-
Notifications
You must be signed in to change notification settings - Fork 95
/
wireframe.py
executable file
·229 lines (193 loc) · 6.77 KB
/
wireframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python
"""Process Huang's wireframe dataset for L-CNN network
Usage:
dataset/wireframe.py <src> <dst>
dataset/wireframe.py (-h | --help )
Examples:
python dataset/wireframe.py /datadir/wireframe data/wireframe
Arguments:
<src> Original data directory of Huang's wireframe dataset
<dst> Directory of the output
Options:
-h --help Show this screen.
"""
import os
import sys
import json
from itertools import combinations
import cv2
import numpy as np
import skimage.draw
import matplotlib.pyplot as plt
from docopt import docopt
from scipy.ndimage import zoom
try:
sys.path.append(".")
sys.path.append("..")
from lcnn.utils import parmap
except Exception:
raise
def inrange(v, shape):
return 0 <= v[0] < shape[0] and 0 <= v[1] < shape[1]
def to_int(x):
return tuple(map(int, x))
def save_heatmap(prefix, image, lines):
im_rescale = (512, 512)
heatmap_scale = (128, 128)
fy, fx = heatmap_scale[1] / image.shape[0], heatmap_scale[0] / image.shape[1]
jmap = np.zeros((1,) + heatmap_scale, dtype=np.float32)
joff = np.zeros((1, 2) + heatmap_scale, dtype=np.float32)
lmap = np.zeros(heatmap_scale, dtype=np.float32)
lines[:, :, 0] = np.clip(lines[:, :, 0] * fx, 0, heatmap_scale[0] - 1e-4)
lines[:, :, 1] = np.clip(lines[:, :, 1] * fy, 0, heatmap_scale[1] - 1e-4)
lines = lines[:, :, ::-1]
junc = []
jids = {}
def jid(jun):
jun = tuple(jun[:2])
if jun in jids:
return jids[jun]
jids[jun] = len(junc)
junc.append(np.array(jun + (0,)))
return len(junc) - 1
lnid = []
lpos, lneg = [], []
for v0, v1 in lines:
lnid.append((jid(v0), jid(v1)))
lpos.append([junc[jid(v0)], junc[jid(v1)]])
vint0, vint1 = to_int(v0), to_int(v1)
jmap[0][vint0] = 1
jmap[0][vint1] = 1
rr, cc, value = skimage.draw.line_aa(*to_int(v0), *to_int(v1))
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
for v in junc:
vint = to_int(v[:2])
joff[0, :, vint[0], vint[1]] = v[:2] - vint - 0.5
llmap = zoom(lmap, [0.5, 0.5])
lineset = set([frozenset(l) for l in lnid])
for i0, i1 in combinations(range(len(junc)), 2):
if frozenset([i0, i1]) not in lineset:
v0, v1 = junc[i0], junc[i1]
vint0, vint1 = to_int(v0[:2] / 2), to_int(v1[:2] / 2)
rr, cc, value = skimage.draw.line_aa(*vint0, *vint1)
lneg.append([v0, v1, i0, i1, np.average(np.minimum(value, llmap[rr, cc]))])
# assert np.sum((v0 - v1) ** 2) > 0.01
assert len(lneg) != 0
lneg.sort(key=lambda l: -l[-1])
junc = np.array(junc, dtype=np.float32)
Lpos = np.array(lnid, dtype=np.int)
Lneg = np.array([l[2:4] for l in lneg][:4000], dtype=np.int)
lpos = np.array(lpos, dtype=np.float32)
lneg = np.array([l[:2] for l in lneg[:2000]], dtype=np.float32)
image = cv2.resize(image, im_rescale)
