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ABSTRACT

An event schema provides a formal language for representing events and modeling
knowledge about the world. Existing event schema induction methods often only
applies text features to the cluster, restricting its cluster capabilities. This article presents
a Graph-Based Event Schema Induction model to extract structural features from our
constructed graph. Inspired by in-context learning, we propose a way to conceptualize
clusters to generate event schemas. We evaluated the clustering experiment using
the Adjusted Rand Index (ARI), normalized mutual information (NMI), accuracy
(ACC), and BCubed-F1 metrics and generated event schemas based on overlap ratio
and acceptable ratio. The experimental results show that our method has shown
improvement in terms of clustering effectiveness, and the generated event schemas
achieved highly acceptable ratio.

Subjects Data Mining and Machine Learning, Natural Language and Speech, Text Mining,
Sentiment Analysis, Neural Networks
Keywords Event schema induction, Open-domain, Large language model, In-context learning

INTRODUCTION

An event is an action or occurrence taking place at a particular time and place involving one
or more participants, which is one of the basic units for human beings to understand and
experience the world (Jackendoff, 1992), such as arrest, bombing, and election. To represent
events and model the world event knowledge, an event schema provides a conceptual,
structural and formal language. Typically, an event schema is represented as an event type
and a set of slots, where slots denote the roles involved in the event. For example, “Type:
bombing, Slots: perpetrator, victim, target, instrument” (Chambers & Jurafsky, 2011).

However, event schemas are constructed with the assistance of experts, and the
annotation process is expensive and time-consuming, such as Message Understanding
Conference (MUCQC) (Chinchor, Hirschman ¢ Lewis, 1993), Automatic Content Extraction
(ACE) (Doddington et al., 2004) and TAC-KBP (Ji & Grishman, 2011). Since events are
open-ended, new event types emerge in different domains. Therefore, we require event
schema induction, to automatically generate event schemas of high quality and broad
coverage.

Due to the openness, diversity, and sparsity of events in the real world, generating event
schemas poses significant challenges. Firstly, there are numerous events, and new events
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are constantly emerging. Secondly, events in different domains exhibit diversity; similar
events may have various linguistic expressions, and the semantics of event arguments could
denote different events. Finally, event representations are often incomplete and lack event
arguments.

To achieve event schema induction, mainstream methods can be divided into
two categories: representation learning and clustering-based methods (Chambers &
Jurafsky, 2011; Yuan et al., 2018; Sha et al., 2016), and probabilistic graphical model-based
methods (Cheung, Poon & Vanderwende, 2013; Chambers, 2013; Nguyen et al., 2015; Liu,
Huang ¢ Zhang, 2019). These methods often adopt the bag-of-words representation, which
lacks accuracy.

Some studies (Li ef al., 2021; Jin, Li ¢ Ji, 2022) proposed the concept of “complex event
schema”, a narrative event schema containing temporal order and multi-hop theoretical
relations. It allows tracking event relations based on time, location, and evidence within an
article. However, these studies typically operate at the document level, focusing more on
the argument relations between events, and are unsuitable for short texts at the sentence
level.

For sentence-level event type discovery models, Shen et al. (2021) defined event in the
form of <predicate, object head>. It acquires a unified vector representation using a latent
generative model and performs clustering to obtain event clusters. Although it can discover
event types from the corpus, it cannot automatically generate the event schemas.

To address the limitations of Shen ef al. (2021), we propose a Graph-based model for
Event Schema Induction (GESI). We divide the task of event schema induction into two
subtasks: clustering and conceptualization.

The clustering task is utilized to discover similar events. Improving the effectiveness
of a clustering model depends heavily on mining more features. With the use of diverse
knowledge sources (Speer, Chin ¢ Havasi, 2017), we discover a rich graph-based event
feature to be extracted. Our model extracts each sentence’s predicate verbs and entity
nouns as graph nodes and builds explicit connections between nodes. Moreover, utilizing
knowledge sources can reveal more implicit connections. We assume that similar
events have similar structural features. Inspired by Jin, Li ¢ Ji (2022), we use Graph
Autoencoder (Kipf ¢» Welling, 2016) to encode structural features to discover similar
events. Thereby enhancing the effectiveness of event clustering models.

The conceptualization task is a generalization of similar events, generating concept words
from a collection of instance words. With the increase in model size and the expansion of
corpus (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022),
large language models have demonstrated a new ability of in-context learning (Min et al.,
2022). Many studies (Wei et al., 2022b; Wei et al., 2022a) show that in-context learning has
become a new paradigm of natural language processing and can perform complex tasks
by displaying a few examples composed of context. We discover that using in-context
learning can help achieve event conceptualization tasks. Thus, we designed a prompt for
event conceptualization that includes several demonstration examples, conceptualizing
event clusters and generating event schemas, each consisting of an event type and multiple
slots.
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During a large-scale protest in a major city, the police
had to use their guns to safely arrest the protester.
During a violent riot in the downtown area, the cop used

his spontoon to subdue the rebel who was inciting violence.
Clustering

{arrest, city, police, spontoon, rebel}

{subdue, downtown, cop, guns, protester}

Conceptualization

Event Schema

Type: Arrest
Slots: arrester: police/cop, arrestee: protester/subdue,
reason: protest/riot, location: city/downtown

Figure 1 Clustering: discovery of similar events; conceptualization: conceptualizing similar events to
generate event schemas, such as “Type: Arrest, slots: arrester, arrestee, reason, location”, and append
entity words of each slot from the corpus.

