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BACKGROUND	

SUMMARY	 Soil	moisture	retrievals	from	the	Soil	Moisture	Active	Passive	(SMAP)	
mission	 are	 used	 to	 evaluate	 and	 calibrate	 the	 treatment	 of	 soil	
moisture	recharge	in	the	GMAO	Catchment	 land	surface	model.	The	
improvements	 lead	 to	 better	 simulations	 of	 soil	 moisture	 and	
streamflow,	 as	 demonstrated	 through	 comparisons	 against	
independent	in	situ	data.	
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Satellite	data	have	the	potential	to	transform	our	understanding	of	the	
Earth	system	through	the	improved	quantification	of	variations	in	that	
system.	 Much	 of	 the	 GMAO’s	 focus	 is	 on	 assimilating	 satellite	
information	directly	 into	GMAO	models	in	order	to	produce	optimal,	
quantitative	estimates	for	a	comprehensive	set	of	Earth	system	states.		
A	 complementary	 approach	 toward	 improved	 state	 estimation,	
however,	 is	 also	 worth	 considering	 –	 we	 can	 use	 the	 satellite	
information	to	improve	the	parameterizations	underlying	the	models	
themselves.	
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NASA’s	 Soil	 Moisture	 Active-Passive	 (SMAP)	 mission	 provides,	 among	 other	 things,	
estimates	(or	retrievals)	of	the	moisture	content	in	the	top	several	centimeters	of	soil	at	
a	resolution	of	roughly	40	km	across	the	globe	and	with	a	revisit	time	of	less	than	three	
days.	Various	aspects	of	mission	design	(use	of	L-band	frequencies,	reduction	of	impacts	
from	non-natural	 radio-frequency	 interference,	 etc.)	 give	 SMAP	data	an	accuracy,	 and	
thus	 a	 hydrological	 utility,	 not	 achievable	 with	 other	 satellite-derived	 soil	 moisture	
datasets	(see,	e.g.,	Koster	et	al.	2016).	Given	that	the	data	have	only	been	available	to	
users	 since	 spring	 of	 2015,	much	of	 the	wealth	 of	 hydrological	 information	 contained	
within	them	is	still	waiting	to	be	tapped.	

The	GMAO	has	a	strong	connection	to	the	SMAP	mission,	as	it	hosts	the	production	of	the	
SMAP	Level	4	products	–	enhanced	products	(including	root	zone	soil	moisture	and	carbon	
flux	estimates)	achieved	through	data	assimilation.	Data	assimilation,	however,	is	not	the	
only	means	by	which	 the	SMAP	data	can	 interact	with	GMAO	modeling.	Soil	moisture	
behavior	as	revealed	by	the	SMAP	retrievals	could	also	guide	the	evaluation	and	further	
development	 of	 the	 GMAO	 land	 surface	model	 (LSM)	 itself.	 This	 land	 surface	model,	
referred	 to	 here	 as	 the	 Catchment	 LSM,	 features	 state-of-the-art	 treatments	 of	 land	
processes,	 including	 an	 explicit	 representation	 of	 the	 effects	 of	 subgrid	 soil	 moisture	
heterogeneity	on	the	surface	energy	and	water	balances	(Koster	et	al.	2000).		This	LSM’s	
treatment	of	near-surface	moisture	and	how	 it	 relates	 to	 the	 root	zone,	however,	has	
never	been	properly	calibrated	and	thus	may	benefit	from	a	careful	analysis	of	the	SMAP	
data.	

The	idea	examined	here	is	simple:	SMAP	provides	for	the	first	time	a	highly	accurate	global	
picture	of	how	surface	soil	moisture	varies	in	time	–	how	it	increases,	for	example,	with	
precipitation	 and	 how	 quickly	 a	 rainfall-induced	 soil	 moisture	 anomaly	 dissipates.	
Through	 careful	 joint	 analysis	 of	 SMAP	 data	 and	 the	 structure	 of	 the	 Catchment	 LSM	
parameterizations,	the	latter	can	be	modified	to	behave	more	realistically.	

