Variational Tangent Plane Intersection for Planar Polygonal Meshing

Henrik Zimmer, Marcel Campen, Ralf Herkrath, Leif Kobbelt

Multi-Layer Support Structures

Multi-Layer Support Structures

Multi-Layer Support Structures

Multi-Layer Support Structures

Supporting + Covering Layer

Multi-Layer Support Structures

Node/edge simplicity

Multi-Layer Support Structures

Supporting + Covering Layer

Node/edge simplicity

Planar panels

Multi-Layer Support Structures

Supporting + Covering Layer

Node/edge simplicity

Planar panels

Multi-Layer Support Structures

Multi-Layer Dual Structures

Multi-Layer Support Structures

Multi-Layer Dual Structures

Multi-Layer Support Structures

Multi-Layer Dual Structures

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

- Variational TPI
 - Polygon Mesh Planarization

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Dual Support Structures

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational Shape Approximation

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

Multi-Layer Support Structures

Multi-Layer Dual Structures

Tangent Plane Intersection (TPI)

Variational TPI

• 3 planes necessary for unique intersection point

• 3 planes necessary for unique intersection point

3 planes necessary for unique intersection point

• 3 planes necessary for unique intersection point

- 3 planes necessary for unique intersection point
 - Positive Curvature: OK

- 3 planes necessary for unique intersection point
 - Low Gaussian Curvature: UNSTABLE

- 3 planes necessary for unique intersection point
 - Low Gaussian Curvature: UNSTABLE

- 3 planes necessary for unique intersection point
 - Intersections are predetermined: No design DoFs

- 3 planes necessary for unique intersection point
 - Intersections are predetermined: No design DoFs

Variational Tangent Plane Intersection

[Planar Hexagonal Meshes by Tangent Plane Intersection, Troche 2008]

• Problem 1: Instability, co-planar tangent planes

• Problem 1: Instability, co-planar tangent planes

• Problem 1: Instability, co-planar tangent planes

- Problem 1: Instability, co-planar tangent planes
 - Intersection point $x = N^{-1}b$ is not well-defined

- Problem 1: Instability, co-planar tangent planes
 - Intersection point $x = N^{-1}b$ is not well-defined
 - However, Nx = b still holds for all \circ points

- Problem 1: Instability, co-planar tangent planes
 - Intersection point $x = N^{-1}b$ is not well-defined
 - However, Nx = b still holds for all \circ points
 - → from all opoints we would like to choose our favorite •

- Problem 2: bad (predetermined) intersections
 - Intersection is well-defined but position unwanted

- Problem 2: bad (predetermined) intersections
 - Intersection is well-defined but position unwanted
 - Could obtain more degrees of freedom by:
 - rotating tangent planes

- Problem 2: bad (predetermined) intersections
 - Intersection is well-defined but position unwanted
 - Could obtain more degrees of freedom by:
 - rotating tangent planes

- Problem 2: bad (predetermined) intersections
 - Intersection is well-defined but position unwanted
 - Could obtain more degrees of freedom by:
 - rotating tangent planes
 - offsetting tangent planes

• Let M = (V, F) be a triangle mesh

• Let M = (V, F) be a triangle mesh

Formulate TPI as a constrained optimization:

minimize E s.t. C_{int} : $N_f x_f = b_f \ \forall f \in F$

where x_f are the unknown intersection points

• Let M = (V, F) be a triangle mesh

Formulate TPI as a constrained optimization:

minimize
$$E$$
 s.t. C_{int} : $N_f x_f = b_f \ \forall f \in F$

where x_f are the unknown intersection points

 In non-degenerate configurations the solution is equivalent to the explicit TPI approach

$$C_{\text{int}}$$
: $N_f x_f = b_f$

$$\forall f \in F$$

- Solution to Problem 1: instability
 - Specify energy with preferred intersection points $oldsymbol{p}_f$

$$E := \sum_{f=0}^{\infty} ||\mathbf{x}_f - \mathbf{p}_f||^2$$
 s.t. $C_{\text{int}}: N_f \mathbf{x}_f = \mathbf{b}_f$ $\forall f \in F$

- Solution to Problem 1: instability
 - Specify energy with preferred intersection points $oldsymbol{p}_f$
- Solution to Problem 2: "bad" intersection points
 - Introduce variable offsets h_v

$$E \coloneqq \sum_{f \in F} \|\boldsymbol{x}_f - \boldsymbol{p}_f\|^2$$
 s.t. $C_{\text{int}}: N_f \boldsymbol{x}_f = \boldsymbol{b}_f - \boldsymbol{h}_f \ \forall f \in F$

