Prijeđi na sadržaj

Gram–Schmidtov postupak

Izvor: Wikipedija

Gram–Schmidtov postupak (hrv.) ili Gram–Šmitov postupak (srp.) je metoda u linearnoj algebri koja služi za ortogonalizaciju skupa vektora u zadanom euklidskom prostoru.

Postupak je sljedeći. Uzmimo na primjer vektorski prostor proizvoljne dimenzije Rn baze {v1, v2, ... ,vn}, Gram-Schmidtovim postupkom ortogonalizacije možemo transformirati bazu {vi} u ortonormiranu bazu, {ui}. Prvo normaliziramo v1: u1=v1/||v1||.

Nakon toga izračunavamo w2=v2-<v2,u1>u1, pa normaliziramo w2: u2=w2/||w2||

Ovaj postupak primjenimo za sve vektore iz baze {vi}: wi+1=vi+1-<vi+1,uiui>- ... - <vi+1,u1>u1 i ui+1=wi+1/||wi+1||. Vektori {u1, ... ,vn} su linearno nezavisni, i stoga čine bazu vektorskog prostora Rn.

Primjer

[uredi | uredi kod]

Uzmimo sljedeći skup vektora u Rn (sa uobičajenim skalarnim produktom)

Sad primjenimo Gram-Schmidtov postupak kako bismo dobili ortogonalni skup vektora:

Provjerimo vektore u1 i u2 kako bismo utvrdili da su zaista ortogonalni:

Sada ih možemo normalizirati, tako što ćemo ih podijeliti s njihovim dužinama:

Prvi koraci Gram-Schmidtovog postupka.