import numpy as np from keras.models import Sequential from keras.layers import ( Dense, Conv2D, MaxPooling2D, Flatten, Activation, Dropout, ) from keras.datasets import cifar10 from keras.utils import to_categorical from hyperactive import Hyperactive (X_train, y_train), (X_test, y_test) = cifar10.load_data() y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) # to make the example quick X_train = X_train[0:1000] y_train = y_train[0:1000] X_test = X_test[0:1000] y_test = y_test[0:1000] def conv1(nn): nn.add(Conv2D(32, (3, 3))) nn.add(Activation("relu")) nn.add(MaxPooling2D(pool_size=(2, 2))) return nn def conv2(nn): nn.add(Conv2D(32, (3, 3))) nn.add(Activation("relu")) return nn def conv3(nn): return nn def cnn(opt): nn = Sequential() nn.add( Conv2D( opt["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:], ) ) nn.add(Activation("relu")) nn.add(Conv2D(opt["filters.0"], (3, 3))) nn.add(Activation("relu")) nn.add(MaxPooling2D(pool_size=(2, 2))) nn.add(Dropout(0.25)) nn.add(Conv2D(opt["filters.0"], (3, 3), padding="same")) nn.add(Activation("relu")) nn = opt["conv_layer.0"](nn) nn.add(Dropout(0.25)) nn.add(Flatten()) nn.add(Dense(opt["neurons.0"])) nn.add(Activation("relu")) nn.add(Dropout(0.5)) nn.add(Dense(10)) nn.add(Activation("softmax")) nn.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) nn.fit(X_train, y_train, epochs=5, batch_size=256) _, score = nn.evaluate(x=X_test, y=y_test) return score search_space = { "conv_layer.0": [conv1, conv2, conv3], "filters.0": [16, 32, 64, 128], "neurons.0": list(range(100, 1000, 100)), } hyper = Hyperactive() hyper.add_search(cnn, search_space, n_iter=5) hyper.run()