
HAL Id: hal-00876005
https://hal.science/hal-00876005v1

Submitted on 9 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stopping-free dynamic configuration of a multi-ASIP
turbo decoder

Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer
Baghdadi, Michael Hubner, Jean-Philippe Diguet

To cite this version:
Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer Baghdadi, Michael Hub-
ner, et al.. Stopping-free dynamic configuration of a multi-ASIP turbo decoder. DSD 2013 : 16th
Euromicro Conference on Digital System Design, Sep 2013, Santander, Spain. pp.155 - 162. �hal-
00876005�

https://hal.science/hal-00876005v1
https://hal.archives-ouvertes.fr

Stopping-free dynamic configuration of a multi-ASIP turbo decoder

Vianney Lapotre∗, Purushotham Murugappa†, Guy Gogniat∗, Amer Baghdadi†, Michael Hübner ‡ and Jean-Philippe Diguet∗
∗Univ. Bretagne Sud, UMR6285, Lab-STICC, F56100 Lorient, France. Email: firstname.lastname@univ-ubs.fr

†Telecom Bretagne, UMR6285, Lab-STICC, F29200 Brest, France. Email: firstname.lastname@telecom-bretagne.eu
‡Rurh-Universität Bochum, ESIT, Bochum, Germany. Email: michael.huebner@rub.de

Abstract—The multiplication of wireless standards is intro-
ducing the need of flexible and reconfigurable multistandard
baseband receivers. At the physical layer, multiprocessor turbo
decoders have been recently developed in order to provide an
answer to the increasing throughput requirement of emerging
standards. However these solutions do not sufficiently address
reconfiguration performance issues which can be a limiting
factor in the future. This work focuses on the design of a
reconfigurable multiprocessor architecture for turbo decod-
ing achieving very fast reconfiguration without compromis-
ing decoding performances. Dynamic reconfiguration can be
performed within a single frame decoding duration opening
new perspective for reconfigurable multistandard baseband
receivers. For that purpose, optimizations at the processing el-
ement level and a novel bus-based configuration infrastructure
are proposed. Results show that up to 64 processings elements
can be dynamically configured in 5.352 µs. This low configu-
ration latency corresponds to a single frame decoding duration
when performing 6 decoding iterations for a throughput up to
666 Mbps.

Keywords-ASIP; Dynamic configuration; Turbo decoder;
Wireless communications; ASIP;

I. INTRODUCTION

In the last years, multi-modes wireless communication
standards have been developed in order to reach higher
requirements in terms of throughput, robustness against
destructive channel effects and convergence of services in
a smart terminal. Forward error correction codes constitute
a key feature of a wireless standard. Turbo codes are fre-
quently adopted in recent wireless standards to reach a low
bit error rate (BER). The increasing throughput requirement
often imposes the efficient exploitation of the different levels
of parallelism which have been introduced in multi-modes,
multi-standards and multiprocessor decoders [1], [2], [3], [4]
in order to offer high throughput and high flexibility. These
architectures implement subblock parallelism [5] where each
frame is divided into subblocks and then each subblock is
processed in parallel using adequate initializations. In this
context, flexible ASIP (Application Specific Instruction set
Processor) based multiprocessor architectures [1], [2], [6]
have been explored. Multi-ASIP architecture is a promising
approach to reach high flexibility, high throughput and
energy efficiency. An ASIP based decoder implementing
several ASIPs described in [7] and a LTE accelerator in
order to build a flexible turbo decoder for LTE requirements
has been presented in [6]. In [1], the authors present a
NoC based multi-ASIP architecture in which ASIPs can be

0

5

10

15

20

25

30

35

40

45

50

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990

fr
a

m
e

 d
u

ra
ti

o
n

 (
in

 µ
s)

LTE cat.4 (2011)

(150 Mbps ; 14 µs)

LTE Advanced (2014)

(1 Gbps ; 2.5 µs)

HSPA + (2010)

(84 Mbps ; 24 µs)

LTE cat.5 (2011)

(300Mbps ; 7 µs)

Config. Frame n+1Config. Frame n

Frame n-1 Frame n Frame n+1

Config. Frame n+2

Time

ΔtConfig (n+1)

a) Configuration latency constraint

Decoding

Configuration

Frame duration (n)

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990

Throughput (in Mpbs)

b) Frame decoding duration for a 2048 bits frame

Figure 1. Configuration latency constraint and frame duration

grouped to perform independent decoding tasks in parallel.
In [2], authors present the UDec architecture. It consists of
ASIPs (named DecASIPs) supporting both Single Binary
Turbo Codes (SBTC) and Duo Binary Turbo Codes (DBTC)
interconnected via a Network on Chip (NoC). Within each
component decoder ASIPs are also connected by a ring
network for boundary state metric exchanges.