The	model	behavior	targeted	for	improvement	in	the	present	study	is	illustrated	in	Figure	
1.	Figure	1a	shows	the	time	series	(May	–	September,	2016)	of	SMAP	retrievals	at	a	grid	
cell	 containing	 the	 Little	Washita	watershed	 in	 southwestern	Oklahoma	 (O’Neill	 et	 al.	
2016),	and	Figure	1b	shows	the	corresponding	time	series	of	soil	moisture	simulated	by	
the	operational	version	of	the	GMAO	Catchment	model	when	driven	with	observations-
based	meteorological	forcing	(rainfall,	air	temperatures,	wind	speeds,	etc.)	The	two-time	
series	 have	 a	 distinctly	 different	 character.	 Consider,	 for	 example,	 the	 speed	 of	 soil	
moisture	drydown	 following	 the	 rainfall-induced	 increase	on	day	43.	According	 to	 the	



GMAO RESEARCH BRIEF              
Using SMAP Soil Moisture Data to Calibrate a Land Surface Model

 
 

Global Modeling and Assimilation Office 
NASA Goddard Space Flight Center 

3	

SMAP	data,	the	soil	dries	quickly,	 losing	most	of	the	added	moisture	within	a	few	days	
and	returning	to	its	driest	state	in	about	ten	days.	In	the	default	land	surface	model,	on	
the	other	hand,	the	drydown	following	the	imposition	of	rainfall	on	day	43	is	clearly	more	
gradual.	

	
The	Catchment	LSM’s	formulation	of	surface	soil	moisture	dynamics	includes	a	treatment	
of	 the	 replenishment	of	drying	soil	via	 recharge	 from	below.	A	parameter	 (referred	 to	
here	 as	 α)	was	 recently	 incorporated	 into	 the	 code	 to	 control	 this	 replenishment	 –	 α	
reduces	 the	 ability	 of	 soil	moisture	 to	 flow	 upward	 against	 gravity	 in	 non-equilibrium	
situations,	 to	 account	 for	 the	 fact	 that	 near-surface	 soils	 in	 nature	 are	 more	
heterogeneous	than	those	tested	in	laboratories.	The	value	of	α	turns	out	to	have	a	first	
order	impact	on	the	character	of	the	simulated	soil	moisture,	as	illustrated	in	Figure	1c.	
At	this	grid	cell,	replacing	α’s	default	value	of	1	with	a	value	of	0.01	produces	a	better	
match	(in	terms	of	temporal	variability,	speed	of	drydown,	etc.)	with	the	SMAP	data.	
	
In	a	calibration	exercise,	a	number	of	simulations,	each	utilizing	a	different	value	for	α,	
generated	soil	moisture	time	series	for	2015-2016	across	the	continental	US	and	portions	
of	 Canada	 and	 Mexico.	 At	 each	 36km	 ×	 36km	 grid	 cell,	 by	 comparing	 the	 different	
simulated	 time	 series	 to	 the	 local	 time	 series	 of	 SMAP	 retrievals,	 we	 were	 able	 to	
determine	 the	 single	 α	 value	 that	 produces	 the	 closest	 reproduction	 of	 the	 SMAP	

Figure	1.	Time	series	of	
SMAP	retrievals	(a)	and	
model-simulated	near-
surface	moisture	(b,c)	at	a	
grid	cell	centered	on	the	
Little	Washita	watershed	in	
southwestern	Oklahoma.		
The	first	model	simulated	
time	series	uses	a	value	of	
1	for	the	calibrated	
parameter	α	(the	default	
value	in	GEOS-5	systems),	
and	the	second	uses	an	α	
value	of	0.01.	
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retrievals.	(Closeness	here	is	measured	by	the	temporal	correlation	coefficient	between	
the	SMAP	retrievals	and	the	model	estimates.)	Figure	2	shows	a	map	of	these	optimized	
α	values.	Notice	that	the	default	value	of	1	(again,	standard	in	GEOS-5	operations)	works	
best	at	only	a	handful	of	locations.		
	

	
We	now	address	an	important	question:	when	a	simulation	utilizing	the	default	α	value	
of	1	everywhere	(the	“control”	simulation,	run	over	the	years	2001-2016)	is	compared	to	
one	that	uses	the	optimized	α	values	in	Figure	2	(the	“experiment”	simulation,	run	over	
the	 same	 years),	 is	 the	 latter’s	 skill	 in	 reproducing	 independent	 (i.e.,	 non-SMAP)	
hydrological	measurements	higher?	The	answer	is	yes:		
	

a) In	situ	measurements	of	soil	moisture	at	SMAP	core	validation	sites.	The	SMAP	
mission	 is	 working	 with	 local	 partners	 who	 provide	 in	 situ	 soil	 moisture	
measurements	suitable	for	validating	SMAP	data	products.	These	measurements	
are	comprehensive	enough	spatially	to	provide	reliable	estimates	of	large-scale,	
areally-averaged	soil	moisture.	Four	of	these	sites	provide	data	for	several	years	
prior	to	the	launch	of	SMAP.	Figure	3	shows	the	temporal	correlations	between	
the	Catchment	LSM	results	and	the	in	situ	measurements	at	each	of	these	four	
sites,	with	results	for	the	control	simulation	in	red	and	those	for	the	experiment	
simulation	in	blue.	In	all	cases,	and	especially	for	Reynolds	Creek,	Walnut	Gulch,	
and	Little	River	(for	which	the	differences	in	the	correlations	shown	are	significant	
at	 the	99.9%	confidence	 level,	even	under	 the	assumption	that	 the	number	of	
independent	 data	 values	 is	 1/10	 the	 total	 number	of	 values),	 the	optimized	α	

	
Figure	2.	Optimal	values	of	studied	model	parameter,	as	determined	by	optimization	against	SMAP	
retrieval	time	series.	
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values	have	led	to	an	improved	agreement	with	the	in	situ	measurements	for	the	
~10	 year	 subset	 of	 the	 simulation	 period	 over	 which	 measurements	 were	
available.		
	
