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ABSTRACT
Link-based similarity computation arises in many real applications,

including web search, clustering and recommender system. Lots of

similarity measures are devoted recently, but there is one undesir-

able drawback, called “path missing” issue, i.e., the paths between
objects are not fully considered for similarity computation. For

example, SimRank considers only in-coming paths of equal length

from a common “center” object, and a large portion of other paths

are fully neglected. A comprehensive measure can be modeled by

tallying all the possible paths between objects, but a large number of

traverses would be required for these paths to fetch the similarities,

which might increase the computational difficulty. In this paper, we

propose a comprehensive similarity measure, namely RG-SimRank

(Random surfer Graph-based SimRank), which resolves the “path

missing” issue with inheriting the philosophy of SimRank. We build

a random surfer graph by allowing the surfer to stay at current

object, go to other objects against in-links or along out-links. RG-

SimRank adopts SimRank to compute similarities in random surfer

graph instead of the original network, which has a same form of

SimRank and hence inherits the optimization techniques on simi-

larity computation. We prove that RG-SimRank considers all the

possible paths of any direction and any length. And it provides a

general solution to assess similarities, under which lots of existing

similarity measures become its special cases. Other similarity mea-

sures besides SimRank can also be enhanced similarly using random

surfer graph. Extensive experiments on real datasets demonstrate

the performance of the proposed approach.
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1 INTRODUCTION
Link-based similarity computation focuses on assessing the similar-

ities between objects in a given network, which arises in many real

applications, including web search, clustering and recommender

system. Link-based similarity measures exploit the object-to-object

relationships expressed in terms of links for assessing object simi-

larities. Compared to content- or text-based similarity measures,

which treat each object as a bag of items, link-based similarity mea-

sures could produce systematically better correlation with human

judgements [26].

Despite of the merits of link-based similarity measures, there

exists a drawback, called “pathmissing” issue, i.e., the paths between
objects are not fully considered for similarity computation. For

example, SimRank [10] considers only in-coming paths of equal

length from a common “center” object, and thus a large portion of

other paths are fully neglected. In real applications, e.g., literature
search in citation network [42, 49] and page ranking in web network

[45], neglect of the paths might lead to incomprehensive results.

Consider an example of citation network in Figure 1, where each

node represents an object of paper type, and each edge represents

a citation. We retrieve the similar papers for query 𝑝2 by SimRank

and reverse SimRank (rvs-SimRank) using the decay factor 𝑐 = 0.8.

The 2-tuples in the rankings represent the returned objects with

similarity scores. Due to lack of consideration for the paths beyond

in-coming direction, some similar objects are neglected by SimRank.

For example, 𝑝5 is neglected, though it is connected with 𝑝2 through

path 𝑝2 → 𝑝1 ← 𝑝5, since the directions from 𝑝2 and 𝑝5 to “center”

object 𝑝1 are out-going, and SimRank considers only in-coming

paths like 𝑝2 ← 𝑝3 ← 𝑝4 → 𝑝5 → 𝑝6 from “center” object 𝑝4. It

is rather counter-intuitive since papers cite similar papers should

also be similar intuitively [49]. Similarly, 𝑝4 is neglected though

there is a path 𝑝2 ← 𝑝3 ← 𝑝4 of mixed directions with “center”

object 𝑝3. In fact, 𝑝4 should be similar to 𝑝2 since both “cite” and

“cited by” relationships can convey similar topics [42]. Rvs-SimRank

returns these objects, but 𝑝1 is neglected since it considers only

out-going direction. There are also some similar objects neglected

due to lack of consideration for the paths beyond equal length. For

example, SimRank still neglects 𝑝5 though there is an in-coming

path 𝑝2 ← 𝑝3 ← 𝑝4 → 𝑝5, since the path lengths from 𝑝2 and 𝑝5
to “center” object 𝑝4 are not equal, and similarly 𝑝3 is neglected by

rvs-SimRank. Practically, the paths of different lengths also convey

similar topics [45], which contribute to similarity scores.

Full Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2578

https://doi.org/10.1145/3459637.3482329
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3482329&domain=pdf&date_stamp=2021-10-30


Rank SimRank

1 (p6, 0.640)

2 (p1, 0.160)

3 N/A

4 N/A

5 N/A

rvs-SimRank

(p6, 0.800)

(p5, 0.400)

(p4,0.267)

N/A

N/A

 !

 "

 #  $

 %

 &

Figure 1: Retrieved similar objects for a given query 𝑝2 by
SimRank and rvs-SimRank in citation network

The “path missing” issue roots not only in SimRank but also in

lots of other similarity measures. For example, [5, 19, 42, 49] exploit

both in- and out-links for computing similarities between objects,

but only the paths of equal length are considered; and [6, 18, 45, 47]

utilize the paths of different lengths, but they consider only either

in- or out-link direction rather than both directions.