Dynamic reconfiguration of such platforms is particularly
challenging as in many standards and/or applications decod-
ing parameters can be changed as early as one data frame
ahead [8], thus it becomes mandatory to aggressively im-
prove reconfiguration times in order to perform the reconfig-
uration of the whole multiprocessor platform within a single
frame decoding duration. Fig. 1.a illustrates a scenario in
which three frames are serially decoded with three different
configurations. The configuration latency of a frame (noted
∆tConfig) is constrained by the previous frame decoding
duration. Fig. 1.b shows the frame duration for a frame size
of 2048 bits depending on the decoding throughput. This
example demonstrates that the available time to decode a
frame critically decreases when the throughput requirement
increases. Consequently, reaching a reconfiguration time be-
low 10 µs will be a key concern to face expected throughput
of future communication standards like LTE Advance which
provides throughput up to 1Gbps. Management of dynamic
reconfiguration of such multiprocessor channel decoder is
not well addressed in the literature. In [1], [2], [4], [6],
flexible multiprocessor decoders are presented but no con-
figuration infrastructure is proposed to deal with low latency
reconfiguration of future communication standards.

Among the few related works, we can cite the recent
architecture presented in [9] where the authors propose solu-
tions for the reconfiguration management of the multiproces-
sor Turbo/LDPC decoder architecture presented in [3]. Up to
35 processing elements (PEs) and up to 8 configuration buses
have been implemented. Each PE is configured through a
configuration memory. Groups of four PEs are connected to
a dedicated configuration bus. The remaining PEs are shared
among the buses when the number of PEs is not divisible
by four. Dynamic reconfiguration during one frame duration
is possible when the current configuration is small enough
to load a new configuration in the memory. If not, authors
provide management solutions to deal with this issue, such
as erasing the current configuration during the last decoding
iteration and continue the reconfiguration process during
the first iteration of the new configuration, but it is not
always sufficient. Then, stopping the current treatments to
configure the new configuration is unavoidable and leads to a
decoding quality loss in terms of BER. Moreover, the cost of
the proposed multi-bus configuration infrastructure becomes
too high with the increasing number of PEs and leads to
a complex configuration transfer management. To leverage
these issues, it becomes essential to propose original solu-
tions for a low complexity and stopping-free configuration
of multiprocessor turbo decoders.

Based on the work presented in [2], where a flexible multi-
ASIP turbo decoder implementation is proposed, this paper
aims to further investigate and optimize the reconfiguration
process in order to support stopping-free dynamic recon-
figuration for high throughput requirements and high level
of parallelism. Configuration latency below 10 µs must be
proposed to reach this objective for emerging and future
communication standards as shown in Fig. 1. This work
features the following contributions: i) optimization of the
DecASIP [2] processing element for configuration efficiency
in a multi-ASIP context, and ii) efficient bus-based con-
figuration interconnection structure for a low configuration
transfer latency and low area overhead.

The rest of this paper is organized as follows. Section
II introduces the UDec architecture. Section III presents the
proposed optimizations to reach an efficient configuration of
the DecASIP in a multi-ASIP context. Section IV highlights
the main issues that need to be addressed in order to build
an efficient configuration infrastructure while section V de-
scribes the proposed bus-based solution. Section VI presents
the implementation results. Finally section VII concludes the
paper.

II. MULTI-ASIP TURBO DECODER

The UDec turbo decoder architecture [2] is shown in Fig
2. It consists of two rows of DecASIPs interconnected via
a butterfly Network on Chip [10]. Each row corresponds
to a component decoder. In the example of Fig. 2, four
ASIPs are organized in 2 component decoders respectively

40

40

40

40

Component decoder 0 Component decoder 1

Butterfly

NoC

N
o

C
in

te
rfa

ce
N

o
C

in
te

rfa
ce

N
o

C
in

te
rf

a
ce

N
o

C
in

te
rf

a
ce

DecASIP

0
DecASIP

2

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

1

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

3

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

1 2

3

5

4

Figure 2. UDec system architecture example with 2x2 ASIPs

built with 2 ASIPs. Within each component decoder the
ASIPs are connected by two 80-bit buses for boundary
state metrics exchange. The DecASIP implements the Max-
Log MAP algorithm as described in [11]. It supports both
single and double binary convolutional turbo codes and
implements radix-4 trellis compression technique for SBTC
mode. Large frames are processed by dividing the frame
into N windows each with a maximum size of 64 symbols.
Each ASIP can manage a maximum of 12 windows. The
DecASIP is associated with 3 memory banks of size 24x256
used to store the input channel LLR values ¬. There are
also another 3 banks of size 30x256 used for extrinsic
information storing . Each ASIP is further equipped with
two 40x32 memories which hold state values ®. Moreover,
each ASIP is configured through a program ¯ and a config-
uration memory °. The configuration memory contains all
parameters required to perform the initialization of the ASIP
while the program memory contains the instructions in order
to perform the decoding algorithm. Since the DecASIP is
designed to work in a multi-ASIP architecture as described
in [2], it requires several parameters to deal with a subblock
of the data frame and several parameters to configure the
ASIP mode. Concerning the subblock partitioning, each
ASIP is configured with the size and the number of windows
it has to decode. Furthermore, the last window size can be
different so it corresponds to an additional parameter. In a
single binary turbo code mode, the address of the tail bits
in memory, the size and the number of windows for the tail
bits have to be configured. Parameters for the ASIP mode
correspond to the location of the ASIP in the architecture,
the number of ASIPs required, the parameter which defines
if the current ASIP is in charge of tail bits or not, the
target standard (3GPP-LTE, WIMAX, or DVB-RCS) and
the scaling factor for extrinsic information. Finally, some
seed values are necessary for address generation in order
to exchange information over the NoC that connects the
ASIPs of each decoder component. All these parameters are
required for a configuration of an ASIP within the platform.