Full-size G4l DOI: 10.7717/peerjcs.2155/fig-1

As shown in Fig. 1. The corpus is passed through a clustering task to obtain multiple
clusters, where each cluster element is a set of words, with red denoting predicate verbs
and blue denoting entity nouns. Then, the clusters go through a conceptualization task to
generate an event schema consisting of an event type and multiple slots, with each slot also
follows multiple entity nouns.

We conducted event mention clustering experiments, and compared with other models
based on the four clustering metrics. The results show that our model is the highest in
all metrics on the ACE 2005 and MAVEN-ERE datasets. We also conducted ablation
experiments to prove the efficacy of different components within our model. Finally we
evaluated the quality of the generated event schema by overlap ratio and acceptable ratio.
although the generated event schemas exhibit less-than-ideal overlap ratio, they are still
highly acceptable ratio.

The main contributions of this study are:
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e We propose a graph construction method and extract event structure features from the
graph to improve the clustering effect of the model.

e We are not limited to clustering for the event schema induction task and the
conceptualization of similar events is well done with the help of in-context learning
to generate event schema directly.

e We experimentally validate the effectiveness of the method. The structural features
enhance the clustering model. And the generated event schemas have high Acceptable
Ratio.

RELATED WORKS

Early studies on event schema induction required knowledge of the templates and labeled
datasets, including rule-based systems (Chinchor, Hirschman & Lewis, 1993; Rau, Krupka
& Jacobs, 1992) and supervised classifiers (Chieu, Ng ¢ Lee, 2003; Bunescu ¢ Mooney, 2004;
Patwardhan & Riloff, 2009). These classifiers utilized the surrounding context of the labeled
examples for characteristics like nearby tokens, document position, syntax, named entities,
semantic classes, and discourse relations. There are also ways (Ji & Grishman, 2008) to
enhance labeled data with unlabeled data, by utilizing information retrieval to acquire a
broader range of background knowledge from unlabeled knowledge sources.

Subsequently, people started using weakly supervised approaches to reduce the need for
annotated data, typically by clustering documents specific to an event and extracting
common word patterns as extractors (Riloff ¢ Schmelzenbach, 1998; Sudo, Sekine ¢
Grishman, 2003; Riloff, Wiebe & Phillips, 2005; Patwardhan ¢ Riloff, 2007). Filatova,
Hatzivassiloglou ¢ McKeown (2006) assimilated named entities into pattern learning to
approximate unspecified semantic roles. However, most methods still require the manual
definition of templates and their slots.

In contrast, to remove these data assumptions, learning instead from a corpus of
unknown events and unclustered documents without seed examples. People began to
explore clustering methods based on representation learning and methods based on
probabilistic graphical models.

In clustering methods for representation learning, Chambers ¢ Jurafsky (2011) induced
event schema as sets of linked events associated with semantic roles. They used pointwise
mutual information and agglomerative clustering algorithms to cluster and extract role
fillers from specific documents. Yuan et al. (2018) represented argument roles in event
schema as <predicate:role:label> and learned embedding representations of argument
role schema using entity co-occurrence information for clustering. They manually selected
a subset of argument roles to construct event schema. Sha et al. (2016) proposed a joint
entity-driven model to learn templates and slots simultaneously. They used the normalized
cut criteria in image segmentation to divide the entities into template and slot clusters. Shen
et al. (2021) extracted corpus data in the form of <predicate, object head> pairs, filtered
and disambiguated it, generated respective vector representations using pre-trained BERT
(Devlin et al., 2019) models, and learned a unified vector representation in a latent spherical
space for clustering event types. Representation learning clustering methods mainly use
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entity co-occurrence information to learn vector representations of argument roles and
clusters to obtain event schemas. The disadvantage of this method is that it requires a
reasonable definition of thematic role expressions or a large amount of high-quality data.

In probabilistic generative models, Cheung, Poon & Vanderwende (2013) used
probabilistic methods to learn templates and event state transitions from text. Chambers
(2013) induced schema by combining generative models with entity coreference. Liu, Huang
& Zhang (2019) employed a neural latent variable model based on variational autoencoders
to model event-type vectors and redundant information from entity mentions. They
combined this with pre-trained ELMo language models (Blei, Ng & Jordan, 2003) to
generate semantic features for entities and clustered entities in documents into several
argument roles. Probabilistic generative methods mainly use generative or variational
autoencoder models to learn event templates, argument roles, or event state transitions.
The disadvantage of this method is that it uses entity clusters to represent argument roles,
which have poor intuitiveness and interpretability.

