Ul Redressing Attacks on Android Devices

Marcus Niemietz, Jérg Schwenk
Horst Gértz Institute for IT-Security
Ruhr-University Bochum, Germany

{marcus.niemietz,joerg.schwenk}@rub.de

ABSTRACT

In this paper, we describe novel high-impact user interface
attacks on Android-based mobile devices, additionally fo-
cusing on showcasing the possible mitigation techniques for
such attacks. We discuss which Ul redressing attacks can be
transferred from desktop- to mobile- browser field. Our main
contribution is a demonstration of a browserless tap-jacking
attack, which greatly enriches the impact of previous work
on this matter. With this technique, one can perform unau-
thorized home screen navigation and attempt actions like
(premium number) phone calls without having been granted
appropriate privileges. To protect against this attack, we
introduce a concept of a security layer that catches all tap-
jacking attempts before they can reach home screen/arbi-
trary applications.

Keywords

Android, UI Redressing, Clickjacking, Tapjacking, Web Se-
curity; Browser Security; Mobile Security

1. INTRODUCTION

Upon Jesse Ruderman’s publication of his observations con-
cerning the behavior of transparent elements inside a Web
browser in 2002 [1], the research on user interface (UI) re-
dressing has begun. Ruderman’s original idea was to load
Web pages inside an iframe and perform interactions on its
loaded elements without getting noticed. The latter was
due to the fact that these elements remained invisible to the
user. This particular potential security problem has been
overlooked until 2008. At this time, Grossman and Hansen
showed [2] that the Adobe Flash Player can be modified in
a malicious way. More specifically, an attacker was able to
automatically gain access to a camera or a microphone with-
out any visible permission from a victim. The attack was
then labeled clickjacking, as the attacker executes his abil-
ity to hijack clicks of a user in this scenario. Nowadays, Ul
redressing is a common name for the entire set of principally
similar attacks and it includes clickjackingas a special case.

The early attack from 2008 is now filed under clickjacking
subset and it can be referred to as classic clickjacking. Fur-
thermore, this subclass consists of attacks like cursorjacking,
filejacking, tabnabbing, and inter alia tapjacking [3]. Ma-
jor commonalities shared between these concepts are related
to attacker’s capacity of controlling mouse clicks or similar

events (for example touch gestures). In essence, all of these
attacks need a Web browser to be executed. The case of
UI redressing implies the same Web browser requirement.
In contrast to clickjacking, Ul redressing additionally gives
an attacker the ability to hijack keystrokes or, alternatively,
to bypass security mechanisms (such as same origin policy)
implemented in a Web browser, all done via modified Ul

Considering the above given attack vectors on desktop-based
Web browsers, we pose a question of whether they can be
ported to smartphone-based systems. For this purpose, we
focus on the Android operating system (combined with a
touch display). The rationale behind this choice lays in the
market share dominance of this setup, evident in late 2011
— a time when we have initiated our research. To clarify
this point, let us name a study from Gartner in which the
market share was over 52 % [4], making it double in size
compared to last year. For the same reason, we will concen-
trate on the currently most widespread version 2.2 [5]. In
addition, we will address Android 4.0.3 systems to underline
the importance of our research for upcoming mobile devices.

In summary, this paper focuses on two points which were
not raised in the academic research till now. Firstly, we
will discuss currently present attacks and countermeasures
for desktop-based Web browsers available for Android-based
mobile devices. Next, we will show a Ul redressing, pre-
cisely centering on the tapjacking attack technique which
does not need a Web browser to execute. It operates in a
way that a malicious application with only minimal rights
proves to be enough to carry out successful attacks. This
tapjacking technique allows us to make phone calls, install
applications, and use the default browser for code injection
attacks without any of the usually required permissions. A
simple mechanism is the hijacking of some apparently harm-
less interactions on the victim’s part. In this context, we
will introduce a concept of a new security layer capable of
mitigating this kind of attack in all modern Android-based
operating systems.