In [2], authors show that the DecASIP architecture pro-
vides high performance and high flexibility. However the
topic of dynamic reconfiguration is not addressed. Despite
its high flexibility, it presents some lacks to offer an efficient
dynamic reconfiguration. The next section points out theses
lacks and proposes several solutions to implement an effi-
cient reconfigurable DecASIP for the UDec turbo decoder
architecture.

III. RECONFIGURABLE DECASIP

Several optimizations are proposed to reach an efficient
dynamic reconfiguration of the DecASIP architecture. The
first optimization is related to the storage of configura-
tion parameters. Currently, some parameters are stored in
the configuration memory and others are provided in the
program instructions directly [2]. The second optimization
deals with the way used to load the configuration memory
through the configuration memory organization. The third
optimization corresponds to the development of a generic
program independent of the configuration to be performed.

A. Configuration parameters storage

To reach configuration efficiency, we propose to move all
parameters from the program memory to the configuration
memory. This solution allows to configure a single memory
to change all the configuration parameters (instead of loading
both new program memory and configuration memory).
Furthermore, once the ASIP is configured, the configuration
memory can be accessed without any conflict since the
configuration is loaded inside internal registers of the ASIP
during the initialization step. This is a key point to prepare
the next configuration if necessary. Indeed, the entire next
configuration can be loaded in the configuration memory
during the processing of the current data frame. Thus the
configuration loading can be completely masked.

B. Configuration memory organization

In order to improve the configuration of the ASIP, it is
essential to analyze the organization of the configuration
memory. The parameters stored in the configuration memory
are very specific. They can be divided in four categories: 1)
interleaving domain dependent, 2) identical for all ASIPs,
3) different for all ASIPs and 4) different for the last ASIPs
which decode the tail bits in a single binary turbo code mode.
All these characteristics need to be taken into account in
order to build a low latency configuration process. A smart
memory organization should allow an efficient broadcasting
of the configuration parameters to the required ASIPs. Thus
we propose to group the parameters depending on the
previously described categories. Three groups which occupy
different parts of the configuration memory are defined.

Table I shows the proposed configuration memory orga-
nization. The memory is organized as follows: (1) from
address @0 to @1, parameters can be different for each
ASIP. Furthermore, to optimize the initialization step of the

ASIP, the parameter Tail which indicates if the ASIP has to
perform or not the tail bits is also included in this group.
Only the last two ASIPs are concerned by the tail bits in a
single binary turbo code mode; (2) from address @2 to @6,
the parameters are domain dependent; (3) from address @7
to @10, the parameters are the same for all ASIPs. This
organization allows a good way for a fast reconfiguration
at the platform level. Indeed, multicast mechanisms can be
used to load the configuration in order to minimize the data
transfers load. In this context, two multicast transfers are
necessary to send domain dependent parameters to dedicated
ASIPs and one multicast transfer for parameters that are the
same for all ASIPs. Finally, unicast transfers are used to
load the ASIP dependent parameters.
C. Generic program

We propose to simplify the configuration mechanism
by using a unique generic program. Since all parameters
contained in the program memory have been moved to
the configuration memory, three possibilities exist for the
program: two programs for single binary turbo code and
one program for duo binary turbo codes. In single binary
mode, after the initialization step, the last two ASIPs have
to perform the tail bits while other ASIPs execute NOP
operations. So, a particular program is loaded in these last
two ASIPs. In duo binary mode, data frames are decoded
after the initialization step. In order to merge these three
possible programs, the new unique program has to be able to
tackle these three cases. For this purpose, the program which
integrates the tail bits computation is used as a reference.
We have chosen to modify the Fetch pipe stage of the ASIP
in order to detect and replace the instructions for tail bits
with NOP instructions if the ASIP is not concerned. The
value of the bit Tail stored in the configuration memory
(Table I) determines if the ASIP is concerned or not by
tail bits decoding. In duo binary mode, no tail bits have to
be decoded. So, using a unique program in this mode adds
12 extra NOP instructions before the decoding step which
corresponds to tail bits computation in single binary mode.
However, these extra clock cycles are negligible regarding
the number of cycles required to perform the decoding on
one entire data frame.

Optimizations described in this section allow to reduce
the (re)configuration impact thanks to the new memory
organization and the generic program which reduce the total
configuration load to be transferred when a new configura-
tion has to be performed.

IV. MAIN CHALLENGES FOR AN EFFICIENT
CONFIGURATION INFRASTRUCTURE

In the UDec architecture, the 80-bit buses and the But-
terfly NoC are optimized and dedicated to exchange data
between DecASIPs. So, these interconnection structures can
not be used to transfer the configuration data without perfor-
mance lost. To build an efficient solution, the configuration

bit 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
@0 - Tail ASIPId
@1 Turbo Seed 0 Turbo Seed 1
@2 - TurboInitIteration Maxiteration State NumSteps
@3 Turbo Step 0 Turbo Step 1
@4 Turbo Step 2 Turbo Step 3
@5 Turbo Step 4 Turbo Step 5
@6 Turbo Step 6 Turbo Step 7
@7 - @ Tail bits Scaling Factor Mode
@8 Turbo PrevStep Blocklength in bits
@9 - NumASIPs StepIndex WindowSize LastWindowSize

@10 - CurrentWindowN norm CurrentWindowID tail WindowN tail

Table I
NEW CONFIGURATION MEMORY

interconnection structure has to be specific and to take into
account the following requirements: 1) Low complexity, 2)
Multicasting mechanism and 3) Burst transfer.