Furthermore, Li et al. (2021) introduced the concept of “complex event schema”, a
comprehensive graph schema that includes temporal order and multi-hop causal relations.
It allows tracking the relationships between events in an article based on time, location,
and arguments. They employed an autoregressive graph generation model to model the
first-order dependencies of event nodes concerning their neighbors. Jin, Li & Ji (2022)
proposed a method for encoding global graph context using dual Graph Autoencoder to
generate event skeletons. These methods primarily focus on modeling the relationships
between multiple events within an article. The complex event schema falls under the
category of narrative event schema. We mainly study event schema induction within the
context of atomic event schema, with a concentration on discovering identical events and
inducing event schemas.

In addition, there have been studies (Wu et al., 2019; Zhao et al., 2021; Huang ¢ Ji, 2020)
on open relation type extraction tasks that utilize known types to facilitate the learning of
a similarity measure Subsequently, known type data is incorporated for joint training in
the clustering process of unknown types. However, this method relies on well-annotated
known types and only applies to discovering unknown types within a specific domain.

Our study is based on representation learning clustering methods. Unlike previous
works, we divide the task into two subtasks: clustering and conceptualization. For the
clustering task, our goal is to improve the clustering effect, thus extracting more event
features. We attempt to discover structural information from the graph we constructed.
Inspired by Jin, Li ¢ Ji (2022), we use Graph Autoencoder to encode this feature. For the
conceptualization task, we drew inspiration from in-context learning. Accordingly, we
propose a method to conceptualize clusters for the generation of event schemas.

PROBLEM DEFINITION

Formally, given an unlabeled corpus, which has a set of event sentences S ={S1, S5, ..., S,},
where each sentence S; = {wy,w,,...,w,,} contains m words and all words w; € W, each
sentence typically includes one predicate verbs w, € W and one or more entity nouns
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Figure 2 Overview of our event schema induction framework. The input is a sentence-level corpus. To
cluster, we use BERT and Graph Autoencoder as two feature encoders. Final conceptualization of clusters
with the help of ICL (In-context learning). Event Schema is our final result.

Full-size Gal DOI: 10.7717/peerjcs.2155/fig-2

we € W. W represents the set of words in all sentences. We divide task into two subtasks:
(1) Clustering: The goal is to discover k clusters x = {x,x,,...,x¢} from n sentences.
(2) Conceptualization: The goal is to conceptualize k clusters as k event schemas

¥y ={y1,¥2,...,¥k}. Each event schema y; is a text template consisting of an event type
and multiple slots. Each slot can correspond to multiple entity words.

METHODOLOGY

Our framework is based on representation learning clustering methods, which takes a
sentence-level corpus as input and aims to output event schemas. The framework, as
shown in Fig. 2, mainly consists of the following components: (1) Word Extraction to
extract predicate verbs and entity nouns from the unlabeled corpus using dependency
parsers, named entity recognition, filtering, and disambiguation techniques. Each sentence
forms a word set {w,,, We,, W,,, ...}, where w, represents the predicate verb and w,, represents
the entity noun. These word sets can be represented as subgraphs; (2) Graph Builder to
connect all the subgraphs using the external knowledge base ConceptNet, forming a graph
G; (3) Text Encoder to encode the semantic and contextual information of each word
and generates h, and h,. Also as the feature matrix X for the graph encoder; (4) Graph
Encoder to encode the structural feature of each subgraph in the graph. It utilizes a Graph
Autoencoder and unsupervised training methods to iteratively reconstruct the adjacency
matrix A to learn the graph structure; (5) Clustering to unify all vector features from
both the text encoder and graph encoder into a vector space and performs clustering; (6)
Conceptualization to conceptualize each cluster as corresponding event schema by ICL

(in-context learning) of large language model.
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'We use OntoNotes sense grouping as our
sense dictionary: https:/verbs.colorado.
edu/html_groupings/

Word extraction

Word extraction is divided into three steps: (1) utilizing dependency parser and named
reality body recognition to obtain candidate word sets; (2) filtering word sets based on
salience formula; (3) word sense disambiguation (WSD).

Extract candidate word sets

We adopted a corpus preprocessing method proposed by Shen et al. (2021), which utilizes a
dependency parser to analyze sentences S; and obtain the dependency parse tree, identifying
the predicate verb w, and its target noun w,, as the sentence’s subject. Applying this method
to all sentences in the corpus, we extracted a collection of < w,,, w,, > pairs along with their
frequencies. Additionally, we incorporated named entity recognition into this approach to
extract other entity nouns {w,,,w,,, ..., W, } from the sentences, resulting in a set of entity
nouns wWe = {W,, We,, ..., W, } that are associated with the predicate w,. Finally, in each
sentence, we extract a candidate word set {w,, w,,, w,,,...}.