In this paper, we study the “path missing” issue of similarity

computation. It is challenging to integrate the paths of any direc-

tion and any length. A straightforward approach is to tally all the

possible paths between objects, but a large number of traverses

would be required for these paths to fetch the similarities, which

might increase the computational difficulty. While significant ef-

forts are devoted to optimizing SimRank computation recently (e.g.,
[17, 21, 23, 25, 31, 43, 44]), the “path missing” issue has attracted

little attention. Recently, some similarity measures are extended

from SimRank, such as P-Rank [49] and C-Rank [42], which try

to utilize the information beyond in-coming paths with inheriting

the beauty of SimRank philosophy. Benefit from the optimization

techniques of SimRank, the similarities can be efficiently computed,

but they are practically insufficient due to lack of enough consider-

ation for different path lengths. Some metrics, such as SimRank*

[45] and PageSim [18], integrate paths of different lengths for simi-

larity computation, but the links of different directions are not fully

utilized. And they are not in a SimRank form, which cannot be

speeded up by the optimization techniques of SimRank. Therefore,

it is non-trivial to seek a solution to comprehensively compute

similarities with inheriting the beauty of existing studies especially

the philosophy of SimRank so that lots of previous studies can be

still applicable to similarity computation.

Fortunately, we observe that the paths between objects can be

fully integrated by building a random surfer graph rather than

rebuild a new similarity model. Specifically, the random surfer

graph is derived by allowing the surfers to stay at current object, go

to other objects against in-link direction or along out-link direction,

so that the paths of any direction and any length can be considered.

Based on random surfer graph, existing measures can be adopted

directly to compute similarities without destroying the original

philosophy. Our main contributions are as follows.

(1) We propose RG-SimRank (Random surfer Graph-based Sim-

Rank) and justify its comprehensiveness. We build a random

surfer graph and then obtain RG-SimRank by applying Sim-

Rank to random surfer graph instead of the original network.

RG-SimRank is proved to be a natural way of traversing all

possible paths that are neglected by existing measures.

(2) We show that the RG-SimRank has a same form of SimRank,

which inherits the basic philosophy of SimRank, and lots

of existing optimization techniques are applicable to the

similarity computation.

(3) A general solution is provided to assess similarities, under

which lots of existing similarity measures can be considered

as the special cases of RG-SimRank. And other similarity

measures besides SimRank can also be enhanced using ran-

dom surfer graph.

(4) Extensive experiments on real datasets demonstrate the per-

formance of RG-SimRank through comparing with the state-

of-the-art similarity measures.

The rest of this paper is organized as follows. Section 2 discusses

related work. Section 3 defines the “path missing” issue of existing

similarity measures. Section 4 introduces random surfer graph, and

proposes RG-SimRank with its comprehensiveness, inheritance and

derivatives. Experimental studies are reported in section 5. Section

6 concludes the paper.

2 RELATEDWORK
Co-citation [32] and Bibliographic coupling [14] are two notewor-

thy measures in bibliometrics field. Co-citation measures the sim-

ilarity between papers based on the common papers which cite

both of them, while Bibliographic coupling defines similarity as the

number of their cited papers. These two measures utilize only the

direct connections, and the indirect connections are fully neglected.

SimRank [10] defines similarity based on the intuition that “two

objects are similar if they are referenced by similar objects”, which

is consistent to our basic understandings. As a widely-accepted

measure, SimRank gained tremendous popularity in many vibrant

communities, e.g., similarity search [48], clustering [41] and rec-

ommender system [29]. SimRank does not suffer from any field

restrictions and can be applied to any domain with object-to-object

relationships. However, an unsatisfactory trait is that SimRank con-

siders only the paths of in-link direction and equal length, and lots

of other paths are neglected.

There are also some similarity measures of this kind. MatchSim

[20] defines the similarity between objects as the average similarity

of the maximum matching between their neighbors. RoleSim [12]

utilizes a generalized Jaccard coefficients to ensure automorphic

equivalence for SimRank. SimRank++ [3] compensates for the car-

dinality of in-neighbor matching by adding an evidence weight.

SimFusion [39] computes similarities iteratively over a unified re-

lationship matrix (URM). PathSim [33] and HeteSim [30] define

similarities by counting the paths between objects via the instances

of meta path. NetSim [46] employs SimRank to measure the simi-

larities between attributes over attribute network. These measures

consider only either in- or out-link direction, and the path lengths

are limited to equal.

To utilize the paths of different lengths, some similarity measures

are devoted. PageSim [18] measures similarities by counting the

paths of any length based on PageRank score propagation. HeteR-

ank [47] integrates the paths of any length over a general relation-

ship matrix. SimRank* [45] resolves the “zero-similarity” issue by

revising SimRank with tallying the paths of any length. SNS [24]

computes similarities by learning node embeddings from neigh-

bor information and local subgraphs. CSE [6] measures similarities
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based on direct links and common neighbors. These measures con-

sider the paths consisting of links of either in- or out-link direction

rather than both directions.