A. Low complexity

The configuration infrastructure only manages configu-
ration memories updates. Thus, this extra hardware must
have a minimal impact on the global design complexity in
terms of area overhead. When designing a communication
architecture in a multiprocessor platform, two main tech-
nologies are available: Network on Chip or On-Chip Bus.
Last decade has seen the huge adoption of Networks on
Chip in complex System on Chip to mainly enhance the
throughput and the scalability compared to a bus-based com-
munication infrastructure. However, the design of a commu-
nication interconnect dedicated to configuration data does
not require such a complex approach. Indeed, configuration
broadcasting can be defined as a unidirectional communi-
cation between a configuration manager that generates and
transfers configuration data to one or a group of processing
elements that have to be configured. Hence, there is no
transfer concurrency issue, and a unique component, called
Master, is able to initiate a transfer. These features lead to
a bus-based structure that provides a simple communication
interconnect for this particular context.

B. Multicasting and selection

The UDec platform is configured through DecASIP con-
figuration memories. As shown in section III, the DecASIP
configuration memory is organized in order to allow mul-
ticast mechanisms for an efficient and fast configuration
of the multi-ASIP platform. Moreover, depending on the
application requirements, the number of activated DecASIPs
to perform a given configuration can be tuned at run-
time. Hence, a mechanism of processor selection has to be
introduced in order to send configuration data to activated
DecASIPs only.

C. Incremental data burst transfer

The last point to build an efficient configuration infrastruc-
ture for the UDec platform is related to the transfer mode.
Since some of the configuration data has to be loaded in ad-
jacent parts in the configuration memory, all related transfers
can be defined as a burst starting from a base address in the

Mem.@

Data
T_enable

Dest. @

Selector

T
_

in
it

D
_

e
n

a
b

le

D
a

ta

B
a

se
.

@

D
e

st
.

@

Configuration

Manager

26 8 8

26

8

8

Configuration

memory 0

Master Interface

(MI)

Slave Interface 0

(SI_0)

Slave Interface 1

(SI_1)

Slave Interface N

(SI_N)

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Configuration

memory 1

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Configuration

memory N

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Enable SI_0

Enable SI_1

Enable SI_N

T_enable

Figure 3. Architecture of the proposed bus interconnect

configuration memory. For example, based on the DecASIP
memory organization of Table I, configuration data identical
for all DecASIPs can be incrementally transferred starting
from the base address @7. Four incremental transfers are
then performed.

Many On-Chip Buses have been developed these last
years that propose different topologies and different com-
munication protocols. Representative On-chip Buses are the
AMBA [12], the CoreConnect [13] or the Avalon bus [14].
Unfortunately, these solutions do not support multicast. [15]
supports multicast but this solution implements complex
arbitration mechanisms and communication protocols that
are not necessary in our context. The Fast Simplex Link
(FSL) [16] proposes a low complexity unidirectional bus
for data transfer. Unfortunately multicast is not supported.
It is thus required to propose an optimized bus dedicated to
configuration data for the UDec platform.

V. CONFIGURATION INFRASTRUCTURE

To address the main issues highlighted in section IV, we
propose a new bus-based communication infrastructure as
well as the associated communication protocol. Our goal
is to optimize configuration data transfers into DecASIPs
configuration memories for the UDec platform. In this
section, we detail the architecture, the dynamic selection of
activated DecASIPs and the protocol.

A. Architecture overview

The proposed bus architecture is presented in Figure 3.
This architecture can be split in four functional blocks:
Master Interface (MI), Slave Interface (SI), Selector and
interconnect. Each configuration memory is connected to the
bus through a SI. The configuration manager deals with the
configuration generation which is based on internal decisions

Destination @ Destination @@

@ Base @ Base @

Data 0 Data 0 Data 1 Data 2 Data 3

1. Transfer

initialization

2. Address

phase

3. Data

phase

4. Memory input

driving

5. Memory

loading

Communication from the Configuration Manager to the Master Interface (MI)

Clk

T_init

D_enable

Dest. @ [15..0]

Base. @ [15..0]

Data [25..0]

Destination @Destination @@

@

@

Base @ Base @ + 1 Base @ + 2 Base @ + 3Base @

Base @ Base @ Base @ + 1 Base @ + 2 Base @ + 3

Data 0

Data 0

Data 0 Data 1 Data 2 Data 3

Data 0 Data 1 Data 2 Data 3

Communication from the Master Interface (MI) to the Slave Interfaces (SIs)

Communication from the the Slave Interface (SI) to the Configuration Memory

T_enable

Dest. @ [15..0]

Mem. @ [15..0]

00Data [25..0]

Mem. @ [15..0]

00Data [25..0]

Write_enable

Figure 4. Communication from the configuration manager to the configuration memory through the communication infrastructure

and external information and commands (this point is not
addressed in this paper).