Salience-based filter

The quality of the extracted predicate verbs and entity nouns varies significantly. Some are
overly general and lack informative value, while others are infrequent and lack inductive
value. We employed a formula (Shen et al., 2021) to measure the significance of words and
filter their quality:

Nps
bsf (w

where freq(w) is the frequency of word w, N is the number of background sentences,

Salience(w) = (1 +log(freq(w))2)log

and bsf (w) is the background sentence frequency of word w. This formula is based on
the TF-IDF concept, considering two factors: the word should appear frequently in our
corpus and not appear too frequently in large-scale general-domain background corpora.
We selected the top 80% most significant words as the result.

Word sense disambiguation

To address the issue of polysemy in predicate verbs, we introduced a sense dictionary'
and combined it with the word sense disambiguation model LMGC (Wahle et al., 2021).
We input the instances of the predicate in the corpus, denoted as S;, along with example
sentences S; for each verb sense into the model. The model outputs the most similar
example sentence corresponding to the current predicate sense.

Graph builder
To enhance the effectiveness of clustering models, more features are usually required.
We find a rich graph-based event feature that can be extracted using external knowledge
sources (Fan et al., 2022). In this section we describe how we construct the features of the
graph.

We transform each {w,,w,, ,w,,,...} set into a subgraph G;. Each word corresponds to
a node. Edges (w,,w,) connecting predicate verbs w, with entity nouns w,, indicating the
association between the predicate verb and the entity noun.
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We process all subgraphs Gj as input and generate a graph G using Algorithm 1. The
first step of the algorithm is to concatenate all subgraphs. We iterate over each node
in the subgraph set {G1,G,..., Gy} and store the nodes as keys in the dictionary. The
corresponding values are lists that store the sentence IDs where the key node appears.
Then, we use a list to store all the edges.

Algorithm 1 : Graph Builder.

Input: Subgraph list [Gy, Gz, ..., Gnl, Gi = [nodes;, links;];
where nodes; is a list, contains predicate verb and entity nouns of sentence S;, links; is a lists, each element consists of

two node ids, indicating that there is a correlation between the two;
1: G« @;
2: nodes <— &; // A hashmap, key is str, value is list.
3: links < @; // Alist.
4: // Stepl. Concat all subgraphs
5: fori < 0tonedo
6: forj < 0to Len(G;[0]) do
7 node = G;[0];;
8 if node not in nodes then
9 nodes < Put (node,[i]);

10: else

11: nodes < Append (links, G;[1]);
12: end if

13:  end for

14:  links <— Append (links, Gi[1])

15: end for

16: // Step2. Query and link concept node by ConceptNet WebAPI
17: fori < 0 to Len(nodes) do

18:  node,sentlds = Entry(nodes;);

19:  edges = Query(node); [/ request WebAPI.

20: forj < 0 to Len(edges) do

21: conceptNode = edgesi[end];

22: if conceptNode not in nodes then

23: nodes < PutlfAbsent (conceptNode);
24: links <— Append([node, conceptNode]);
25: end if

26: end for

27: end for

28: G =[nodes, links]

Return: G;

The second step of the algorithm is to iterate the previous nodes. Each node serves as a
query keyword to request responses from the ConceptNet WebAPI. The responses from
the API provide the edges associated with the current node in ConceptNet. These edges
contain information about related words and their relationships with the current node.
The official documentation of ConceptNet WebAPI (https:/github.com/commonsense/
conceptnet5Aviki/Relations) includes 34 types of relationships. We exclude unreasonable
associations, such as “ExternalURL” and “Antonym”. We iterate over these edges, extract
the associated words (concept words), add them to the set, and append their corresponding
edges to the list.

Finally, we merge all nodes and links to form the result G.

Text encoder
To extract features for each word w (predicate verb w, or entity noun w,), the most
basic method is to encode the text. Two distinct features can be computed: contextual
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and semantic features: (1) Contextual feature refers to the information surrounding a
particular word or sequence of words within a text. (2) Semantic feature denotes the
meaning attributes associated with a specific word. We computed semantic features to
represent the meaning, as words may have different senses. Finally, these contextual and
semantic features are aggregated to form the textual feature representation for the word.

For the textual feature. Firstly, we locate the word w in the corpus. During the graph
building, each node records the sentences in which the current word appears. Next, we
identify the position of the word w in the token sequence of each sentence. We extract the
M tokens before and after the word w as the context. We input the context token sequence
into BERT and take the CLS token as the contextual feature hiv”fi for word w in the ith
sentence.

For the semantic feature. Firstly, vectorize the interpretation of each word in the sense
dictionary. and then input it into BERT, taking CLS as the semantic features h’.