- Solution to Problem 1: instability
 - Specify energy with preferred intersection points $oldsymbol{p}_f$
- Solution to Problem 2: "bad" intersection points
 - Introduce variable offsets $h_{oldsymbol{v}}$ and normals $oldsymbol{n}_{oldsymbol{v}}$

$$E \coloneqq \sum_{f \in F} \|\boldsymbol{x}_f - \boldsymbol{p}_f\|^2 \quad \text{s.t.} \quad \begin{array}{c} C_{\text{int}} \colon N_f \boldsymbol{x}_f = \boldsymbol{b}_f - \boldsymbol{h}_f \quad \forall f \in F \\ C_{\text{norm}} \colon \|\boldsymbol{n}_v\|^2 = 1 \quad \forall v \in V \end{array}$$

- Solution to Problem 1: instability
 - Specify energy with preferred intersection points $oldsymbol{p}_f$
- Solution to Problem 2: "bad" intersection points
 - Introduce variable offsets h_v and normals $oldsymbol{n}_v$

$$E := \sum_{f \in F} \|\boldsymbol{x}_f - \boldsymbol{p}_f\|^2 \quad \text{s.t.} \quad \begin{array}{c} C_{\text{int}} \colon N_f \boldsymbol{x}_f = \boldsymbol{b}_f - \boldsymbol{h}_f \quad \forall f \in F \\ C_{\text{norm}} \colon \|\boldsymbol{n}_v\|^2 = 1 \quad \forall v \in V \end{array}$$

So far VTPI is defined for triangle meshes ...

• 3 planes *necessary* for unique intersection point

$$\begin{bmatrix} \boldsymbol{n}_0^T \\ \boldsymbol{n}_1^T \\ \boldsymbol{n}_2^T \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} \boldsymbol{n}_0^T \boldsymbol{v}_0 \\ \boldsymbol{n}_1^T \boldsymbol{v}_1 \\ \boldsymbol{n}_2^T \boldsymbol{v}_2 \end{pmatrix} \Leftrightarrow N \boldsymbol{x} = \boldsymbol{b}$$

• 3 planes *necessary* for unique intersection point

$$\begin{bmatrix} \boldsymbol{n}_0^T \\ \boldsymbol{n}_1^T \\ \boldsymbol{n}_2^T \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} \boldsymbol{n}_0^T \boldsymbol{v}_0 \\ \boldsymbol{n}_1^T \boldsymbol{v}_1 \\ \boldsymbol{n}_2^T \boldsymbol{v}_2 \end{pmatrix} \Leftrightarrow N \boldsymbol{x} = \boldsymbol{b}$$

• 3 planes *necessary* for unique intersection point

$$\begin{bmatrix} \boldsymbol{n}_0^T \\ \boldsymbol{n}_1^T \\ \boldsymbol{n}_2^T \\ \boldsymbol{n}_3^T \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} \boldsymbol{n}_0^T \boldsymbol{v}_0 \\ \boldsymbol{n}_1^T \boldsymbol{v}_1 \\ \boldsymbol{n}_2^T \boldsymbol{v}_2 \\ \boldsymbol{n}_3^T \boldsymbol{v}_3 \end{pmatrix} \Leftrightarrow N\boldsymbol{x} = \boldsymbol{b}$$

No longer limited to triangle meshes

• 3 planes *necessary* for unique intersection point

$$\begin{bmatrix} \boldsymbol{n}_0^T \\ \boldsymbol{n}_1^T \\ \boldsymbol{n}_2^T \\ \boldsymbol{n}_3^T \\ \vdots \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} \boldsymbol{n}_0^T \boldsymbol{v}_0 \\ \boldsymbol{n}_1^T \boldsymbol{v}_1 \\ \boldsymbol{n}_2^T \boldsymbol{v}_2 \\ \boldsymbol{n}_3^T \boldsymbol{v}_3 \\ \vdots \end{pmatrix} \Leftrightarrow N\boldsymbol{x} = \boldsymbol{b}$$

Works on general polygon meshes

• $M \mapsto \operatorname{planar} \operatorname{dual}(M)$

- $M \mapsto \text{planar dual}(M)$
- $dual(M) \mapsto planar M$

- $M \mapsto \text{planar dual}(M)$
- $dual(M) \mapsto planar M$

FERTILITY

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$

FERTILITY

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$

FERTILITY

[Variational Tangent Plane Intersection]

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$
- Consider quad strips undergoing twists

FERTILITY

[Variational Tangent Plane Intersection]

- $M \mapsto \text{planar dual}(M)$
- $dual(M) \mapsto planar M$
- Consider quad strips undergoing twists

FERTILITY

[Variational Tangent Plane Intersection]

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$

Consider quads not aligned to princ. curvatures

- $M \mapsto \mathsf{planar} \, \mathsf{dual}(M)$
- $dual(M) \mapsto planar M$

Consider quads not aligned to princ. curvatures

- Comparison to other planarization techniques
 - Optimization (perturbation)-based methods