The MI provides an interface allowing the connection of
the configuration manager to the bus. To initiate a transfer,
the MI receives, from the configuration manager, the address
of a SI or a group of SIs (called Destination address) and
the memory base address where the transfer starts. During a
transfer, the MI also manages the increment of the memory
address based on the base address.

The SI provides an interface between the bus and the
configuration memory. Its role is, when a transfer is enabled,
to check if the destination address corresponds to its own
address or one of its associated multicast addresses. Then,
the SI retrieves the data (and the associated memory address)
from the bus and writes it into the configuration memory.

The Selector provides a simple and efficient solution to
select, at run-time, DecASIPs that are targeted by the next
configuration data. For this purpose, each SI has a 1-bit input
that is driven by the Selector. When this input is enable, the
associated SI is activated and reacts to the events on the bus
while it ignores all transfers in the other case.

The interconnect part of the proposed architecture consists
of three buses and a transfer enable control signal. Two
address buses are required. The first one (Dest.@ in Figure
3) is used to select the destination (i.e. one SI or a group
of SIs) and the second (Mem.@) is used to indicate the
target memory address. The third bus is used to send the
configuration data. Finally, a control signal (T enable) is
used to inform SIs that a transfer has been enabled.

B. Transfer protocol
The transfer of configuration data can be divided in three

steps: 1) initialization and data transfer from the configura-
tion manager to the MI, 2) data transfer from the MI to one
or several SIs and 3) configuration memory loading from
the SI.

1) From the configuration manager to the MI (upper
part of Figure 4): During the initialization step, the config-

uration manager sends the destination address and the base
memory address to the MI. The T init control signal (Figure
3) is driven to indicate to the MI that a transfer initialization
is required. On the MI side, when these two addresses are
read, the first one is stored and the second one is used
to initialize the memory address increment process. These
addresses are used until a new transfer initialization step
is performed. After the initialization step, the configuration
manager can send one data per cycle on the Data bus. The
D enable control signal is also driven at the same time to
inform the MI that a data is available. Obviously, the data
transfer can be suspended if no data is available. Figure 4
shows an example of transfer initialization and data transfer
between the configuration manager and the MI.

2) From the MI to the SI(s) (middle part of Figure 4):
Figure 4 presents two examples of data transfer on the bus.
The first one shows the transfer of a single data, and the
second shows a data burst. The transfer on the bus consists
of two phases: address phase and data phase. The address
phase lasts for a single clock cycle. During this cycle, the
destination and the base memory addresses are sent on
the corresponding bus. The T enable control signal is also
driven to indicate that a transfer occurs. During the data
phase, the data is sent on the Data interconnect. When a data
burst is performed, a data is available at each clock cycle.
The destination address is maintained on the bus during the
transfer procedure while, for each data, the memory address
is incremented by the MI.

3) From the SI to the configuration memory (lower part
of Figure 4): When a transfer occurs, the SIs involved
in the transfer store the memory address (read during the
address phase) and get the data on the next clock cycle. To
write into the configuration memory, the memory address is
stored during one clock cycle. When the data is available,
the control signal write enable of the memory is driven and
the memory address and the data are sent on the interconnect
between the SI and the configuration memory.

These three steps allow the transfer of a data into the

configuration memory in 5 clock cycles. Moreover, thanks
to the pipeline nature of the transfers, the configuration
infrastructure is able to provide one data per clock cycle
to the destination. As will be demonstrated in section VI
such a solution outperforms existing solutions and allows
reaching a very low latency reconfiguration time.
C. Selection

The UDec platform can dynamically select the number
of DecASIPs involved in the decoding process depending
on the requirements of an application (e.g. throughput, error
rate, etc.). When a configuration command occurs, a selec-
tion mechanism is launched to select the SIs associated to the
configuration memories connected to the DecASIPs involved
in the next configuration. When an SI is not selected, it
ignores all transfers on the bus. The Selector is configured
through the bus infrastructure by the configuration manager
which sends a configuration vector on the bus which is
forwarded to the SIs.

This section has detailed the configuration infrastructure
highlighting main features and providing an in-depth analy-
sis of the latency. Next section focus on the implementation
of the proposed solutions.

VI. IMPLEMENTATION RESULTS

A. RDecASIP implementation

The proposed optimizations described in section III have
been implemented on the DecASIP presented in [2]. The
ASIP was modeled in LISA language using Synopsys (ex.
Coware) Processor Designer tool. Synthesis of the previous
and the new cores was done with 65nm CMOS technology
with a clock frequency objective equals to 500MHz. Syn-
thesis results have been extracted to determine the impact
of the optimizations on the area of the ASIP.

26

P
re

fe
tc

h

P
ip

e
li

n
e

 r
e

g
s.

In
st

ru
ct

io
n

 f
e

tc
h

P
ip

e
li

n
e

 r
e

g
s.

O
p

e
ra

n
d

 f
e

tc
h

P
ip

e
li

n
e

 r
e

g
s.

B
ra

n
ch

 m
e

tr
ic

 1

P
ip

e
li

n
e

 r
e

g
s.