Finally, we average all the contextual features of word w to obtain h":

B =
Graph autoencoder

This section will explain how to use an unsupervised graph neural network model to encode
structural features for each node in the graph G. We use the Graph Autoencoder model
for unsupervised graph representation learning. Figure 3 shows that graph autoencoder
consists of an encoder and a decoder. The encoder learns hidden representations h, of
nodes from the raw graph data while the decoder reconstructs the original graph structure
from the hidden representations h;:

h, = ARELUAXW®")W!

where the adjacency matrix A and the feature matrix X are the inputs to the model.
h, e RN xd N is the number of nodes. d is the dimension. A=D:iAD 3 represents the
symmetrically normalized adjacency matrix. And W° and W! are the GCN parameters
that need to be learned. For the adjacency matrix A, we can obtain it directly from the
graph G.

For the feature matrix X, we use H2" obtained from the text encoder as the feature X;.

For the concept w, without H., we use a context replacement method. We randomly
sample a neighboring node of the concept word w,. Then, we replace the instance word
wp in sentence Sy = {w1, wa, ..., Wp,...,w,} with the concept word w. to generate a pseudo-
sentence S. = {wy, w2, ..., W, ..., wy,}. This pseudo-sentence is regarded as the context for
the concept word wj,. Finally, the pseudo-sentence and the concept word are fed into the
text encoder, and the resulting output is used as the feature X;.

Then, the decoder reconstructs the adjacency matrix through the inner product of the
embedding vectors A:

A=o(hh]).

In Graph Autoencoder, our goal is to optimize the parameters W° and W! of the encoder
to reconstruct the adjacency matrix A using the decoder, aiming to make it as similar
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Figure 3 The architecture of Graph Autoencoder module.
Full-size Gal DOI: 10.7717/peerjcs.2155/fig-3

as possible to the original adjacency matrix A. Since the adjacency matrix determines
the graph’s structure, the closer the reconstructed adjacency matrix, based on the node
embedding vectors, is to the original adjacency matrix, the better the node embedding
vectors represent the graph structure.

The loss function of Graph Autoencoder is defined as follows:

1
La=—17 D (ylogy+(1~y)log(1-7))

where y denotes an element in the original adjacency matrix A, taking values of 0 or 1. A
value of 1 indicates the presence of an edge between nodes, whereas 0 indicates its absence.
¢ denotes an element within the reconstructed adjacency matrix A. By minimizing the
cross-entropy loss between the reconstructed adjacency matrix and the original adjacency
matrix, the Graph Autoencoder model can learn hidden node representations that preserve
the structural information of the graph. We utilize this model to learn node representations
in the context of the graph.

Clustering

The goal of this section is to cluster the word set {w,, W, ,W,,,...} as a clustering unit. The
feature representations required for word sets are categorized into three types, namely verb
textual features h,, entity noun textual feature h, and structural features h,.

To cluster the three types of features, it is not feasible to simply aggregate them as
[h,;h.;h;]. We need to unify all the features into the same vector space. To achieve this, we
adopted a Latent Space Generative Model (Shen et al., 2021), which can unify two feature
spaces and guide the clustering process based on the clustering objective. The clustering
process can benefit from the well-separated structure in the latent space, resulting in mutual
reinforcement. We modified this network model to handle the three types of features.

The model has two objective functions. The first objective is the reconstruct objective
Orec so that the model retains as much of the semantics of the input space as possible:

N

Orec = 3 (coshy, g fy (1)) + <05, g f (b)) + costhy g (f (hy,))))

i=1
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where N denotes the number of cluster units. g,,g.,¢; denotes the deep neural network.
Joint learning mapping functions f, :h, - Z, f, :h, — Z and f; : h, — Z.Z is the vector
space. The second objective is the clustering-promoting objective Ogjys. Assumes the
existence of a spherical potential space with K clusters. Each cluster in this space corresponds
to the same events and is associated with a von Mises-Fisher (vMF) distribution (Banerjee
et al., 2005).

The vMF distribution of the event cluster is determined by the mean vector ¢, and
the goal of the model is to learn the latent space with K well-separated cluster structures.
Specifically, an expectation—maximization algorithm p(-) is used to sharpen the posterior
distribution of each word set. The cluster soft assignment g(-) for each word set is computed
and used to update the model during the maximization step. So the clustering objective
function Oy can be obtained as follows:

N K
Oaus=Y_ Y _qlck|zi)logp(ci|z)

i=1 k=1
where N is the number of word sets, K is the number of clusters. ¢, is sampled from the
joint distribution and the implicit vector z; is generated from the vMF distribution. We
first train the model during training using only the first objective function. Then, we jointly
train the model using all the objective functions O:

O= Orec + )LOclus

where the hyperparameter A is used to balance the two objective functions. After clustering
with this model, we obtain k clusters. We keep each group’s top m cluster elements, and

each cluster element is mapped back to the original set {w,,w,,,w,,, ...} for event schema
induction.