2. RELATED WORK

This chapter is dedicated to an overview of the related work
on desktop-based and browserless Ul redressing techniques.

2.1 Desktop-based UI Redressing Techniques

As stated in 1, UI redressing supplies the attacker with an
option to change the UI hijack events like pressing a key

or clicking with the mouse cursor. Many attacks belong-
ing to Ul redressing attacks’ class have been surfacing since
2008 [6]. In an attempt to systemize them, we propose a
following classification:

e Clickjacking

— Classic clickjacking [2].;

— Likejacking [7] and sharejacking. These are vari-
ations of classic clickjacking attack performed via
Facebook’s Like and Share buttons;

— Nested clickjacking [8]. Enables an attacker
to perform attacks against social networks like
Google+;

— Cursorjacking [9]. By changing the image of a
mouse cursor one can hijack a click through a
visible mouse cursor, unusually placed inside a
manipulated one;

— Cookiejacking [10], filejacking [11]. Cookiejack-
ing enables stealing cookies within the long-
unpatched (pre-July 2011) versions of Internet
Explorer while Filejacking uses a feature of
Google Chrome for an unintentional upload sub-
stituting a download;

— FEventjacking, classjacking [6]. These attacks are
based on HTML events and attributes fully con-
trolled by an attacker;

— Tabnabbing [12]. It allows phishing by browser
tab manipulations;

— Double clickjacking [18]. Unlike in classic click-
jacking, two clicks to bypass typical clickjacking
security mechanisms like a JavaScript-based frame
buster are utilized;

— Combinations with CSRF, XSS, and CSS.

e Strokejacking. A technique which facilitates keystrokes’
hijacking.

e Drag-and-drop operations [6]. Makes it possible for an
attacker to bypass the restrictions of the same origin
policy to e.g. perform invisible text injection attacks.

e Content extraction [6]. A technique of stealing source
code of a website reachable for a victim via the internet
and intranet.

e Fyent-recycling. It supplies a possibility of bypassing
mechanisms implemented in a Web browser, for exam-
ple a pop-up blocker.

e SVG masking [6]. Allows an attacker to show elements
in another context with the help of Scalable Vector
Graphics.

2.2 Browserless UI Redressing Attacks

For a while now, it has been quite clear that Ul redressing
and many other attacks related to the Ul can be carried out
against Web browsers executable on mobile devices. Nev-
ertheless, a question still remains: Is it possible to perform
browser-like attacks on mobile devices without using a Web

Buy for
200%
Funny @
Pictures

Figure 1: The malicious application for the tapjack-
ing attack in front of the attacked application is able
to let touch gestures under the malicious application
go directly to the target application.

browser or, at the very least, without using it directly? Car-
rying out an attack scenario which makes use of clickjacking
provides a clear positive answer to the above inquiry.

One of the first ideas tackling this attack scenario was pub-
lished by David Richardson in 2010 [14]. He thought about
how the Android trust model behaves when a dialog is opened
through an application. Richardson theoretically suggested
that an application was allowed to programmatically open
a dialog but not to interact with it. This finding was not
particularly surprising, since it is otherwise possible to do a
privilege escalation attack. However, by using a toast view,
one is able to show a quick little message to the user. A ba-
sic idea of the toast is that an application in question should
be as unobtrusive as possible, while the main application is
still being displayed; to give one example — this is the case
of volume control.

Jack Mannino published a proof of concept of a tapjack-
ing attack in 2011 [15]. The toast class was employed in
his research. His method involved scaling of the usually
small notification message to an entire display of the mo-
bile device and subsequent usage of the default constant
LENGTH_LONG to show the view or text notification for
a long period of time. Notice, Android offers the option to
use a long delay of 3.5 seconds and a short delay of 2 sec-
onds [16]; the 3.5 seconds are not long enough and therefore
the delay can be artificially extended [17] for such a kind of
attack — for instance to 30 seconds.

