Schrödingerova jednačina
U kvantnoj mehanici, Šredingerova jednačina je parcijalna diferencijalna jednačina koja opisuje kako se kvantno stanje nekog fizičkog sistema menja s vremenom. Ovu jednačinu je formulisao 1925. godine, i objavio 1926, austrijski fizičar Ervin Šredinger.
U klasičnoj mehanici, jednačina kretanja je Njutnov drugi zakon, a ekvivalentne formulacije su Ojler–Lagranžove jednačine i Hamiltonove jednačine. Sve ove formulacije se koriste za rešavanje kretanja mehaničkog sistema i matematičko predviđanje stanja sistema. U kvantnoj mehanici, analogna Njutnovim zakonima je Šredingerova jednačina za kvantni sistem (obično atome, molekule i subatomske čestice). Ona nije jednostavna algebarska jednačina, nego (opšta) linearna parcijalna diferencijalna jednačina. Diferencijalna jednačina opisuje talasnu funkciju sistema, koja se takođe naziva kvantno stanje ili vektor stanja.
U standardnoj interpretaciji kvantne mehanike, valna funkcija je najkompetniji opis fizičkog sistema. Rešenja Šrodingerove jednačine opisuju ne samo molekulske, atomske, i subatomske sisteme, nego i makroskopske sisteme, možda čak i ceo svemir.[1]
Poput Njutnovog drugog zakona, Šredigerova jednačina se može matematički transformisati u druge formulacije poput Verner Hajzenbergove matrične mehanike, i Fejnmanove integralne formulacije putanja. Isto tako poput Njutnovog drugog zakona, Šredingerova jednačina opisuje vreme na način koji je nepodesan za relativističke teorije, mada je taj problem manje izražen u matričnoj mehanici i potpuno otsutan u integralnoj formulaciji putanja. Jednačina je izvedena putem parcijalnog diferenciranja standardne valne jednačine i supstituisanja relacije između momenta čestice i dužine vala asociranog sa česticom u De Brojevoj hipotezi.
Jednačina
urediVremenski zavisna jednačina
urediForma Šredingerove jednačine zavisi od fizičke situacije. Najopštija forma je vremenski zavisna Šredingerova jednačina, koja opisuje promene sistema u funkciji vremena:[2]
Vreminski zavisna Šredingerova jednačina (opšta)
gde je i imaginarna jedinica, ħ je redukovana Plankova konstanta, Ψ je valna funkcija kvantnog sistema, i je Hamiltonijanski operator (koji karakteriše totalnu energiju svake date valne funkcije i poprima različite forme u zavisnosti od situacije).
Najpoznatiji primer je nerelativistička Šredingerova jednačina za jednu česticu, koja se kreće u električnom polju (ali ne u magnetnom polju; c.f. Paulijeva jednačina):
Vremenski zavisna Šredingerova jednačina (jedna nerelativistička čestica)
gde je m masa čestice, V je njena potencijalna energija, ∇2 je Laplasijan, i Ψ je valna funkcija (preciznije, u ovom kontekstu, ona se naziva "poziciono prostorna valna funkcija"). Totalna energija jednaka zbiru kinetičke i potencijalne energije", mada sabirci poprimaju neuobičajene forme.
Pošto su specifični diferencijalni operatori zastupljeni, ovo je linearna parcijalna diferencijalna jednačina. Ona je takođe difuziona jednačina.
Termin "Šredingerova jednačina" se može odnositi na opštu jednačinu (prva kutija gore), ili na specifičnu nerelativističku verziju (drugi kutija gore i njene varijante). Opšta jednačina je veoma uopštena. Ona nalazi primenu širiom kvantne mehanike, za sve od Dirakove jendačine do kvantne teorije polja, putem upotrebe raznih kompleksnih izraza za Hamiltonijan. Specifična nerelativistička verzija je pojednostavljena aproksimacija relativističke. Ona je sasvim precizna u mnogim situacijama, mada postoje slučajevi gde je veoma neprecizna.
Pri primeni Šredingerove jednačine, Hamiltonijanski operator se definiše za dati sistem, tako da obuhvata kinetičku i potencijalnu energiju čestica sadržanih sistemom, i zatim se unosi u Šredingerovu jednačinu. Rezultirajuća parcijalna diferencijalna jednačina se rešava za talasnu funkciju, koja sadrži informacije o sistemu.
Reference
uredi- ↑ Schrödinger, E. (1926). „An Undulatory Theory of the Mechanics of Atoms and Molecules”. Physical Review 28 (6): 1049-1070. Bibcode 1926PhRv...28.1049S. DOI:10.1103/PhysRev.28.1049. Arhivirano iz originala na datum 2008-12-17. Pristupljeno 2014-03-06.
- ↑ Shankar, R. (1994). Principles of Quantum Mechanics (2nd izd.). Kluwer Academic/Plenum Publishers. str. 143. ISBN 978-0-306-44790-7.
Povezano
urediVanjske veze
uredi- Hazewinkel Michiel, ur. (2001). „Schrödinger equation”. Encyclopaedia of Mathematics. Springer. ISBN 978-1-55608-010-4.