Some similarity measures compute similarities by exploiting

both in- and out-links. Amsler [2] integrates Co-citation [32] and

Bibliographic coupling [14] into similarity computation. ENS [19]

utilizes both in- and out-link relationships to extend existingmodels.

[5] extends SimRank by utilizing both in- and out-link relationships.

P-Rank [49] enriches SimRank by jointly encoding both in- and

out-links into structural similarity computation. C-Rank [42] ex-

tends SimRank by ignoring link directions for measuring similarity.

However, these measures consider only the paths of equal length.

Random walk-based measures define the similarity as the ran-

dom walk distance between objects. [36] suggests Random Walk

with Restart (RWR) for measuring proximities, which can be con-

sidered an extension of Personalized PageRank (PPR) [11]. [27]

proposes a random-walk method by exploiting PPR to compute

similarities. [15] extends RWR by integrating independent and sen-

sible coefficients. [52] computes similarities based on RWR in an

attribute augmented graph. These measures consider the hitting

probability from a node to another via the paths consisting of only

either in- or out-links.

3 THE “PATH MISSING” ISSUE
We first give the formal definition of “path missing” issue, and then

show that this issue is rooted in SimRank and some other metrics.

For a given network, denoted as a directed graph 𝐺 = (𝑉 , 𝐸) with
𝑉 denoting object set and 𝐸 denoting link set, we shall abuse the

following notions. (1) An in-link path between objects 𝑎 ∈ 𝑉 and

𝑏 ∈ 𝑉 is a walk of length 𝑙1 + 𝑙2, denoted by 𝑎 = 𝑢0 ← 𝑢1 ← . . .←
𝑢𝑙1 = 𝑥 = 𝑣𝑙2 → 𝑣𝑙2−1 → . . . → 𝑣0 = 𝑏, starting from 𝑎, taking 𝑙1
steps against the directions of in-links 𝑢𝑖−1 ← 𝑢𝑖 for 𝑖 = 1, 2, . . . , 𝑙1
and 𝑙2 steps along the directions of out-links 𝑣 𝑗 → 𝑣 𝑗−1 for 𝑗 =
1, 2, . . . , 𝑙2, and finally arriving at𝑏, where 𝑥 is the in-link “center”. (2)
An out-link path between 𝑎 and 𝑏 is a walk of length 𝑙1 + 𝑙2, denoted
by 𝑎 = 𝑢0 → 𝑢1 → . . . → 𝑢𝑙1 = 𝑥 = 𝑣𝑙2 ← 𝑣𝑙2−1 ← . . . ← 𝑣0 = 𝑏,

starting from 𝑎, taking 𝑙1 steps along the direction of 𝑢𝑖−1 → 𝑢𝑖
for 𝑖 = 1, 2, . . . , 𝑙1 and 𝑙2 steps against the direction of 𝑣 𝑗 ← 𝑣 𝑗−1
for 𝑗 = 1, 2, . . . , 𝑙2, and finally arriving at 𝑏, where 𝑥 is the out-
link “center”. (3) A mixed-link path between 𝑎 and 𝑏 is a path with

mixed directions, denoted by 𝑎 = 𝑢0 d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 =

𝑣𝑙2 c 𝑣𝑙2−1 c . . . c 𝑣0 = 𝑏, where 𝑢𝑖−1 d 𝑢𝑖 is a mixed-link,

i.e., in- or out-link, from 𝑢𝑖−1 to 𝑢𝑖 for 𝑖 = 1, 2, . . . , 𝑙1, and 𝑥 is

the mixed-link “center”. A path is symmetric (in terms of length) if

𝑙1 = 𝑙2; otherwise, it is dissymmetric. A path of any length can be

symmetric or dissymmetric.

Definition 3.1. When assessing similarity score between 𝑎 and

𝑏, a similarity metric is comprehensive within path length 𝑙 if it

considers all the mixed-link paths of any length 𝑙1 + 𝑙2 for 𝑙1, 𝑙2 ≤ 𝑙 ,
starting from 𝑎 and finally arriving at 𝑏; otherwise, it is a metric

with “path missing” issue.

The “path missing” issue of SimRank is shown as:

Theorem 3.2. At iteration 𝑙 , SimRank considers only the symmet-
ric in-link paths of length 𝑙1 + 𝑙2 for 𝑙1 = 𝑙2 ≤ 𝑙 .