The crucial point is that a touch gesture on such a message
or notification will be passed through to the underlying ap-
plication. Thus, an attacker can create a dummy button in
the overlaying notification and place it over a button of the
target application. In essence, it leads to the fact that the
victim will make a touch gesture on the button of the at-
tacked application without receiving any alert about what he
or she has done. An attack scenario is shown in Figure 1. In
Chapter 4, we extend the Manino’s proof of concept attack,
which was originally restricted to two target applications in
the background, as we allow access to more applications and
especially the home screen.

3. PORTING UI REDRESSING TO
ANDROID DEVICES

To evaluate the impact of mobile-devices-targeted attacks
listed in Chapter 2.1, we have examined the similarities be-
tween mobile and non-mobile systems in the Ul redressing
field.

Classic clickjacking usually requires a Web browser support-
ing frames. Furthermore, support for CSS, JavaScript, and
HTMLS5 is needed to execute attacks like classjacking or
strokejacking. This is exactly the setup witnessed in native
Android Web browser at present. Most of the remaining at-
tacks — nested clickjacking, filejacking, tabnabbing, content
extraction, event-recycling, and SVG masking — need addi-
tional features, which can be found in desktop-based Web
browsers like Firefox, Opera, or Chrome. In the past, this
was a major obstacle as only native Web browser and some
additional rather unknown Web browsers were available on
smartphones. Nowadays, any Web browser one requires —
like Firefox in case of an SVG masking — can be downloaded
via Google Play.!

The following list enumerates the attacks which proved not
transferable to Android devices during our research: cur-
sorjacking, cookiejacking, double-clickjacking, and pop-up-
blocker bypasses. Let us specify:

e Cursorjacking. Due to the nature of a mobile device
with a touch display, there is usually no visible mouse
cursor.

e Cookiejacking. This attack [10] does not work because
Microsoft offers no Internet Explorer version for An-
droid.

e Double clickjacking and pop-up-blocker bypasses. They
cannot be applied for the reason that Android-based
‘Web browsers have no native pop-up or pop-down win-
dows, as it is the case in the desktop-based world.

All in all, there are many desktop-based attacks which can
be adapted to Android-based mobile devices; more informa-
tion on that matter can be found in work by Rydstedt et
al. [3]. In the following, we will focus on a browserless at-
tack related to classic clickjacking which can be carried out
on Android-based mobile devices. Called tapjacking [3], this
attack is part of the clickjacking subset.

4. NEW BROWSERLESS ATTACKS

Tapjacking against security critical applications. We
found out that it is possible for an attacker to have access
to many applications critical in terms of security consider-
ations. Normally requiring an explicit permission from the
victim, the attacks here are done by installing only one low-
privileged malicious app. Probability of successful attack
scenarios designed for mobile devices can be increased sig-
nificantly with this tapjacking attack. In addition to the
attack described by Jack Mannino, we are able to control

1Since March 2012, Google Play is a name used for the An-
droid market [18].

and manipulate, among others, the following applications,
regardless of having no rights to them granted:

e Contact data manipulation.: Violation of user privacy.

e Native browser utilization. Preparation step for fur-
ther Ul redressing attacks.

e Touch gestures logging. Performing attacks like key-
logging.

e Predefined phone calls. Monetary damage by premium
number calls.

e [Installing applications in the background. Loader func-
tionality for installing specialized malicious applica-
tions.

All of these attacks are using the same technique. Firstly,
there is a visible attacker’s application in form of a notifi-
cation in the foreground — a code snippet from our touch
gesture logger is given in Listing 1. Secondly, there is a
target application in the background.

