('fly')
class AnimalFactory(Factory): # A factory class for creating animals.
def create(self, animal_type): # Implement the abstract create method.
if animal_type == 'cat':
return Cat()
elif animal_type == 'dog':
return Dog()
else:
return None
class InsectFactory(Factory): # A factory class for creating insects.
def create(self, insect_type): # Implement the abstract create method.
if insect_type == 'ant':
return Ant()
elif insect_type == 'fly':
return Fly()
else:
return None
class CreatureFactory(AbstractFactory): # A Factory class for creating creatures.
def __init__(self):
super().__init__()
self._register('insect_factory', InsectFactory()) # Register an InsectFactory with a keyword.
self._register('animal_factory', AnimalFactory()) # Register an AnimalFactory with a keyword.
def create(self, creature_type): # Implement the Abstract create method.
if creature_type == 'cat' or creature_type == 'dog':
return self._factories['animal_factory'].create(creature_type) # Use the AnimalFactory
elif creature_type == 'ant' or creature_type == 'fly':
return self._factories['insect_factory'].create(creature_type) # Use the InsectFactory
else:
return None
creature_factory = CreatureFactory()
cat = creature_factory.create('cat')
dog = creature_factory.create('dog')
ant = creature_factory.create('ant')
fly = creature_factory.create('fly')
cat.speak() # 'meow'
dog.speak() # 'woof'
ant.march() # 'march'
fly.fly() # 'fly'
Provide a pool of instantiated objects which can be checked out and returned rather than creating new objects all the time.
from pypattyrn.creational.pool import Reusable, Pool
class Dog(Reusable):
def __init__(self, sound):
self.sound = sound
super().__init__()
class DogPool(Pool):
def __init__(self):
super().__init__(Dog, 'woof')
dog_pool = DogPool()
dog_one = dog_pool.acquire()
dog_two = dog_pool.acquire()
dog_two.sound = 'meow'
dog_pool.release(dog_one)
dog_three = dog_pool.acquire()
dog_pool.release(dog_two)
dog_four = dog_pool.acquire()
assert id(dog_one) == id(dog_three)
assert id(dog_two) == id(dog_four)
assert dog_one.sound == dog_two.sound
assert dog_three.sound == dog_four.sound
assert dog_one.sound == dog_four.sound
Clone an object to produce new objects.
from pypattyrn.creational.prototype import Prototype
class Point(Prototype):
def __init__(self, x, y):
self.x = x
self.y = y
def move(self, x, y):
self.x += x
self.y += y
point_one = Point(15, 15)
point_two = point_one.prototype(z=20)
point_three = point_two.prototype()
assert point_one.x == point_two.x
assert point_one.y == point_two.y
assert not hasattr(point_one, 'z')
assert hasattr(point_two, 'z')
assert point_two.z == 20
assert point_three.__dict__ == point_two.__dict__
from math import sqrt
def distance_to(this, other):
return sqrt((this.x - other.x) ** 2 + (this.y - other.y) ** 2)
point_four = point_three.prototype(distance_to=distance_to)
assert hasattr(point_four, 'distance_to')
assert point_four.distance_to(point_three) == 0
Ensure that only a single instance of a class exists.
from pypattyrn.creational.singleton import Singleton
class DummySingletonOne(object, metaclass=Singleton):
def __init__(self):
pass
class DummySingletonTwo(object, metaclass=Singleton):
def __init__(self):
pass
dummy_class_one_instance_one = DummySingletonOne()
dummy_class_one_instance_two = DummySingletonOne()
dummy_class_two_instance_one = DummySingletonTwo()
dummy_class_two_instance_two = DummySingletonTwo()
assert id(dummy_class_one_instance_one) == id(dummy_class_one_instance_two)
assert id(dummy_class_two_instance_one) == id(dummy_class_two_instance_two)
assert id(dummy_class_one_instance_one) != id(dummy_class_two_instance_one)
assert id(dummy_class_one_instance_two) != id(dummy_class_two_instance_two)
Patterns which deal with object composition
Wrap an object into an interface which the client expects.