Proof. The SimRank score between𝑎 and𝑏 is defined as 𝑆 (𝑎, 𝑏) =
1 if 𝑎 = 𝑏, otherwise

𝑆 (𝑎, 𝑏) = 𝑐

|𝐼 (𝑎) | |𝐼 (𝑏) |

|𝐼 (𝑎) |∑︁
𝑖=1

|𝐼 (𝑏) |∑︁
𝑗=1

𝑆 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏)) (1)

where 𝑐 is the decay factor between 0 and 1, 𝐼 (𝑎) is the in-neighbor
set of 𝑎, and 𝐼𝑖 (𝑎) is the 𝑖-th neighbor of 𝑎. Let 𝑅𝑙 (𝑎, 𝑏) be the

computational SimRank score between 𝑎 and 𝑏 at iteration 𝑙 , which

is started with 𝑅0 (𝑎, 𝑏) = 1 if 𝑎 ≠ 𝑏, otherwise 𝑅0 (𝑎, 𝑏) = 0. When

𝑙 ≠ 0, 𝑅𝑙 (𝑎, 𝑏) is defined as 𝑅𝑙 (𝑎, 𝑏) = 1 if 𝑎 = 𝑏, and otherwise

𝑅𝑙 (𝑎, 𝑏) =
𝑐

|𝐼 (𝑎) | |𝐼 (𝑏) |

|𝐼 (𝑎) |∑︁
𝑖=1

|𝐼 (𝑏) |∑︁
𝑗=1

𝑅𝑙−1 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏)) (2)

which is further derived as

𝑅𝑙 (𝑎, 𝑏) = 𝑐
|𝐼 (𝑎) |∑︁
𝑖=1

|𝐼 (𝑏) |∑︁
𝑗=1

𝑃𝑎,𝐼𝑖 (𝑎)𝑃𝑏,𝐼 𝑗 (𝑏)𝑅𝑙−1 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏)) (3)

where 𝑃𝑎,𝐼𝑖 (𝑎) is the transition probability from 𝑎 to 𝐼𝑖 (𝑎) against in-
link direction, defined as 𝑃𝑎,𝐼𝑖 (𝑎) =

1

|𝐼 (𝑎) | if 𝐼 (𝑎) ≠ ∅ and otherwise
𝑃𝑎,𝐼𝑖 (𝑎) = 0. We assume 𝑅𝑙 (𝑎, 𝑏) considers only the symmetric in-

link paths of length 𝑙1 + 𝑙2 between 𝑎 and 𝑏 like 𝑎 = 𝑢0 ← 𝑢1 . . .←
𝑢𝑙1 = 𝑥 = 𝑣𝑙2 → 𝑣𝑙2−1 → . . .→ 𝑣0 = 𝑏 for 𝑙1 = 𝑙2 ≤ 𝑙 . By Equation

(3), we have

𝑅𝑙+1 (𝑎, 𝑏) = 𝑐
|𝐼 (𝑎) |∑︁
𝑖=1

|𝐼 (𝑏) |∑︁
𝑗=1

𝑃𝑎,𝐼𝑖 (𝑎)𝑃𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏))

By the assumption, we get that 𝑃𝑎,𝐼𝑖 (𝑎)𝑃𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏)) con-
tains only in-link paths like 𝑎 ← 𝐼𝑖 (𝑎) = 𝑢0 ← 𝑢1 ← . . . ← 𝑢𝑙1 =

𝑥 = 𝑣𝑙2 → 𝑣𝑙2−1 → . . . → 𝑣1 → 𝑣0 = 𝐼 𝑗 (𝑏) → 𝑏, also denoted as

𝑎 = 𝑢 ′
0
← 𝐼𝑖 (𝑎) = 𝑢 ′

1
← . . . ← 𝑢 ′

𝑙 ′
1

= 𝑥 = 𝑣 ′
𝑙 ′
2

→ 𝑣 ′
𝑙 ′
2
−1 → . . . →

𝑣 ′
1
= 𝐼 𝑗 (𝑏) → 𝑣 ′

0
= 𝑏 for 𝑙 ′

1
= 𝑙 ′

2
≤ 𝑙 + 1. Replace 𝑙 ′

1
and 𝑙 ′

2
by 𝑙1 and

𝑙2 respectively, we have that 𝑅𝑙+1 (𝑎, 𝑏) considers only symmetric

in-link paths of length 𝑙1 + 𝑙2 between 𝑎 and 𝑏 for 𝑙1 = 𝑙2 ≤ 𝑙 + 1,
which finishes the induction. □

The “path missing” issue of SimRank might lead to incompre-

hensive results. Specifically, the SimRank score 𝑆 (𝑎, 𝑏) = 0 if there

does not exist any symmetric in-link path between 𝑎 and 𝑏, as

shown in Figure 1. More importantly, SimRank still “partially miss”

all the contributions of dissymmetric in-link paths, such as path

𝑎 = 𝑝2 ← 𝑝3 ← 𝑥 = 𝑝4 → 𝑝1 = 𝑏, and symmetric out-link

paths, such as 𝑎 = 𝑝2 → 𝑝1 = 𝑥 ← 𝑝6 = 𝑏, even if 𝑆 (𝑎, 𝑏) ≠ 0.

Rvs-SimRank considers symmetric out-link paths, but the in-link

paths are neglected, such as symmetric in-link path 𝑎 = 𝑝2 ←
𝑝3 ← 𝑝4 = 𝑥 → 𝑝5 → 𝑝6 = 𝑏 and dissymmetric in-link path

𝑎 = 𝑝2 ← 𝑝3 ← 𝑝4 = 𝑥 → 𝑝5 = 𝑏.