Listing 1: In this code snippet of our touch gesture
logging attack one can see that we are using at least
one button with a — to clickjacking similar — opac-
ity property for a full transparency. Beyond that
we set inter alia a layout parameter to overlay all
applications as well as the home screen.

mButton = new Button (this);
// like the CSS opacity property
mButton . getBackground ().setAlpha (0);
// mneeded for onTouch()
mButton.setOnTouchListener (this);
// Layout parameters with an overlay
WindowManager . LayoutParams params =
new WindowManager . LayoutParams (
WindowManager . LayoutParams . WRAP_.CONTENT,
WindowManager . LayoutParams . WRAP_.CONTENT,
WindowManager . LayoutParams .
TYPE SYSTEM OVERLAY,
WindowManager . LayoutParams .
FLAG-WATCH OUTSIDE TOUCH,
PixelFormat . TRANSLUCENT) ;

Real life scenario. By choosing the phone call attack as an
example, one can construct the following real life scenario.
The attacker offers an application in a form of a simple cal-
culator as a (free) download. The victim uses Google Play
to search and obtain such an application, which, due to its
simplicity, has no access rights for e.g. doing phone calls
and writing SMS.

Once the ill-disposed application is installed and opened,
the victim performs regular actions, such as calculating a
total amount of a bill. During this interaction, the malicious
application displays a message with a confirmation button,
placed at the required location on the screen — this can for
example be a note that the victim should not press the dis-
played button, as we are demonstrating on the right side of
our Figure 2. If the victim touches the confirmation button,

5 Ml @ 5:46 PM Ml @ 5:46 Pm

)

DO NOT PRESS

0+ #

-

Go forit!

Figure 2: On the left side, a malicious application
with a transparent background is displayed as an
illustration. On the right side the same application
with a white background and an already initiated
phone call can be observed.

this ’tap’ will be forwarded to the phone application, and
a phone call with a predefined (premium) number will be
initiated.

In Figure 2, a simple exemplary implementation is depicted.
On the right side, the malicious application is given with a
background colour set to white. Instead of this white back-
ground, a picture, a pocket calculator, or a simple game
would typically be displayed in a real attack. On the left
side, the background is changed to a transparent mode so
that to visualize the effect of the tapjacking attack. The
malicious button ’Go for it!” is placed exactly over the (nor-
mally invisible) call button of the phone call application.
Thus, an attacker is able to open this particular application
in the background with a predefined number and the only
thing what he or she needs is a single touch gesture. There-
fore, the victim is actually pressing a button situated below
the malicious one.

The victim may notice that a phone call is performed be-
cause a green phone icon is displayed in the notification bar.

Unauthorized home screen navigation. A similar attack
technique can be completed by using home screen, the ratio-
nale being that one can open and press the required buttons
to initiate target applications. By using this attack tech-
nique there arises the question, which advantages are asso-
ciated by tapjacking the home screen. The crucial point here
is that there is a limited number of operations [19] like open-
ing the phone call application by using Intent. ACTION_DIAL
or displaying data to the user with Intent. ACTION_VIEW.

Summarized, the attack makes it possible to substantially
extend the previously mentioned limited set of attacks. This
works due to the reason that Android allows notifaction mes-
sages directly on the home screen when there is no appli-
cation in the background and also in the case that there

is an application in the background by explicitly using In-
tent. ACTION_MAIN. This operation leads to the possibility
that one can perform ACTION_MAIN to launch the home
screen, e.g. navigate in the Android menu, and open another
application to change the system configuration — and thus
reach an application, which is not intended to be reachable
by the Android developers with a usage of Intent. ACTION_-
operations.

Contrary to the previously mentioned attacks, a disadvan-
tage here is that an attacker needs more touch gestures of
a victim; the required touch gestures can be collected by
using social engineering techniques, e.g. via a simple game
which requires touch actions. Nevertheless, this attack gives
us the possibility to open all vulnerable applications and it
is a single point of attack for tapjacking, clearly making it
very attractive target for criminal attackers.

Responsible disclosure. We have informed the Android
team about this attack vector and are awaiting their re-
sponse. Since system updates are a problem for Android
smartphones and no general defense mechanisms exist in
current Android systems, we have chosen not to publish the
full source code of the attack. We will gladly provide it to
certain parties on request.

