Теорема Ферма — Эйлера

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теорема Ферма — Эйлера (другие названия — рождественская теорема Ферма, теорема о представлении простых чисел в виде суммы двух квадратов) гласит[1]:

Любое простое число , где  — натуральное число, представимо в виде суммы квадратов двух натуральных чисел.

Иначе говоря,

где  — простое число.

В иностранной литературе это утверждение часто называют рождественской теоремой Ферма, так как она стала известна из письма Пьера Ферма, посланного 25 декабря 1640 года.

Примеры:

, , , , , .

Из этого утверждения при помощи тождества Брахмагупты выводится общее утверждение:

Натуральное число представимо в виде суммы двух квадратов (целых чисел) тогда и только тогда, когда ни одно простое число вида не входит в его разложение на простые множители в нечётной степени.

Иногда именно этот факт подразумевается под теоремой Ферма — Эйлера.

История

Впервые это утверждение обнаружено у Альбера Жирара в 1632 году. Пьер Ферма объявил в своём письме к Мерсенну (1640), что он доказал данную теорему, однако доказательство не привёл. Через 20 лет в письме к Каркави (от августа 1659 года) Ферма намекает, что доказательство основывается на методе бесконечного спуска.

Первое опубликованное доказательство методом бесконечного спуска было найдено Леонардом Эйлером между 1742 и 1747 годами. Позднее доказательства, основанные на иных идеях, дали Жозеф Лагранж, Карл Гаусс, Герман Минковский, Якобшталь и Дон Цагир. Последним приведено доказательство, состоящее из одного предложения[2].

Доказательства

Одно из самых коротких доказательств придумано немецким математиком Доном Цагиром[3]:

Инволюция конечного множества , определённая как

имеет ровно одну неподвижную точку (которая равна , если , и единственность которой следует из простоты ), так что содержит нечётное количество элементов, а значит, инволюция также имеет неподвижную точку.

Также существует доказательство через теорему Вильсона, придуманное Акселем Туэ[4].

Литература

Примечания