Some variants of SimRank try to remedy this issue. P-Rank [49] is

derived from SimRank for utilizing both in- and out-link directions,

but not all the symmetric mixed-link paths are utilized since the

directions in the symmetric position of the path are limited to be

same, i.e., in a mixed path 𝑎 = 𝑢0 d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 =

𝑣𝑙1 c 𝑣𝑙1−1 c . . . c 𝑣0 = 𝑏, the directions of 𝑢𝑖 d 𝑢 𝑗 and

𝑣𝑖 c 𝑣 𝑗 should be same. Compared to P-Rank, C-Rank [42] defines

similarities by fully integrating the symmetric mixed-link paths

without restrictions on link directions. However, both of them do
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not consider the dissymmetric paths. SimRank* [45] considers the

in-link paths of any length, like 𝑎 = 𝑢0 ← 𝑢1 ← . . . ← 𝑢𝑙1 =

𝑥 = 𝑣𝑙2 → 𝑣𝑙2−1 → . . . → 𝑣0 = 𝑏 of length 𝑙1 + 𝑙2 = 2𝑖 for

𝑖 = 1, 2, . . . , 𝑙 , but the paths beyond in-link direction are neglected.

Besides, SimRank* fails to utilize the optimization techniques of

SimRank since it is presented by a different model.

RWR [36] and PPR [11] and their reverse forms consider the

paths consisting of links of one single direction, and such paths can

be considered as the special cases of in-link paths, out-link paths or

mixed-link paths practically. For example, the path 𝑎 = 𝑢0 → 𝑢1 →
. . . → 𝑢𝑖 = 𝑏 can be considered as an in-link path of length 0 + 𝑖
with in-link “center” 𝑎, out link-path of length 𝑖 + 0 with out-link

“center” 𝑏, or mixed-link path 𝑎 = 𝑢0 → 𝑢1 → . . . → 𝑢𝑖1 = 𝑥 →
𝑢𝑖1+1 → . . .→ 𝑢𝑖1+𝑖2 = 𝑢𝑖 = 𝑏 of length 𝑖1 + 𝑖2 with "center" node

𝑥 for any 𝑖1 + 𝑖2 = 𝑖 . From this perspective, the mixed-link paths

beyond above are fully neglected.

4 RG-SIMRANK
For comprehensively computing similarities, we need to consider

themixed-link paths of any length, which requires a large number of

traverses for these paths to fetch the similarity scores. In this section,

we propose RG-SimRank to remedy the “path missing” issue. We

first build a random surfer graph for the given network, and then

derive RG-SimRank by applying SimRank directly to random surfer

graph instead of the original network, so that the philosophy of

SimRank can be inherited and the previous optimization techniques

on SimRank would be still applicable to the similarity computation.

4.1 Building random surfer graph
Consider a surfer randomly walking in a network, we allow it to

stay at current object, go to other objects against the direction of

in-links or along the direction of out-links at each step. And the

corresponding transitions are called stay transition, in-link transition
and out-link transition respectively. The random walk process is

described by a random surfer model, defined as:

Definition 4.1 (Random surfer model). A random surfer starting

from an object can either stay at the current object with stay tran-
sition probability 𝛾 ∈ [0, 1] or leave with probability 1 − 𝛾 at each

step. And then, when the random surfer decides leaving current

object, it can either go to its in-neighbors against the directions

of in-links with in-link transition probability 𝜆 ∈ [0, 1] or go to

its out-neighbors along the directions of out-links with out-link
transition probability 1 − 𝜆.

Accordingly, the random surfer graph is defined as:

Definition 4.2 (Random surfer graph). The random surfer graph

is defined as G = (V, E), where V = 𝑉 , and E consists of the

available links a surfer can go under the random surfer model by

starting from any object in 𝐺 .

The matrix of in-link transition probabilities over the random

surfer graph G is denoted by P with entry P𝑎,𝑥 denoting the in-

link transition probability from object 𝑎 to object 𝑥 ∈ 𝑉 , which is

derived as P𝑎,𝑥 = 𝛾 if 𝑎 = 𝑥 , otherwise

P𝑎,𝑥 = (1 − 𝛾)𝜆𝑃 ′𝑎,𝑥 + (1 − 𝛾) (1 − 𝜆)𝑃𝑎,𝑥 (4)

where 𝑃 ′𝑎,𝑥 is the transition probability from 𝑎 to 𝑥 along out-link

direction, defined as 𝑃 ′𝑎,𝑥 = 1

|𝑂 (𝑎) | if 𝑂 (𝑎) ≠ ∅ and otherwise

𝑃 ′𝑎,𝑥 = 0, and𝑂 (𝑎) is the out-neighbor set of 𝑎. And then, matrix P
is derived as

P = 𝛾𝐼 + (1 − 𝛾) (𝜆𝑃 ′ + (1 − 𝜆)𝑃) (5)

where 𝑃 and 𝑃 ′ are the matrix form of 𝑃∗,∗ and 𝑃 ′∗,∗ respectively,
𝐼 is an identify matrix of 𝑛 × 𝑛, and 𝑛 is the object number. When

𝐼 (𝑎) ≠ ∅ ∧ 𝑂 (𝑎) ≠ ∅, we get

∑
∀𝑥 P𝑎,𝑥 = 1; and otherwise, we

get

∑
∀𝑥 P𝑎,𝑥 ≤ 1, so we need to normalize each row vector by

P𝑎,∗ = P𝑎,∗∑
∀𝑥 P𝑎,𝑥

to ensure

∑
∀𝑥 P𝑎,𝑥 = 1.