from pypattyrn.structural.adapter import Adapter
class Dog(object):
def __init__(self):
self.name = "Dog"
def bark(self):
return "woof!"
class Cat(object):
def __init__(self):
self.name = "Cat"
def meow(self):
return "meow!"
cat = Cat()
dog = Dog()
cat_adapter = Adapter(cat, make_noise=cat.meow)
dog_adapter = Adapter(dog, make_noise=dog.bark)
assert cat_adapter.make_noise == cat.meow
assert dog_adapter.make_noise == dog.bark
assert cat_adapter.make_noise() == 'meow!'
assert dog_adapter.make_noise() == 'woof!'
assert cat_adapter.name == 'Cat'
assert dog_adapter.name == 'Dog'
assert cat_adapter.meow() == 'meow!'
assert dog_adapter.bark() == 'woof!'
assert cat_adapter.original_dict() == cat.__dict__
assert dog_adapter.original_dict() == dog.__dict__
bad_cat_adapter = Adapter(cat, foo=cat.name)
try:
bad_cat_adapter.foo
except AttributeError:
pass
else:
raise AssertionError()
bad_dog_adapter = Adapter(dog, make_noise=cat.meow)
try:
bad_dog_adapter.make_noise()
except AttributeError:
pass
else:
raise AssertionError()
Compose objects into a tree structure of objects that can be treated uniformly.
from pypattyrn.structural.composite import Composite
class Component(object):
def do_something(self):
pass
class Leaf(Component):
def __init__(self):
self.did_something = False
def do_something(self):
self.did_something = True
leaf_one = Leaf()
leaf_two = Leaf()
leaf_three = Leaf()
composite_one = Composite(Component)
composite_two = Composite(Component)
composite_three = Composite(Component)
composite_one.add_component(leaf_one)
composite_two.add_component(leaf_two)
composite_three.add_component(leaf_three)
composite_two.add_component(composite_three)
composite_one.add_component(composite_two)
assert set() == {leaf_one, composite_two}.symmetric_difference(composite_one.components)
assert set() == {leaf_two, composite_three}.symmetric_difference(composite_two.components)
assert set() == {leaf_three}.symmetric_difference(composite_three.components)
composite_two.remove_component(composite_three)
assert set() == {leaf_two}.symmetric_difference(composite_two.components)
assert not leaf_one.did_something
assert not leaf_two.did_something
assert not leaf_three.did_something
composite_one.do_something()
assert leaf_one.did_something
assert leaf_two.did_something
assert not leaf_three.did_something
Attach additional functionality to functions.
import time
from pypattyrn.structural.decorator import DecoratorSimple, DecoratorComplex, CallWrapper
class TimeThis(DecoratorSimple):
def __call__(self, *args, **kwargs):
start = time.time()
result = self.func(*args, **kwargs)
end = time.time() - start
return result, end
class SlowClass(object):
@TimeThis
def slow_function(self, n):
time.sleep(n)
return 'foo'
slow_class = SlowClass()
result = slow_class.slow_function(1)
assert result[0] == 'foo'
assert 1 <= result[1] <= 2
class Alert(DecoratorComplex):
def __init__(self, alert_time):
self.alert_time = alert_time
@CallWrapper
def __call__(self, func, *args, **kwargs):
start = time.time()
return_val = func(*args, **kwargs)
end = time.time() - start
if end > self.alert_time:
return return_val, True
return return_val, False
class SlowClass(object):
@Alert(1)
def slow_function_true(self, n):
time.sleep(n)
return n
@Alert(1)
def slow_function_false(self, n):
return n
slow_class = SlowClass()
assert (2, True) == slow_class.slow_function_true(2)
assert (10, False) == slow_class.slow_function_false(10)
Share data with other similar objects to increase efficiency.
from pypattyrn.structural.flyweight import FlyweightMeta
class Card(object, metaclass=FlyweightMeta):
def __init__(self, suit, value):
self.suit = suit
self.value = value
three_of_spades = Card('Spade', 3)
four_of_spades = Card('Spade', 4)
three_of_spades_two = Card('Spade', 3)
assert id(three_of_spades) == id(three_of_spades_two)
assert id(three_of_spades) != id(four_of_spades)