B
ra

n
ch

 m
e

tr
ic

 2

P
ip

e
li

n
e

 r
e

g
s.

S
ta

te
 m

e
tr

ic
 L

LR
s

g
e

n
e

ra
ti

o
n

P
ip

e
li

n
e

 r
e

g
s.

M
a

x
 u

n
it

s
1

P
ip

e
li

n
e

 r
e

g
s.

M
a

x
 u

n
it

s
2

P
ip

e
li

n
e

 r
e

g
s.

In
fo

rm
a

ti
o

n
 g

e
n

e
ra

ti
o

n

PF FE OPF BM1 BM2 EX MAX1 MAX2 EXTR-CH

Program

memory

P
ip

e
li

n
e

 r
e

g
s.

In
st

ru
ct

io
n

 D
e

co
d

in
g

DC

Input

memories

Cross metric

memories

Config.

memory

Extrinsic

memories
Decoding algorithm execution

16

16
6

8

24

8

24

6

80

Register file

Branch metric LLRs

State metric LLRs

Config.

registers

Figure 5. DecASIP Pipeline

To evaluate the impact of the new features on the ASIP
area, we extracted the area synthesis results for each pipeline
stage of the RDecASIP. This ASIP consists of 10 pipeline
stages as shown in Fig. 5. The reconfiguration optimizations
presented in this paper do not affect all the stages. Only
three stages are impacted. Indeed, from BM1 to EXTR-CH,
stages are dedicated to data computation and this part of the

ASIP area (in µm2

DecASIP 183,010
RDecASIP 184,638

Diff. 1,628 (+0.9%)

Table II
ASIP AREA COMPARISON IN µm2

Config Prog. 1 n
param. mem. ASIP ASIPs

RDecASIP 286 - 286 n.52+260+104
DecASIP 336 640 976 n.976

Gain 14% 100% 70% 90% (n = 8)

Table III
CONFIGURATION AND PROGRAM BIT LOAD COMPARISON IN BITS

ASIP pipeline is not directly concerned by the configuration
optimizations proposed in this work. Moreover, The pre-
fetch stage is identical in the two implementation of the
DecASIP. On the other hand, fetch (FE), decode (DC), and
operand fetch (OPF) stages have seen their area increased
compared to the previous ASIP. The proposed optimizations
were implemented along the pipelines stages as follows:

• FE: The FE stage insures the automatic replacement of
instructions for tail bits computation by NOP when the
ASIP is not concerned by tail bits decoding.

• DC: This stage is mainly impacted by the transfer
of all flexible parameters in a unique configuration
memory. Instead of a direct access to some parameters
in instruction code words, parameters are now read
from registers. Thus, the number of connections with
the register file has been increased.

• OPF: This stage is impacted by the new configura-
tion memory organization since it is in charge of the
parameter registers initialization. The area overhead
comes from the increasing number of parameters in the
configuration memory and by added control structures
that manage the configuration size flexibility. Since
more configuration parameters are read from the con-
figuration memory, the number of connections with the
register file has been increased to configure additional
registers.

Table II shows the global area comparison between the
DecASIP and the new version optimized for dynamic re-
configuration called RDecASIP. We observe that the global
logic overhead on the ASIP is 0.9% (1,628 µm2). This
overhead is mainly due to the additional internal registers
used to store the configuration parameters read from the
configuration memory.

The RDecASIP is configured through the optimized con-
figuration memory presented in section III. Table III com-
pares the configuration and program load (in bits) for the
proposed RDecASIP and the original DecASIP presented in
[2]. For one ASIP, we observe that the proposed RDecASIP
can be configured with 286 bits instead of 976 bits thanks
to the generic program described in section III-C. Moreover,
the new memory organization proposed in section III al-
lows the optimization of the configuration memory loading.

Dest. @

Selector
Slave Interface N

(SI_4)

Slave Interface 0

(SI_0)

8

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Slave Interface 1

(SI_3)

Slave Interface 0

(SI_1)

Slave Interface 0

(SI_2)

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Xilinx ChipScope Debug Module
To computer

Via JTAG

Mem.@

Data
T_enable

Dest. @

Master Interface

(MI)

26

8

T_init

D_enable

Data

Base. @

Dest. @26

8

8

FSL to MI

Interface

Asynchronous

FIFO

Microblaze
FSL

Timer UART

PLB

Local

memory

(BRAM)

LMB

Figure 6. Architecture of the prototype

Indeed, parameters are sent to several ASIPs through a
multicast mechanism. Thus, in a multi-ASIP context, each
DecASIP has to be configured with its own configuration
and program memory while configuration memory of the
proposed RDecASIP can be loaded using a multicast mech-
anism as follows: 52 bits are independently loaded in each
ASIP. ASIPs that work in the same interleaving domain
are loaded with 130 common bits. Finally, 104 configu-
ration bits are broadcasted to all ASIPs. Thanks to this
new configuration memory organization, the impact of the
number of ASIPs on the configuration load is significantly
reduced: n.52 bits instead of n.976 bits, where n is the
number of ASIPs implemented. For example, if 8 ASIPs
are implemented in a multi-ASIP platform, the configuration
load to configure the 8 ASIPs is 7808 bits with the DecASIP
and 780 bits with the proposed RDecASIP.

