Despite recent research advancements in reconstructing clothed humans from a single image, accurately restoring the "unseen regions" with high-level details remains an unsolved challenge that lacks attention. Existing methods often generate overly smooth back-side surfaces with a blurry texture. But how to effectively capture all visual attributes of an individual from a single image, which are sufficient to reconstruct unseen areas (e.g., the back view)? Motivated by the power of foundation models, TeCH reconstructs the 3D human by leveraging 1) descriptive text prompts (e.g., garments, colors, hairstyles) which are automatically generated via a garment parsing model and Visual Question Answering (VQA), 2) a personalized fine-tuned Text-to-Image diffusion model (T2I) which learns the "indescribable" appearance. To represent high-resolution 3D clothed humans at an affordable cost, we propose a hybrid 3D representation based on DMTet, which consists of an explicit body shape grid and an implicit distance field. Guided by the descriptive prompts + personalized T2I diffusion model, the geometry and texture of the 3D humans are optimized through multi-view Score Distillation Sampling (SDS) and reconstruction losses based on the original observation. TeCH produces high-fidelity 3D clothed humans with consistent & delicate texture, and detailed full-body geometry. Quantitative and qualitative experiments demonstrate that TeCH outperforms the state-of-the-art methods in terms of reconstruction accuracy and rendering quality. The code will be publicly available for research purposes at https://github.com/huangyangyi/TeCH
We compare TeCH with baseline methods, PIFu, PaMIR and PHORHUM qualitatively on in-the-wild images from the SHHQ dataset. our training-data-free one-shot method generalizes well on real-world human images and creates rich details for the body textures, such as patterns on clothes and shoes, tattoos on the skin, and details of face and hair. While PIFu and PaMIR produce blurry results, limited by the distribution gap between training data and in-the-wild data.
For more work on similar tasks, please check out the following papers.
@inproceedings{huang2024tech,
title={{TeCH: Text-guided Reconstruction of Lifelike Clothed Humans}},
author={Huang, Yangyi and Yi, Hongwei and Xiu, Yuliang and Liao, Tingting and Tang, Jiaxiang and Cai, Deng and Thies, Justus},
booktitle={International Conference on 3D Vision (3DV)},
year={2024}
}