Conceptualization

To conceptualize clusters and generate event schemas, traditional methods manually cause
possible slots from clustered event mentions or simply divide slots into Person, Org, Physical
Object, or Other and then classify entity words. The disadvantage is the high cost associated
with manual construction.

As the scale of models and corpus expands, large language models like GPT-3 are trained
on amounts of internet text data. They predict and generate the next token based on a
given context. The combination of large datasets and high-parameter language models
has produced compelling language models and developed a new ability known as in-
context learning (Min et al., 2022), which has become a new paradigm in natural language
processing. Excellent results can be achieved by demonstrating examples composed of a
few contexts.

So, to conceptualize each cluster into a corresponding event schema, we use in-context
learning to model conceptualization as an in-context generation process.

Specifically, we design a prompt as shown in Table 1. The “Example” section includes five
event sentences describing the Bombing event, the event type, and slots. For each slot, a set
of words is appended to indicate the specific entities referred to by that slot in the sentences
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Table 1 Illustration of in-context learning. Taking the demonstration example and a target as the input,
large language models are responsible for making predictions.

Prompt
Give you multiple sentences to generate an event schema.
Examples:

Example Sentences: {S,,S,, ...}

EventType: Bombing

Slots: perpetrator: terrorist group/individuals;
target: building/infrastructure/vehicle;
casualty: deaths/injuries;

location: country/city;

Target Now, generate a event schema by these sentences:
{5,,5;....55}

above. The sentences provided in the “Target” section are the sentences to be induced.
We assume that each cluster contains only one event type, so in the “Target” section, we
require it to generate one event schema at a time. In this process, the granularity of event
schemas depends on the clustering algorithm and parameters used. Fine-grained settings
may generate event schemas corresponding to specific event types, while coarse-grained
settings may generate more general event schemas.

EXPERIMENTS

We conduct experiments for the clustering task and the event schema induction
(conceptualization) task, respectively, and we describe the datasets used, the evaluation
metrics, the experimental setting, and the baseline models. For the clustering task, we
compare all event clustering related baseline class models. Then, ablation experiments
were conducted to demonstrate the effectiveness of each module. For the event schema
induction task, we show and assess the event schemas generated.

In the following experiments, we refer to our model as GESI to stand for “Graph-Based
Event Schema Induction in Open-Domain Corpus.”

Datasets and evaluation metric

Datasets. We validated the effectiveness of the GESI model on the ACE 2005 (Doddington
et al., 2004) and MAVEN-ERE (Wang et al., 2022) datasets. For each dataset, we followed
the same preprocessing steps described in previous work (Lin ef al., 2020; Li, Ji ¢ Han,
2021). The ACE dataset consists of 17,172 sentences and covers 33 event types, while the
MAVEN-ERE dataset consists of 29,748 sentences and covers 167 event types.

Cluster Metrics. The following metrics for cluster quality evaluation are adopted: (1) NMI
denotes the normalized mutual information between two cluster assignments. (2) ARI
(Hubert & Arabie, 1985) measures the similarity between two cluster assignments based
on the number of pairs in the same/different clusters. (3) ACC measures the clustering
quality by finding the maximal matching between the predicted clusters and the ground
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truth clusters using the Jonker-Volgenant algorithm (Crouse, 2016). (4) BCubed-F1 (Bagga
¢ Baldwin, 1998) estimates the quality of the generated cluster assignment by aggregating
the precision and recall of each element.

Induction metrics. Evaluating the goodness of event schemas under the labeled dataset is
essential to determine the degree of matching between event types and event slots. We used
two metrics to evaluate the event schemas. Two metrics that can be applied to event types
and event slots, respectively. (1) Overlap ratio: The overlap ratio of event types refer to the
proportion of correct event types to all generated event types. The overlap ratio of event
slots refer to the mean value of the proportion of correct event slots among the generated
event roles; (2) Acceptable ratio: The acceptable ratio of event types refer to the proportion
of acceptable event types to all generated event types. The Acceptable Ratio of event slots
refer to the mean value of the proportion of acceptable event slots among the generated
event roles.

Experimental setting

Our model comprises six main components: (1) Word Extraction: We use the
en_core_web_lg model from spaCy 3.5 for dependency parsing and named entity
recognition, and then utilize a verb sense dictionary based on OntoNotes sense grouping
to filter irrelevant meanings and disambiguation. This dictionary is based on OntoNotes
sense grouping. (2) Graph builder: We employ the WebAPI of ConceptNet, an external
knowledge base, to establish word connections. (3) Text encoder: We adopt the bert-base-
uncased model from BERT to encode the original text. (4) Graph encoder: We employ
Graph Autoencoder, an unsupervised graph embedding learning model, with the input
dimensions of the first GCN layer set to 512 and the second layer to 256. The learning
rate is set to 0.001, and the training epoch is set to 250. (5) Clustering model: We utilize
the Latent Space Generative Model for feature unification and clustering. The dimension
parameters are set to 1000-2000-1000-100, and the aggregation strategy is based on the
product method. (6) Conceptualization: We utilize the API provided by Claude to access
its model, which is a large-scale PLM similar to GPT-3.