In previous studies, there are several concepts related to random

surfers graph. One typical concept is the random surfer-pair model

(e.g., [9, 10, 28, 34, 49]) which allows surfers randomly walk on a

given network. However, they consider only the walks of either

different directions or different lengths. Furthermore, by these def-

initions, we need to rebuild a new model to integrate the paths,

so the beauty of existing approaches cannot be inherited. Another

concept is the random graph modeling (e.g., [1, 4, 7, 8]) that mainly

studies on the graph with randomly generated edges, which is

rather different to random surfer graph and obviously not applica-

ble to the “path missing” issue. Compared to above approaches, we

integrate the mixed-link paths by building a random surfer graph

uniformly so that existing similarity measures can be directly ap-

plied to the graph, which consequently inherits the philosophy of

existing metrics without any destruction.

4.2 RG-SimRank model
4.2.1 RG-SimRank equation. RG-SimRank is derived by applying

SimRank to random surfer graph instead of the original network.

Formally, the similarity between 𝑎 and 𝑏 is defined as 𝑆 (𝑎, 𝑏) = 1 if

𝑎 = 𝑏, otherwise

𝑆 (𝑎, 𝑏) = 𝑐
|I (𝑎) |∑︁
𝑖=1

|I (𝑏) |∑︁
𝑗=1

P𝑎,I𝑖 (𝑎)P𝑏,I𝑗 (𝑏)𝑆 (I𝑖 (𝑎),I𝑗 (𝑏)) (6)

where I(𝑎) is the in-neighbor set of 𝑎 in G and I𝑖 (𝑎) is the 𝑖-th
neighbor of 𝑎. RG-SimRank is computed in an iterative manner as

SimRank. At iteration 𝑙 , the similarity between 𝑎 and 𝑏 is denoted

by 𝑅𝑙 (𝑎, 𝑏), which is initialized as 𝑅0 (𝑎, 𝑏) = 1 if 𝑎 = 𝑏, otherwise

𝑅0 (𝑎, 𝑏) = 0; and at 𝑙 = 1, 2, ..., 𝑅𝑙 (𝑎, 𝑏) is computed as 𝑅𝑙 (𝑎, 𝑏) = 1

if 𝑎 = 𝑏, otherwise

𝑅𝑙 (𝑎, 𝑏) = 𝑐
|I (𝑎) |∑︁
𝑖=1

|I (𝑏) |∑︁
𝑗=1

P𝑎,I𝑖 (𝑎)P𝑏,I𝑗 (𝑏)𝑅𝑙−1 (I𝑖 (𝑎),I𝑗 (𝑏)) (7)

where parameters 𝜆 and𝛾 can be typically set as 0.5 as demonstrated

in our experiments, and parameter 𝑐 can be set as 0.8 according to

the literature [10].

4.2.2 Comprehensiveness of RG-SimRank. By building random

surfer graph, the surfers can go to other objects by stay, in-link and

out-link transitions, so all the possible paths are integrated. Figure

2 shows a random surfer graph derived from the citation network

in Figure 1 with the retrieved similar objects to 𝑞2 by RG-SimRank

using 𝑐 = 0.8, 𝛾 = 0.5 and 𝜆 = 0.5, in which the weights in the links

correspond to the in-link transition probabilities. The neglected
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Figure 2: Retrieved similar objects to query 𝑝2 by RG-
SimRank in random surfer graph

paths are now considered for finding similar objects. For exam-

ple, the symmetric mixed-link path 𝑝2 → 𝑝1 ← 𝑝5 → 𝑝4 ← 𝑝3
with “center” 𝑝5 in the original network is considered by walking

through the symmetric in-link path 𝑝2 ← 𝑝1 ← 𝑝5 → 𝑝4 → 𝑝3 in

the random surfer graph, which helps finding the neglected similar

object 𝑝3. There are also neglected dissymmetric out-link paths

like 𝑝2 → 𝑝3 ← 𝑝4 ← 𝑝5 are considered, which corresponds to

symmetric in-link path 𝑝2 → 𝑝3 ← 𝑝4 ← 𝑝5 ↷ 𝑝5 in the ran-

dom surfer graph. Though the absolute scores of RG-SimRank and

SimRank are different, the returned results mainly depend on the

relative values and would not be affected.