S. MITIGATION TECHNIQUES

In this chapter, we focus on countermeasures against browser-
based and browserless Ul redressing attacks discussed in the
previous sections. More importantly, we address their ap-
plicability in the context of the Android-based devices.

5.1 Browser-Based Ul Redressing

Frame Buster. To be able to control the layout of the vic-
tim’s website, the attacker usually loads the target Web page
into an iframe. Standard countermeasures implemented in
the attempts to shield a website from being framed are
JavaScript-based frame busters. They usually consist of a
conditional statement and a counter-action. The conditional
statement verifies if the website implementing the frame
buster is loaded in an iframe. In such case, the counter-
action will be executed. Thus, if attackers.org wants to load
victim.org in an iframe, attackers.org will be busted to wvic-
tim.oryg.

In July 2010, Rydstedt et al. put forward a statistical in-
quiry into the usage of frame busters [20]. The researchers
came to a conclusion that frame busters are the most widely
used technique against classic clickjacking. Nonetheless,
frames can be attacked in many different ways via busting
frame busting attacks. A recommendation against classic
clickjacking attack, as well as the frame busting attacks, was
published by August Detlefsen in October 2010 [21]; Jason
Li, Chris Schmidt, and Brendon Crawford optimized this
countermeasure. This new kind of frame buster is displayed
in Listing 2.

Detlefson et al. used Cascading Style Sheets to ensure that
the whole body of the document will not be displayed to the
user. After that, they used JavaScript to check if the page
is being framed or not. If the latter is the case, the body of

the document will be displayed to the user. Otherwise, the
frame will be busted.

Hence, since the execution of JavaScript code will be deac-
tivated if there is a frame busting attack, the content of the
Web page will then not be displayed. Because this coun-
termeasure is purely JavaScript-based, it is applicable to
modern mobile browsers.

After manually analyzing the Alexa Top 500 websites [22],
we want to stress that this kind of JavaScript-based frame
buster is one of the most attack-resistant countermeasures
against the busting frame busting techniques published by
Rydstedt et al. [20].

Listing 2: A frame buster of August Detlefsen. The
target is to prevent a website against being framed
and to be resistant against busting frame busting
attacks.
<style id="antiClickjack”>

body{display :none !important;}

</style>
<script type="text/javascript”>
if (self == top) {
var antiClickjack = document.

getElementBylId (" antiClickjack”);
antiClickjack . parentNode.
removeChild (antiClickjack);
} else {

top.location = self.location;

</script>

X-Frame-Options and the CSP. Using the HTTP header
X-Frame-Options (XFO) provides another way of tackling
framing attacks. Developed by Microsoft in 2008 and imple-
mented since Internet Explorer (IE) 8 [23] this header’s use
forces a supported browser to check if a website should be
loaded in a frame or not. In contrast to the JavaScript-based
countermeasure, the frame will not be busted. Instead, a
warning message inside the frame will be displayed.

Microsoft introduced three different values for the header in
question. These are: DENY, SAMEORIGIN, and ALLOW-
FROM origin. If one wants to forbid all Web pages from
loading the protected Web page, then DENY should be
used. To allow a Web page of the same domain to load the
protected Web page, one should use SAMEORIGIN. The
last value, which is only available in IE, gives an option of
specifying a URL allowed to frame the protected Web page.
In this case, the URL has to be replaced with origin.

A main disadvantage of the HTTP header is its limited sup-
port, restricted only to modern browsers such as Firefox
>3.6.9, Opera >10.5, and the already mentioned IE >8. For
this reason, most of the websites are using the JavaScript-
based countermeasure. Our statistical query into this matter
[6] included analyzing the TOP 100,000 Alexa websites and
scanning the very first Web page of each domain. This re-
sulted in a discovery that in the TOP 100 we only find three
websites using X-Frame-Options. On top of that, there is
a small total of 143 websites with such header in the TOP
100,000. Over 66 % used the value SAMEORIGIN to allow
Web pages with the same domain to frame their Web page.