Baselines

We validate the effectiveness of our proposed GESI using the following baselines. (1)
Triframes (Ustalov et al., 2018): A graph-based clustering algorithm that constructs a k-NN
event mention graph and uses a fuzzy graph clustering algorithm WATSET (Ustalov et al.,
2019) to generate the clusters. (2) Joint constrained spectral clustering (JCSC) (Huang et al.,
2016): A joint constrained spectral clustering method that iteratively refines the clustering
result with a constraint function to enforce inter-dependent predicates and objects to have
coherent clusters. (3) ETypeClus (Shen et al., 2021): A latent space joint embedding and
clustering algorithm.

Results of event mention clustering
Tables 2 and 3 present our model’s comparative clustering evaluation results and the
baseline model on the ACE 2005 and MAVEN-ERE event datasets, respectively. All values
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Table 2 Event mention clustering results on dataset ACE 2005.

Methods ACE 2005

ARI (std) NMI (std) ACC (std) BCubed-F1 (std)
Triframes 19.35 (6.60) 36.38 (4.91) — 38.91 (2.36)
JCSC 36.10 (4.96) 49.50 (2.70) 46.17 (3.64) 43.83 (3.17)
ETypeClus 40.78 (3.20) 57.57 (2.40) 48.35 (2.55) 51.58 (2.50)
GESI 54.08 (1.01) 62.02 (0.75) 50.01 (0.83) 58.70 (1.52)

Table 3 Event mention clustering results on dataset MAVEN-ERE.

Methods MAVEN-ERE

ARI (std) NMI (std) ACC (std) BCubed-F1 (std)
Triframes 22.47 (3.57) 41.09 (3.44) — 44.59 (2.82)
JCSC 40.54 (2.39) 54.45 (1.57) 49.16 (1.62) 47.72 (1.33)
ETypeClus 47.62 (1.69) 60.79 (1.54) 51.72 (0.76) 52.09 (0.86)
GESI 55.61 (1.05) 67.51 (1.30) 54.31 (1.78) 57.49 (0.66)

are expressed in percentages. We conducted each method ten times, presenting the final
results as the average and standard deviation for each metric. Please note that the ACC
metric does not apply to Triframes as it assumes an equal number of predicted and ground
truth results in clusters.

The comparative results indicate that, on the ACE 2005 dataset, compared to the
best-performing model, GESI achieved improvements of 13.3%, 4.45%, 1.66%, and 7.12%
in ARI, NMI, ACC, and BCubed-F1, respectively. On the MAVEN-ERE dataset, compared
to the best-performing model, GESI demonstrated improvements of 7.99%, 6.72%, 2.59%,
and 5.4% in ARI, NMI, ACC, and BCubed-F1, respectively.

Ablation study of event mention clustering

To further verify the effectiveness of filtering, disambiguation, and graph autoencoders in
the event induction task, we conducted ablation experiments on the datasets ACE 2005
and MAVEN-ERE with the complete model and several variants to better understand their
relative importance.

e w/0 h;: Removing the graph autoencoder model means that graph structure embedding
features are not generated, only text embedding features of predicates and entity nouns.

e w/o Filter: Removing the filter means that the significance of the extracted words will
not be considered, and the quality of the words may vary.

e w/o0 WSD: Removing the word sense disambiguation model means that the polysemy
problem of predicate verbs will not be considered, and polysemous words will be
clustered as the same word.

During a series of experiments, removing a certain part and keeping the rest unchanged,
the following observations can be drawn from Tables 4 and 5.
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Table 4 Ablation results on dataset ACE 2005.

Ablation ACE 2005

ARI (std) NMI (std) ACC (std) BCubed-F1 (std)
GESI 54.08 (1.01) 62.02 (0.75) 50.01 (0.83) 58.70 (1.52)
w/o h, 50.08 (0.99) 56.99 (1.02) 46.70 (1.30) 52.96 (1.17)
w/o Filter 52.40 (1.38) 57.46 (1.37) 48.24 (1.17) 53.91 (1.25)
w/o WSD 51.24 (0.85) 57.14 (0.84) 47.16 (0.75) 55.35 (1.34)
Table 5 Ablation results on dataset MAVEN-ERE.
Ablation MAVEN-ERE