Theorem 4.3. (Comprehensiveness) When 0 < 𝛾 < 1 and 0 <

𝜆 < 1, RG-SimRank score 𝑅𝑙 (𝑎, 𝑏) considers all the mixed-link paths
between 𝑎 and 𝑏 of length 𝑙1 + 𝑙2 for 𝑙1, 𝑙2 ≤ 𝑙 .

Proof. When𝑎 = 𝑏, we have𝑅0 (𝑎, 𝑏) = 𝑅1 (𝑎, 𝑏) = ... = 𝑅𝑙 (𝑎, 𝑏) =
1, so the theorem holds. When 𝑎 ≠ 𝑏, we assume 𝑅𝑙 (𝑎, 𝑏) considers
all the mixed-link paths 𝑎 = 𝑢0 d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 = 𝑣𝑙2 c
𝑣𝑙2−1 c . . . c 𝑣0 = 𝑏 of length 𝑙1 + 𝑙2 for 𝑙1, 𝑙2 ≤ 𝑙 . By Equation (7),

we have

𝑅𝑙+1 (𝑎, 𝑏) = 𝑐
|I (𝑎) |∑︁
𝑖=1

|I (𝑏) |∑︁
𝑗=1

P𝑎,I𝑖 (𝑎)P𝑏,I𝑗 (𝑏)𝑅𝑙 (I𝑖 (𝑎),I𝑗 (𝑏))

= 𝑐

|𝐼 (𝑎) |∑︁
𝑖=1

|I (𝑏) |∑︁
𝑗=1

P𝑎,𝐼𝑖 (𝑎)P𝑏,I𝑗 (𝑏)𝑅𝑙 (𝐼𝑖 (𝑎),I𝑗 (𝑏))

+ 𝑐
|I (𝑏) |∑︁
𝑗=1

P𝑎,𝑎P𝑏,I𝑗 (𝑏)𝑅𝑙 (𝑎,I𝑗 (𝑏))

= 𝑐

|𝐼 (𝑎) |∑︁
𝑖=1

|𝐼 (𝑏) |∑︁
𝑗=1

P𝑎,𝐼𝑖 (𝑎)P𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏))

+ 𝑐
|𝐼 (𝑎) |∑︁
𝑖=1

P𝑎,𝐼𝑖 (𝑎)P𝑏,𝑏𝑅𝑙 (𝐼𝑖 (𝑎), 𝑏)

+ 𝑐
|𝐼 (𝑏) |∑︁
𝑗=1

P𝑎,𝑎P𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝑎, 𝐼 𝑗 (𝑏)) + 𝑐P𝑎,𝑎P𝑏,𝑏𝑅𝑙 (𝑎, 𝑏)

By Equation (4), we have P𝑎,𝐼𝑖 (𝑎) = (1−𝛾)𝜆𝑃 ′𝑎,P𝑎,𝐼𝑖 (𝑎)
+ (1−𝛾) (1−

𝜆)𝑃𝑎,P𝑎,𝐼𝑖 (𝑎) , which contains the mixed-link transition 𝑎 d 𝐼𝑖 (𝑎),
and similarly P𝑏,𝐼 𝑗 (𝑏) contains the mixed-link transition 𝑏 d 𝐼 𝑗 (𝑏).
By the assumption, we have

(1)

∑ |𝐼 (𝑎) |
𝑖=1

∑ |𝐼 (𝑏) |
𝑗=1

P𝑎,𝐼𝑖 (𝑎)P𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝐼𝑖 (𝑎), 𝐼 𝑗 (𝑏)) contains all the
mixed-link paths 𝑎 d 𝑢0 = 𝐼 𝑗 (𝑎) d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 =

𝑣𝑙2 c 𝑣𝑙2−1 c . . . c 𝑣1 c 𝑣0 = 𝐼 𝑗 (𝑏) c 𝑏, also denoted

as 𝑎 = 𝑢 ′
0
d 𝑢 ′

1
= 𝐼 𝑗 (𝑎) d 𝑢 ′

2
d . . . d 𝑢 ′

𝑙 ′
1

= 𝑥 = 𝑣 ′
𝑙 ′
2

c

𝑣 ′
𝑙 ′
2
−1 c . . . c 𝑣 ′

2
c 𝑣 ′

1
= 𝐼 𝑗 (𝑏) c 𝑣 ′

0
= 𝑏 for 𝑙 ′

1
, 𝑙 ′
2
≤ 𝑙 + 1;

(2)

∑ |𝐼 (𝑎) |
𝑖=1

P𝑎,𝐼𝑖 (𝑎)P𝑏,𝑏𝑅𝑙 (𝐼𝑖 (𝑎), 𝑏) contains all the mixed-link

paths 𝑎 d 𝑢0 = 𝐼 𝑗 (𝑎) d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 = 𝑣𝑙2 c
𝑣𝑙2−1 c . . . c 𝑣1 c 𝑣0 = 𝑏 ↷ 𝑏, which is reduced to