Less than 34 % are using the value DENY.

The Content Security Policy (CSP) [24, 25] is a header which
can be used for X-Frame-Options in a very similar way.
Aside from the framing protection, one can also identify
other targets, such as preventing data injection attacks or
cross-site scripting. By using the directive frame-ancestors,
one can specify a frame chain in a form of whitelist. In con-
trast to X-Frame-Options, Content Security Policy is exper-
imentaly supported by Desktop-based browsers like Firefox
>4, Chrome >13 and IE10. Sadly, compared to X-Frame-
Options, the range of supporting browsers is even more re-
strictive. Furthermore, frame-ancestors is no longer speci-
fied in the W3C draft [26] as CSP will focus on sandboxing
and source specification of style sheets, script files and sim-
ilar issues.

As illistrated in Table 1, a test with various well-known mo-
bile browsers has shown that they support X-Frame-Options
without exception. In the case of the Content Security Pol-
icy only Firefox was able to protect a website with the old
CSP (0CSP) — more precisely with the test case X-Content-
Security-Policy: allow ’self’; frame-ancestors 'none’. For
the sake of obtaining a full picture, we have verified if one
of the mobile browsers is supporting the new CSP (nCSP)
variant of the W3C draft. The latter is not even the case
in WebKit-browsers, although it is supported in the tested
desktop-based WebKit-browser Chrome 20.0.

Browser Engine | XFO | oCSP | nCSP
Android — 4.0.3 WebKit v X X
Dolphin - 8.7.0 WebKit v X X
Firefox — 4.0.3 Gecko v v X
Opera Mini — 7.0 Presto v X X
Opera Mobile — 12.00 | Presto v X X

Table 1: This table gives an Overview of different
Android mobile browsers and their support of X-
Frame-Options as well as the old CSP (oCSP) and
new — by the W3C draft specified — CSP (nCSP).

5.2 Tapjacking Defense Mechanisms

Andproid touch filter. As described in Chapter 2.2, an at-
tacker is able to let touch gestures pass through a mali-
cious application. Considering this fact, it makes sense
for an application to block touch gestures received when-
ever view’s window is obscured. For that reason the An-
droid developers have implemented such protection mech-
anisms. They can be used with a call of setFilterTouch-
esWhenObscured() or, alternatively, with the attribute an-
droid:filter Touches WhenObscured. Unfortunately, these are
not enabled by default and they are only available in some
Android versions — specifically those higher than 2.2. To
demonstrate the pressing urgency and potential harm caused
by this matter, let us provide a Google Play 14-day period
statistic from the 5th of March 2012 [5]. This measure in-
dicates that Android >2.3 version constitutes less than 70
percent of a grand total.

The presence of the countermeasure proves that Android
developers are aware of the security problem. Hence it is

possible to protect self-developed applications, such as those
responsible for online banking transactions. At the same
time, the (by default existing and attackable) home screen
is totally unprotected and thus, at the very least, it leaves
plenty ways for attacking most of the applications running
on Android operating system by means of tapjacking.

The biggest limitation of this countermeasure is that only
applications that are aware of tapjacking may protect them-
selves by using this filter. Note that even standard appli-
cations, like the phone application, do not use the Android
touch filter. Given the slow system update cycles of mobile
phone software, this will leave the majority of applications
unprotected.

Listing 3: This Listing depicts a code snippet of the
TSL implementation approach. In our TSL appli-
cation, we use a transparent button of a significant
size with the touch filter. Consequently, it is assured
that it is displayed over the whole screen.
// position and width, height of the full
// screen defense button
params. gravity = Gravity .LEFT |

Gravity .TOP;
params.width = LayoutParams.FILL PARENT;
params. height = LayoutParams.FILL_PARENT;

// retrieve a WindowManager for accessing

// the system’s window manager.