[Hexagonal Meshes with Planar Faces. Wang, Liu, Yan, Chan, Ling, Sun. 2008]
[Geometric Modeling with Conical Meshes and Developable Surfaces. Liu, Pottmann, Wallner, Yang, Wang. 2006]

Planarizing flow

		Method		
		VTPI	Opt.	Flow
Property	Parameters	-	-	+
	Extensions	+	+	-
	Normals	+	-	-

- Comparison to other planarization techniques
 - Optimization (perturbation)-based methods

[Hexagonal Meshes with Planar Faces. Wang, Liu, Yan, Chan, Ling, Sun. 2008]
[Geometric Modeling with Conical Meshes and Developable Surfaces. Liu, Pottmann, Wallner, Yang, Wang. 2006]

Planarizing flow

		Method		
		VTPI	Opt.	Flow
Property	Parameters	-	-	+
	Extensions	+	+	-
	Normals	+	-	-

- Comparison to other planarization techniques
 - Optimization (perturbation)-based methods

[Hexagonal Meshes with Planar Faces. Wang, Liu, Yan, Chan, Ling, Sun. 2008]
[Geometric Modeling with Conical Meshes and Developable Surfaces. Liu, Pottmann, Wallner, Yang, Wang. 2006]

Planarizing flow

		Method		
		VTPI	Opt.	Flow
Property	Parameters	-	-	+
	Extensions	+	+	-
	Normals	+	-	-

- Comparison to other planarization techniques
 - Optimization (perturbation)-based methods

[Hexagonal Meshes with Planar Faces. Wang, Liu, Yan, Chan, Ling, Sun. 2008]
[Geometric Modeling with Conical Meshes and Developable Surfaces. Liu, Pottmann, Wallner, Yang, Wang. 2006]

Planarizing flow

		Method		
		VTPI	Opt.	Flow
Property	Parameters	-	-	+
	Extensions	+	+	-
	Normals	+	-	-

VTPI for Polygon Mesh Planarization

- Comparison to other planarization techniques
 - Optimization (perturbation)-based methods

[Hexagonal Meshes with Planar Faces. Wang, Liu, Yan, Chan, Ling, Sun. 2008] [Geometric Modeling with Conical Meshes and Developable Surfaces. Liu, Pottmann, Wallner, Yang, Wang. 2006]

Planarizing flow

[Discrete Laplacians on general polygonal meshes. Alexa, Wardetzky. 2011]

		Method		
		VTPI	Opt.	Flow
Property	Parameters	-	-	+
	Extensions	+	+	-
	Normals	+	-	-

use normals → intersection-free dual structures

VTPI for Multi-Layer Dual Structures

Problem

Solution (constraints)

Problem

Solution (constraints)

Vertex Intersection

Problem

Solution (constraints)

Vertex Intersection

h > 0

Problem

Solution (constraints)

Vertex Intersection

h > 0

Face Intersection

Problem

Solution (constraints)

Vertex Intersection

h > 0

Face Intersection

 $m^T(x-v) > 0$

Problem

Solution (constraints)

Vertex Intersection

Face Intersection

$$m^T(x-v) > 0$$

Edge Intersection

Problem

Solution (constraints)

Vertex Intersection

Face Intersection

$$\boldsymbol{m}^T(\boldsymbol{x}-\boldsymbol{v})>0$$

Edge Intersection

$$q^T e < 0$$

Results of Multi-Layer Dual Structures

Results of Multi-Layer Dual Structures

Results of Multi-Layer Dual Structures

Conclusion

What is VTPI?

Conclusion

- What is VTPI?
 - A variational formulation of tangent plane intersection
 - Guided intersections of several planes
 - Useful for geometric problems (e.g. mesh planarization)
 - Solved by global optimization (freely available solvers)

Conclusion

- What is VTPI?
 - A variational formulation of tangent plane intersection
 - Guided intersections of several planes
 - Useful for geometric problems (e.g. mesh planarization)
 - Solved by global optimization (freely available solvers)
- What is VTPI not?
 - A "fix" to topological issues involved in planar meshing
 - Degeneracies will occur where necessary, e.g. concave (or degenerate) hexagons in hyperbolic surface regions
 - Energies can sometimes be used to shift such effects ...

Output depends on input tessellation and energy

- Output depends on input tessellation and energy
 - Different tessellations, same topology

- Output depends on input tessellation and energy
 - Different tessellations, same topology, same functional

- Output depends on input tessellation and energy
 - Different tessellations, same topology, same functional

- Output depends on input tessellation and energy
 - energies can partly shift some effects on the mesh

- Output depends on input tessellation and energy
 - Same tessellation, same topology, different functional

Normal Smoothness

Element Fairing

- Output depends on input tessellation and energy
 - Same tessellation, same topology, different functional

Normal Smoothness

Element Fairing

The End

Thank you for your attention!