ARI (std) NMI (std) ACC (std) BCubed-F1 (std)
GESI 55.61 (1.05) 67.51 (1.30) 54.31 (1.78) 57.49 (0.66)
w/oh, 44.73 (1.38) 60.88 (1.32) 46.79 (0.71) 50.72 (0.85)
w/o Filter 45.80 (0.75) 61.91 (0.84) 48.25 (0.79) 51.75 (1.30)
w/o WSD 46.79 (0.79) 62.74 (0.29) 49.62 (1.30) 52.87 (1.27)

e As can be seen from the absolute percentages of the different model evaluation metrics

in Tables 4 and 5, the highest scores are for the complete GESI model. Removing any

component of the model results in a decrease in performance, which confirms that
the inclusion of graph autoencoders, filtering, and disambiguation can all improve the

clustering ability of the model.

e From the relative changes of the different variants of the model, it can be seen that the
largest performance degradation is in w/o h;. This indicates that the structural features
generated by the graph autoencoder have a greater effect on model enhancement.

e From the comparison of each variant model with the complete GESI model, it can

be seen that the w/o Filter variant model performs better than the w/o WSD variant
model on the ACE 2005 dataset, and the opposite is true on the MAVEN-ERE dataset,
suggesting that filtering is more important than disambiguation in the presence of large

data sizes.

e In terms of the performance of the model on different datasets, for example, the variant
model w/o h;, ARI, NMI, ACC, and BCubed-F1 decreased by about 4%, 5.03%, 3.31%,
5.74% on ACE 2005 dataset. And on MAVEN-ERE dataset, ARI, NMI, ACC, and
BCubed- F1 decreased by about 10.88%, 6.63%, 7.52%, and 6.77% respectively, after
removing the graph autoencoder, of which ARI decreased more significantly. Compared
with the ACE 2005 dataset, ARI decreased more than other metrics, indicating that the

graph autoencoder significantly improved ARI for larger datasets.

In summary, each component of the model in this article contributes to the final results,

with slight variations in the performance of different components in different datasets, but
overall a positive effect enhancement, especially for the structural information generated

by the graph autocoder.
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Table 6 Sample of event schema induction.

Type: Arrest Type: Conflict

arrester: police/security officials parties involved: countries/groups
arrestee: individuals/suspects weaponry: artillery/aircraft
reason: bombing/terrorism/drug charge reason: territorial/resources
location: country/city location: country

Table 7 Sample of event schema induction that are not explicitly labeled in the dataset.

Type: Aid Type: Space Exploration
provider: countries/troops agency: NASA

recipient: civilians mission: mars rover
supplies: food/water goal: search for water
location: country launch date

Table 8 Schema induction performance result.

Method Dataset Event-type Event-argument
Overlap ratio  Acceptableratio  Overlapratio  Acceptable ratio
ETypeClus 17.16% 78.45% 6.64% 47.86%
ACE 2005
GESI 18.31% 80.14% 7.13% 48.34%
ETypeClus  MAVEN-  53.95% 79.56% 34.41% 76.70%
GESI ERE 55.63% 80.00% 36.82% 78.69%

Results of event schema induction

In Tables 6 and 7, we present sample of the results of our model’s event schema induction.
Our model successfully identifies the most true event schemas and produces highly accurate
slots and detailed entity participants. It correctly identifies most real event schemas, such
as Arrest and Conflict, and also identifies event types that are not explicitly labeled in the
dataset, such as Aid and Space Exploration. This indicates that our model is highly effective
and reliable. These results make our model well-suited for open-domain event schema
induction research and its subsequent downstream applications.

Table 8 illustrates the performance of event schema induction. We observed that in
the ACE 2005 dataset, GESI covered 18.31% of event types, with almost all uncovered
event types being deemed acceptable (80.14%). However, for event slots, only 7.13% were
covered, potentially due to the diversity and sparsity of event slots. In the MAVEN-ERE
dataset, we observed that the model performs better, likely attributed to the larger scale
of the MAVEN-ERE data, which reduced the sparsity of the data. We also conducted
experiments on clusters generated by the ETypeClus method. The experimental results
show that the method with better clustering performs better in event schema induction.
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CONCLUSIONS AND FUTURE WORK

This work explores a graph-based model for event schema induction. We divide the task
of event schema induction into two subtasks: clustering and conceptualization. In cluster
tasks, to enhance the clustering performance, we leverage external knowledge sources
to discover structural information between words and employ a graph autoencoder for
feature encoding. Experiments in event clustering show that structural features improve
clustering outcomes across four clustering metrics. In conceptualization tasks, inspired
by in-context learning, we used in-context learning to conceptualize similar events within
clusters. We evaluated quantitatively using overlap ratio and acceptable ratio. Although
the generated event schemas exhibit less-than-ideal overlap ratio, they still achieve highly
acceptable ratio.

However, there are certain limitations in our research. In the future, we suggest exploring
the following directions: (1) Using weighted or heterogeneous graphs in graph learning
may yield better results because it can show more features. (2) The clustering model
currently requires manual specification of the number of clusters. Exploring the automatic
determination of the cluster number is a worthwhile direction to pursue. (3) The framework
involves multiple sub-tasks. And joint training could reduce error propagation.
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