WindowManager wm = (WindowManager)
getSystemService (WINDOW_SERVICE) ;

// adds a child view
wm. addView (mButton, params);

Tapjacking Security Layer. The fact remains that a non-
negligible quota of Android users are prone to browserless
UI redressing attacks described the in section 2.2. For that
reason, we have developed an approach for a new security
layer. However, we were not able to fully implement it with
the existing environment, given our restricted access to the
Android operating system. The implementation problems
are caused by the limitations in the operating system; we
were able to place an application in front of another ap-
plication and not behind it. Android is open source and
therefore it can implemented by e.g. the Android team into
the kernel in the near future.

As it is shown in Figure 3, we assume that malicous and
target applications are both open. We also presume that
there is a layer between both applications?. From now on,
this layer will be called Tapjacking Security Layer (TSL).

In our approach, the TSL opens automatically once a user
fires an application. It is crucially important that it is always
in the background and remains opened until the application
in its forefront gets closed. Further, a touch gesture on the
TSL will be blocked. This can be asured by using a large
transparent button in a combination with the Android touch

2This scenario can be also applied to a layer between the ma-
licious application and the home screen. Thus, we are able
to protect a target application as well as the home screen.

Buy for
200$

Funny
Pictures

Figure 3: The security layer, which is between the
malicious application and the target application,
protects a victim against browserless tapjacking at-
tacks.

filter — a code snippet of our implementation is given in
Listing 3.

All in all, this assures that no touch gesture on part of a
victim will be unintentionally forwarded to another applica-
tion. Therefore, classic clickjacking-related browserless at-
tack scenarios can no longer be carried out. Besides, one
can also say that the given in-built mitigation in later OS
versions with the Android touch filter is no longer required
This can be obtained through the use of TLS and not only
fixed to the secured elements (by the developers of each in-
dividual application); nevertheless, we still need the touch
filter feature for the TLS.

6. CONCLUSION AND OUTLOOK

In Chapter 2, we have described the exploits and vulnera-
bilities regarding UI attacks on Android devices and 3. As
part of our general contribution, we have clarified which at-
tacks can be carried out against Web browsers natively im-
plemented in Android: Most of the existing attacks can be
used with very little effort. Chapter 4 introduced a novel
browserless Ul redressing attack. The showcased scenario
gives an attacker a powerful option of completing malicious
actions vitally with the help of the home screen. Attempting
phone calls without having any privileges for them should
be pinpointed as one of the key examples.

Moving forward, we described important countermeasures
against the previously presented attacks. We discussed in
detail which browser-based UI redressing mitigation tech-
niques exist and how they can be used; this includes
JavaScript-based frame busters and the HTTP header X-
Frame-Options as well as X-Content-Security-Policy.

Based on the ideas of the concepts highlighted above, we
have introduced a new security layer against tapjacking at-
tacks. Unfortunately, our invention cannot be fully imple-
mented without the support from the Android developers.
We think that this concept, which can be integrated into An-
droid’s kernel, will be a more reliable countermeasure than
Android touch filter, which will only protect security-aware
implementations.

In the outlook one shall wonder how Ul redressing attacks
are supposed to be mitigated in the future. Given the fact
that HTML5 and CSS3 drafts are partially implemented in
Web browsers, the field of attacks will continuously expand.
Thus, it is probable that we will witness a long-lasting ’cat
and mouse game’ of fixing and breaking Web security fea-
tures. Having taken a closer look at the browserless tap-
jacking attack, we must recommend that vendors of security
software (especially those providing anti-virus products) ur-
gently implement a functionality like our Tapjacking Secu-
rity Layer and effectively gain better protection for currently
available Android operating systems.