The	 temporal	 correlation	 is	 the	measure	 of	 simulation	 skill	 that	 we	 are	most	
interested	in	improving	here,	given	that	the	information	we	want	to	reproduce	
most	with	the	Catchment	LSM	is	largely	contained	within	the	time	variability	of	
the	observed	soil	moisture.	An	“error”	in	the	absolute	magnitude	of	a	simulated	
soil	moisture	variable	(from	any	LSM)	is	in	fact	largely	a	reflection	of	the	model-
dependent	 nature	 of	 that	 variable;	 differences	 in	 observational	 and	 LSM-
generated	 soil	 moistures	 are	 expected,	 do	 not	 necessarily	 affect	 model	
performance,	and	are	largely	correctable	as	needed	after	the	fact	(Koster	et	al.	
2009).	This	said,	it	is	still	of	interest	to	examine	the	impacts	of	our	calibrated	α	
values	on	the	absolute	magnitudes	of	the	simulated	soil	moistures,	as	measured	
by	 the	 root	mean	square	error	 (RMSE)	 relative	 to	 the	observations.	The	RMSE	
decreased	by	close	to	30%	for	Reynolds	Creek,	Walnut	Gulch,	and	Little	River,	and	
it	increased	by	about	10%	for	Little	Washita	(not	shown).	This	largely	reflects	a	
reduction	in	the	overall	model	bias.	Results	for	the	unbiased	root	mean	square	
error	(ubRMSE)	were	mixed,	being	better	for	only	2	out	of	the	4	sites	(not	shown).		
The	 reader	 is	 referred	 to	 Entekhabi	 et	 al.	 (2010)	 for	 a	 discussion	 of	 the	
connections	between	the	temporal	correlation,	the	RMSE,	and	the	ubRMSE	skill	
metrics.	
	

b) In	situ	measurements	of	soil	moisture	at	sparse	network	sites.	A	number	of	in	situ	
soil	 moisture	 measurement	 sites	 are	 encompassed	 by	 the	 USDA	 Natural	
Resources	Conservation	Service	Soil	Climate	Analysis	Network	(SCAN;	Schaefer	et	
al.	2007)	and	the	US	Climate	Reference	Network	(USCRN;	Diamond	et	al.	2013,	
Bell	et	al.	2013).	While	these	sites,	unlike	the	above	core	sites,	are	not	designed	
to	provide	the	large-area	estimates	produced	by	both	SMAP	and	the	LSM,	both	
networks	have	the	advantage	of	encompassing	the	continental	US.	and	thereby	
covering	a	broad	range	of	soil	 textures	and	background	climates	(Reichle	et	al.	
2016).	
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Figure	4	shows	the	temporal	correlation,	averaged	over	the	component	sites	of	
each	 network,	 between	 the	 simulated	 and	 observed	 time	 series	 of	 surface	
moisture	for	both	the	control	and	the	experiment	simulations.	The	model’s	ability	
to	 reproduce	 the	observed	surface	moisture	 is	 improved	with	 the	optimized	α	
values.	This	is	particularly	true	for	the	SCAN	network;	the	improvement	for	this	
network	extends	well	beyond	the	indicated	uncertainties	in	the	averages,	which	
are	quantified	here	as	 in	Reichle	et	al.	 (2016).	 (By	these	uncertainty	measures,	
the	improvement	for	the	USCRN	network,	while	positive,	may	not	be	significant.)		
Results	for	other	soil	moisture	metrics	(not	shown)	are	somewhat	mixed	but	still	
indicate	 improved	 overall	 performance	 through	 the	 use	 of	 the	 optimized	 α	
values.	While	for	both	networks	the	optimized	values	lead	to	reduced	temporal	
correlations	between	simulated	root	zone	moisture	contents	and	corresponding	
measurements,	 the	 reductions	 are	 not	 significant,	 lying	 well	 within	 the	much	
larger	uncertainty	levels	for	the	root	zone	metric	–	soil	moisture	measurements	
in	 the	 root	 zone	 are	 fewer	 in	 number	 and	 in	 some	ways	 are	more	 difficult	 to	
interpret.	The	absolute	bias	 for	surface	moisture	 is	 significantly	 improved	with	
the	 optimized	 α	 values	 for	 both	 networks,	 as	 is	 the	 ubRMSE	 for	 the	 USCRN	
network.		
	