The timing performances for turbo decoding of the new
and the original version of the DecASIP are identical.
Indeed, the pipeline architecture is still the same and both
implementation are able to reach the maximum frequency of
500MHz. However, in double binary mode, the RDecASIP
requires 8 extra clock cycles after the initialization phase to
start decoding. Nevertheless, we can disregard these impacts
in front of the decoding time of a data frame that is identical
for both versions of the ASIP.

B. Configuration infrastructure implementation

To validate the proposed bus architecture and commu-
nication protocol presented in section V an hardware pro-
totype on a Xilinx XUPV5 platform based on a Virtex 5
LX110T FPGA was developed. The prototype architecture
is shown in Figure 6. It consists of a Xilinx Microblaze
soft core that generates the configuration at run-time. The
configuration is then sent through an FSL bus to a FSL to
MI interface. The Fast Simplex Link (FSL) [16] connection
has been considered as this interconnect structure proposes a
fast, simple and unidirectional connection. An asynchronous
FIFO is associated to the FSL connection in order to provide
frequency domain flexibility on both Microblaze and config-
uration infrastructure sides. The FSL to MI interface realizes
the protocol adaptation between the FSL communication
protocol and our bus protocol. Finally, the outputs of each SI

Nb. Transfer latency (in ns) Speedup
ASIPs This work [13] [12] vs. [13] vs. [12]

4 1 032 3 872 2 212 3.75 2.14
6 1 176 5 808 3 168 4.94 2.69
8 1 320 7 744 4 224 5.87 3.2

16 1 896 15 488 8 448 8.17 4.45
32 3 048 30 976 16 896 10.16 5.54
64 5 352 61 952 33 792 11.57 6.31

Table IV
CONFIGURATION TRANSFER TIME IN ns

are connected to a Xilinx ChipScope module that allows the
run-time monitoring of these signals. This module replaces
the configuration memories associated with the SIs.

Thanks to this hardware implementation, configuration
transfer time were evaluated for several number of RDe-
cASIP. For this purpose, the Microblaze and proposed bus
frequency is set to 125 MHz. The Chipscope module is
configured to monitor the output signals of the SIs. Table IV
shows the configuration transfer times of the proposed bus
compared with designs implementing CoreConnect PLB4
[13] and AMBA AXI4 [12] buses connected to a Microblaze
with the clock frequency set up to 125MHz. Thanks to the
multicast mechanisms, a low overhead of 72 ns is necessary
to configure each additional couple of RDecASIPs (one
ASIP in both natural and interleaved domains) while 968
ns and 528 ns are necessary for [13] and [12] respectively.
Results of Table IV show that the proposed implementation
significantly reduces the configuration time overhead when
the number of active RDecASIPs increases compared to
classical bus approaches.

Infrastructure Component Area (in µm2)
MI 1 790
SI 1 150

Selector 784
Infrastructure for 8 RdecASIPs 15 199

8 RDecASIP 1 477 104

Table V
AREA OF THE PROPOSED CONFIGURATION ARCHITECTURE

A logical synthesis of the proposed bus components
was also done with 65nm CMOS technology with a clock
frequency objective equals to 500MHz. Table V shows the
area evaluation for the three components of the proposed
configuration infrastructure. The logic overhead caused by
the configuration infrastructure is 0.015 mm2 which leads
to a low penalty of 1% regarding the logic area of the
8 RDecASIPs (1.477 mm2). Furthermore, regarding fre-
quency objective of 500 MHz, a speedup of 4 on the
configuration transfer latencies shown in Table IV can be
expected compared to the 125 MHz FPGA prototype.

C. Stopping-free reconfiguration analysis

The minimum frame decoding duration providing a
stopping-free configuration is determined by the longest
configuration time that is 5.352 µs in Table IV. Thus, the
maximum achievable throughput is theoretically limited for
a given frame size and is given by the equation (1) where
Frame durationmin is equal to 5.352 µs.

Frame size Tmax NASIP Frame size Tmax NASIP

(bits) (Mbps) (bits) (Mbps)
96 17 2 1920 358 36

480 89 10 4800 666 64
880 164 16 6144 666 64

Table VI
ESTIMATED MAXIMUM THROUGHPUT FOR A STOPPING-FREE DYNAMIC

CONFIGURATION OF THE UDEC PLATFORM

Tmax (in bps) =
Frame size (in bits)

Frame durationmin (in s)
(1)

Considering the UDec platform implementing RDe-
cASIPs, the maximum achievable throughput is limited by
the number and the performance of the RDecASIP. Equation
(2) shows the estimated throughput of the UDec platform.

T =
Fclk.(NASIP /2)

Ninstr.Niter
(2)

Where NASIP is the number of RDecASIPs, Ninstr is
the average number of instructions to decode one symbol
(Ninstr = 4 for the RDecASIP), Niter is the number of
iterations performed and Fclk is the frequency. It is worth
to note that increasing the subblock parallelism degree can
be done with careful consideration of boundary state metrics
initialization as it can impact the convergence speed and thus
reduce the parallelism efficiency [17]. Several parameters
should be considered in terms of frame size, code rate,
interleaving rules, and state metrics initialization methods
[17]. Considering equation (1) and equation (2) where the
number of RDecASIP is limited to 64, Table VI, shows
the maximum estimated throughput achievable in SBTC and
DBTC allowing a stopping-free dynamic configuration and
the corresponding number of RDecASIP that have to be used
for different frame sizes and a number of decoding iterations
equals to 6.