7. REFERENCES

[1] Ruderman, J.: Bug 154957 - iframe content
background defaults to transparent. https:
//bugzilla.mozilla.org/show_bug.cgi?id=154957
(2002)

[2] Hansen, R., Grossman, J.: Clickjacking attack.
http://www.sectheory.com/clickjacking.htm (2008)

[3] Rydstedt, G., Bursztein, E., Boneh, D.: Framing
attacks on smart phones and dumb routers:
Tap-jacking and geo-localization. In: in Usenix
Workshop on Offensive Technologies (wOOt 2010).
(2010)

[4] Gartner: Third quarter of 2011.
http://www.gartner.com/it/page.jsp?id=1848514
(2011)

[5] developers, A.: Platform versions — current
distribution. http://developer.android.com/
resources/dashboard/platform-versions.html
(2011, 2012)

[6] Niemietz, M.: Ui redressing: Attacks and
countermeasures revisited. In: CONFidence 2011,
http://data.proidea.org.pl/confidence/9edycja/
materialy/prezentacje/MarcusNiemietz.pdf (2011)

[7] SophosLabs: Facebook worm - "likejacking”.
http://nakedsecurity.sophos.com/2010/05/31/
facebook-1likejacking-worm/ (2010)

[8] Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns,
M.: On the fragility and limitations of current
browser-provided clickjacking protection schemes. In:
in Usenix Workshop on Offensive Technologies (wOOt
2012). (2012)

[9] Bordi, E.: Proof of concept - cursorjacking (noscript).
http://static.vulnerability.fr/noscript-
cursorjacking.html (2012)

[10] Valotta, R.: Cookiejacking.
https://sites.google.com/site/tentacoloviola/
(2011)

[11] Kotowicz, K.: Filejacking: How to make a file server
from your browser (with html5 of course).
http://blog.kotowicz.net/2011/04/how-to-make-
file-server-from-your.html (2011)

[12] Raskin, A.: Tabnabbing: A new type of phishing
attack. http://www.azarask.in/blog/post/a-new-
type-of-phishing-attack/ (2011)

[13] Huang, L.S., Jackson, C.: Clickjacking attacks
unresolved. Technical report, Carnegie Mellon
University (2011)

[14] Richardson, D.: Tapjacking.
http:
//blog.mylookout.com/look-10-007-tapjacking/
(2010)

[15] Mannino, J.: Revisiting android tapjacking.
http://blog.nvisiumsecurity.com/2011/05/
revisiting-android-tapjacking.html (2011)

[16] developers, A.: Android
notificationmanagerservice.java.
http://source-android.frandroid.com/frameworks/
base/services/java/com/android/server/
NotificationManagerService.java (2011)

[17] Wei, J.: Indefinite toast hack.
http://thinkandroid.wordpress.com/2010/02/19/
indefinite-toast-hack/ (2010)

[18] Google: Introducing google play: All your
entertainment, anywhere you go.
http://googleblog.blogspot.de/2012/03/
introducing-google-play-all-your.html (2012)

[19] developers, A.: Intent.
http://developer.android.com/reference/android/
content/Intent.html (2012)

[20] Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.:
Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In: in IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010). (2010)

[21] Detlefsen, A., Li, J., Schmidt, C., Crawford, B.:
Clickjacking defense.
https://www.codemagi.com/blog/post/194 (2010)

[22] Alexa: Alexa top 500 global sites.
http://www.alexa.com/topsites (2012)

[23] Lawrence, E.: Internet explorer 8 security part vii:
Clickjacking defenses. http:
//blogs.msdn.com/b/ie/archive/2009/01/27/ie8~
security-part-vii-clickjacking-defenses.aspx
(2009)

[24] Sterne, B.: Content security policy.
http://people.mozilla.org/“bsterne/content-
security-policy/ (2011)

[25] Consortium, W.W.W.: Content security policy — w3c
working draft. http://www.w3.org/TR/CSP/ (2011)

[26] Consortium, W.W.W.: Content security policy 1.1.
https://dvcs.w3.org/hg/content-security-policy/
raw-file/tip/csp-specification.dev.html (2012)