# plt.subplot(131), plt.imshow(lmap)
# plt.subplot(132), plt.imshow(image)
# for i0, i1 in Lpos:
# plt.scatter(junc[i0][1] * 4, junc[i0][0] * 4)
# plt.scatter(junc[i1][1] * 4, junc[i1][0] * 4)
# plt.plot([junc[i0][1] * 4, junc[i1][1] * 4], [junc[i0][0] * 4, junc[i1][0] * 4])
# plt.subplot(133), plt.imshow(lmap)
# for i0, i1 in Lneg[:150]:
# plt.plot([junc[i0][1], junc[i1][1]], [junc[i0][0], junc[i1][0]])
# plt.show()
np.savez_compressed(
f"{prefix}_label.npz",
aspect_ratio=image.shape[1] / image.shape[0],
jmap=jmap, # [J, H, W]
joff=joff, # [J, 2, H, W]
lmap=lmap, # [H, W]
junc=junc, # [Na, 3]
Lpos=Lpos, # [M, 2]
Lneg=Lneg, # [M, 2]
lpos=lpos, # [Np, 2, 3] (y, x, t) for the last dim
lneg=lneg, # [Nn, 2, 3]
)
cv2.imwrite(f"{prefix}.png", image)
# plt.imshow(jmap[0])
# plt.savefig("/tmp/1jmap0.jpg")
# plt.imshow(jmap[1])
# plt.savefig("/tmp/2jmap1.jpg")
# plt.imshow(lmap)
# plt.savefig("/tmp/3lmap.jpg")
# plt.imshow(Lmap[2])
# plt.savefig("/tmp/4ymap.jpg")
# plt.imshow(jwgt[0])
# plt.savefig("/tmp/5jwgt.jpg")
# plt.cla()
# plt.imshow(jmap[0])
# for i in range(8):
# plt.quiver(
# 8 * jmap[0] * cdir[i] * np.cos(2 * math.pi / 16 * i),
# 8 * jmap[0] * cdir[i] * np.sin(2 * math.pi / 16 * i),
# units="xy",
# angles="xy",
# scale_units="xy",
# scale=1,
# minlength=0.01,
# width=0.1,
# zorder=10,
# color="w",
# )
# plt.savefig("/tmp/6cdir.jpg")
# plt.cla()
# plt.imshow(lmap)
# plt.quiver(
# 2 * lmap * np.cos(ldir),
# 2 * lmap * np.sin(ldir),
# units="xy",
# angles="xy",
# scale_units="xy",
# scale=1,
# minlength=0.01,
# width=0.1,
# zorder=10,
# color="w",
# )
# plt.savefig("/tmp/7ldir.jpg")
# plt.cla()
# plt.imshow(jmap[1])
# plt.quiver(
# 8 * jmap[1] * np.cos(tdir),
# 8 * jmap[1] * np.sin(tdir),
# units="xy",
# angles="xy",
# scale_units="xy",
# scale=1,
# minlength=0.01,
# width=0.1,
# zorder=10,
# color="w",
# )
# plt.savefig("/tmp/8tdir.jpg")
def main():
args = docopt(__doc__)
data_root = args["<src>"]
data_output = args["<dst>"]
os.makedirs(data_output, exist_ok=True)
for batch in ["train", "valid"]:
anno_file = os.path.join(data_root, f"{batch}.json")
with open(anno_file, "r") as f:
dataset = json.load(f)
def handle(data):
im = cv2.imread(os.path.join(data_root, "images", data["filename"]))
prefix = data["filename"].split(".")[0]
lines = np.array(data["lines"]).reshape(-1, 2, 2)
os.makedirs(os.path.join(data_output, batch), exist_ok=True)
lines0 = lines.copy()
lines1 = lines.copy()
lines1[:, :, 0] = im.shape[1] - lines1[:, :, 0]
lines2 = lines.copy()
lines2[:, :, 1] = im.shape[0] - lines2[:, :, 1]
lines3 = lines.copy()
lines3[:, :, 0] = im.shape[1] - lines3[:, :, 0]
lines3[:, :, 1] = im.shape[0] - lines3[:, :, 1]
path = os.path.join(data_output, batch, prefix)
save_heatmap(f"{path}_0", im[::, ::], lines0)
if batch != "valid":
save_heatmap(f"{path}_1", im[::, ::-1], lines1)
save_heatmap(f"{path}_2", im[::-1, ::], lines2)
save_heatmap(f"{path}_3", im[::-1, ::-1], lines3)
print("Finishing", os.path.join(data_output, batch, prefix))
parmap(handle, dataset, 16)
if __name__ == "__main__":
main()