	

Figure	3.	The	LSM’s	ability	
to	reproduce	observed	
surface	soil	moisture	(as	
measured	by	the	temporal	
correlation	coefficient)	at	
the	four	SMAP	core	
validation	sites	with	
multiple	years	of	
measurements.	Results	are	
shown	for	the	control	
simulation	(using	the	
default	model,	red	bars)	
and	the	experiment	
simulation	(using	the	
optimized	model,	blue	
bars).	
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c) Observed	 runoff	 ratios.	 Mahanama	 et	 al.	 (2012)	 evaluated	 the	 streamflows	

produced	by	the	GMAO’s	Catchment	 land	surface	model	against	time	series	of	
naturalized	streamflows	(derived	from	stream	gauge	observations)	in	a	number	
of	hydrological	basins	in	the	continental	US.	These	naturalized	observations	are	
used	 in	 Figure	 5	 to	 evaluate	 the	 relative	 performance	 of	 the	 control	 and	
experiment	simulations	in	reproducing	observed	runoff	ratios	(long-term	average	
streamflow	divided	by	the	long-term	average	rainfall	in	the	area	upstream	of	the	
stream	gauge	site).	While	the	experiment	simulation	still	produces	large	errors	in	
runoff	 ratio	 in	 three	 of	 the	 basins	 (an	 error	 that	 can	 be	 treated	 using	 other	
approaches	–	see	Koster	and	Mahanama	2012	for	further	discussion	of	this	error),	
in	every	case	the	experiment	simulation	improves	over	the	control	simulation	–	
the	 SMAP-based	 tuning	 of	 the	 recharge	 parameter	 has	 translated	 into	 an	
improvement	in	streamflow	simulation.	

Figure	4.	The	land	model’s	
ability	to	reproduce	observed	
surface	soil	moisture	at	two	
networks	of	sites	covering	the	
continental	US,	as	measured	
by	the	average	value	of	the	
temporal	correlation	
coefficient	over	the	sites.	
Results	are	shown	for	the	
control	simulation	(using	the	
default	model,	red	bars)	and	
the	experiment	simulation	
(using	the	optimized	model,	
blue	bars).	Error	bars	indicate	
95%	confidence	intervals.	

	

Figure	5.	Absolute	
errors	in	runoff	ratio	
for	the	ten	largest	
basins	examined	by	
Mahanama	et	al.	
(2012).	(Results	for	the	
smaller	basins	are	
similar.)	Red	bars	are	
for	the	control	
simulation	and	blue	
bars	are	for	the	
experiment	
simulation.	
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In	summary,	utilizing	SMAP	data	to	calibrate	a	parameter	in	the	surface	recharge	module	
of	the	GMAO’s	Catchment	land	surface	model	leads	to	improved	model	performance,	as	
demonstrated	by	comparisons	of	simulated	hydrological	states	and	fluxes	to	several	sets	
of	SMAP-independent	observations	(as	well	as	to	others	not	shown	here).	Figure	6	puts	
this	result	in	perspective,	highlighting	the	complementary	nature	of	this	calibration	effort	
and	the	data	assimilation	work	also	underway	in	the	GMAO.	Figure	6a	shows	the	standard	
land	 modeling	 approach	 to	 producing	 soil	 moisture	 states;	 a	 land	 model	 driven	 with	
observations-based	meteorological	forcing	(rainfall,	etc.)	produces,	as	a	matter	of	course,	
estimates	for	hydrological	states	(e.g.,	soil	moisture)	and	fluxes	(e.g.,	evapotranspiration	
and	runoff).	In	the	GMAO,	SMAP	data	are	assimilated	into	the	system	(Figure	6b),	guiding	
the	states	toward	more	realistic	values.	This	is	quite	distinct	from	the	calibration	effort	
described	above	(Figure	6c)	wherein	the	SMAP	data	are	used	to	change	the	model	itself.		
We	can	in	fact	speculate	that	a	combination	of	the	two	efforts	(or,	more	ambitiously,	the	
inclusion	 of	 parameter	 estimation	 along	 with	 soil	 moisture	 state	 estimation	 in	 an	
enhanced	GMAO	data	assimilation	effort)	would	lead	to	state	and	flux	estimates	of	even	
higher	quality	(Figure	6d).		
	

	
	
	 	

Figure	6.	Schematic	
showing	means	by	
which	SMAP	data	can	
improve	model-based	
estimates	of	
hydrological	states	
and	fluxes	
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