Results of Table VI show that stopping-free dynamic
configuration can be achieved for a throughput up to 666
Mbps by coupling the RDecASIP presented in section III
and the configuration infrastructure proposed in section
V. For a UDec architecture implementing 64 RDecASIPs,
Table VI shows that for long frames the throughput is
limited by the number of implemented RDecASIPs while the
throughput for smaller frames is bound by the configuration
latency. However, considering an ASIC implementation of
the configuration infrastructure, this bound can be divided
by 4.

Compared to the recent related work proposed in [9],the
configuration infrastructure consists of several buses, each
connected to a group of 4 PEs. Up to 8 buses have been
implemented to configure 35 PEs to provide throughput up
to 292 Mbps in DBTC mode and 150 Mbps in SBTC mode.
However, the way the buses are driven is not described in
details in the paper but the management of the 8 buses in
parallel should increase the complexity of the configuration
manager used to load new configurations. The approach

proposed in this paper provides optimizations at PE level in
order to build an efficient and low complexity configuration
infrastructure. The proposed solution is a single bus imple-
menting mechanisms optimized for dynamic configuration
management that leads to stopping-free decoding when
the constraints previously analyzed are respected. Such an
approach allows an efficient dynamic configuration of high
speed decoders without loss in error correction quality.

VII. CONCLUSION

This work describes an ASIP-based reconfigurable archi-
tecture for turbo decoding. This architecture is based on the
UDec architecture implementing the RDecASIP optimized
for an efficient dynamic configuration in a multiproces-
sor context. The architecture is reconfigured through a
novel bus-based configuration infrastructure implementing
incremental burst, unicasting, multicasting and broadcasting
mechanisms providing a high speed configuration data trans-
fer. Dynamic configuration in one frame decoding duration
is provided for high throughput up to 666 Mbps when the
frequency of the configuration infrastructure is 125 MHz.

REFERENCES

[1] T. Vogt, C. Neeb, and N. Wehn, “A Reconfigurable Multi-Processor Platform
for Convolutional and Turbo Decoding,” in Proc. of the International Workshop
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2006,
pp. 16–23.

[2] P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jézéquel, “A Flexible High
Throughput Multi-ASIP Architecture for LDPC and Turbo Decoding,” in Proc.
of the Design, Automation and Test in Europe Conference & Exhibition (DATE),
2011.

[3] C. Condo, M. Martina, and G. Masera, “A Network-on-Chip-based turbo/LDPC
decoder architecture,” in Proc. of the Design, Automation and Test in Europe
Conference & Exhibition (DATE), 2012.

[4] M. Martina, M. Nicola, and G. Masera, “A Flexible UMTS-WiMax Turbo
Decoder Architecture,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 55, no. 4, pp. 369–373, April 2008.

[5] J.-M. Hsu and C.-L. Wang, “A parallel decoding scheme for turbo codes,” in
Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS),
1998, pp. 445–448.

[6] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-ASIP architecture for
standard compliant trellis decoding,” in Proc. of the International SoC Design
Conference (ISOCC), 2011, pp. 349–352.

[7] T. Vogt and N. Wehn, “A Reconfigurable ASIP for Convolutional and Turbo
Decoding in an SDR Environment,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 10, pp. 1309–1320, oct. 2008.

[8] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface
for Fixed and Mobile Broadband Wireless,” IEEE Std 802.16e-2005, 2006.

[9] C. Condo, M. Martina, and G. Masera, “VLSI Implementation of a Multi-Mode
Turbo/LDPC Decoder Architecture,” IEEE Transactions on Circuits and Systems
I: Regular Papers, Early Access Articles, 2012.

[10] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn on-chip network
for a flexible multiprocessor LDPC decoder,” in Proc. of the Design Automation
Conference (DAC), 2008, pp. 429–434.

[11] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum
a posteriori algorithms suitable for turbo decoding,” European Transactions on
Telecommunications, vol. 8, no. 2, pp. 119–125, 1997.

[12] ARM, AMBA specifications v2.0. ARM. [Online]. Available:
http://www.arm.com.

[13] IBM, CoreConnect Bus Architecture. IBM Microelectronics. [Online]. Available:
http://www.ibm.com/chips/products/coreconnect.

[14] Altera, Avalon bus specification: Reference manual. Altera Corporation. [On-
line]. Available: http://www.altera.com.

[15] Sonics network technical overview. Sonics, Inc. [Online]. Available:
http://www.sonicsinc.com.

[16] Xilinx, FSL V2.0 specification. Xilinx, Inc. [Online]. Available:
http://www.xilinx.com.

[17] O. Muller, A. Baghdadi, and M. Jezequel, “Parallelism Efficiency in Convolu-
tional Turbo Decoding,” EURASIP Journal on Advances in Signal Processing,
2010. [Online]. Available: http://asp.eurasipjournals.com/content/2010/1/927920