𝑎 = 𝑢 ′
0
d 𝐼𝑖 (𝑎) = 𝑢 ′

1
d . . . d 𝑢 ′

𝑙 ′
1

= 𝑥 = 𝑣 ′
𝑙 ′
2

c 𝑣 ′
𝑙 ′
2
−1 c

. . . c 𝑣 ′
1
c 𝑣 ′

0
= 𝑏 for 𝑙 ′

1
≤ 𝑙 + 1 and 𝑙 ′

2
≤ 𝑙 by skipping

𝑏 ↷ 𝑏;

(3)

∑ |𝐼 (𝑏) |
𝑗=1

P𝑎,𝑎P𝑏,𝐼 𝑗 (𝑏)𝑅𝑙 (𝑎, 𝐼 𝑗 (𝑏)) contains all the mixed-link

paths 𝑎 = 𝑢0 ↶ 𝑎 = 𝑢1 d 𝑢2 d . . . d 𝑢𝑙1 = 𝑥 = 𝑣𝑙2 c
𝑣𝑙2−1 c . . . c 𝑣2 c 𝑣1 = 𝐼 𝑗 (𝑏) c 𝑣0 = 𝑏, which is reduced

to 𝑎 = 𝑢 ′
0
d 𝑢 ′

1
d . . . d 𝑢 ′

𝑙 ′
1

= 𝑥 = 𝑣 ′
𝑙 ′
2

c 𝑣 ′
𝑙 ′
2
−1 c . . . 𝑣 ′

2
c

𝑣 ′
1
= 𝐼 𝑗 (𝑏) c 𝑣 ′

0
= 𝑏 for 𝑙 ′

1
≤ 𝑙 and 𝑙 ′

2
≤ 𝑙 + 1 by skipping

𝑎↶ 𝑎;

(4) P𝑎,𝑎P𝑏,𝑏𝑅𝑙 (𝑎, 𝑏) contains all the mixed-link paths 𝑎 = 𝑢0 ↶
𝑎 = 𝑢1 d 𝑢2 d . . . d 𝑢𝑙1 = 𝑥 = 𝑣𝑙2 c 𝑣𝑙2−1 c . . . c
𝑣2 c 𝑣1 = 𝑏 ↷ 𝑣0 = 𝑏, which is reduced to 𝑎 = 𝑢 ′

0
d 𝑢 ′

1
d

. . . d 𝑢 ′
𝑙 ′
1

= 𝑥 = 𝑣 ′
𝑙 ′
2

c 𝑣 ′
𝑙 ′
2
−1 c . . . 𝑣 ′

1
c 𝑣 ′

0
= 𝑏 for 𝑙 ′

1
, 𝑙 ′
2
≤ 𝑙

similarly.

By replacing 𝑙 ′
1
and 𝑙 ′

2
with 𝑙1 and 𝑙2 respectively, we have 𝑅𝑙+1 (𝑎, 𝑏)

considers all the mixed-link paths of length 𝑙1 + 𝑙2 for 𝑙1, 𝑙2 ≤ 𝑙 + 1.
By induction, the theorem holds. □

4.2.3 Inheritance of RG-SimRank. Since RG-SimRank is modeled

as a same form of SimRank, and the random surfer graph that is

also defined as a directed graph, so the mathematical properties of

SimRank are obviously inherited, including the following important

properties, described as:

Theorem 4.4. For objects 𝑎, 𝑏 ∈ 𝑉 , stay probability 𝛾 ∈ [0, 1],
backward probability 𝜆 ∈ [0, 1], decay factor 𝑐 ∈ (0, 1) and path
length 𝑙 , we have

(1) (Symmetry) 𝑅𝑙 (𝑎, 𝑏) = 𝑅𝑙 (𝑏, 𝑎).
(2) (Monotonicity) 0 ≤ 𝑅𝑙 (𝑎, 𝑏) ≤ 𝑅𝑙+1 (𝑎, 𝑏) ≤ 1.
(3) (Existence) The solution to the iterative RG-SimRank equations

exists and converges to a fixed point 𝑅(∗, ∗).
(4) (Uniqueness) The solution to the iterative RG-SimRank equa-

tions is unique when 𝑐 ≠ 1.

This theorem can be proofed similar to SimRank [10] with dis-

criminating the definition of transition probabilities. RG-SimRank

is based on random surfer graph, in which the probabilities of stay,

in- and out-link transitions are discriminated for similarity compu-

tation while SimRank treats the links equivalently. Other properties

can be proofed similarly.

RG-SimRank inherits the properties of SimRank, so the optimiza-

tion techniques on SimRank can be employed for speeding up the

similarity computation. For example, the partial sums function [23]

can be adopted by minor modification for transition probabilities,

and the matrix form-based optimization techniques (e.g., [17, 25])
can be adopted directly. Other type optimization techniques in-

cluding single-source similarity computation (e.g., [21, 31, 37]) and
similarity join (e.g., [50, 51]) are also applicable to our approach.
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Table 1: Derivatives of RG-SimRank

𝛾

𝜆
𝜆 = 0 0 < 𝜆 < 1 𝜆 = 1

𝛾 = 0 rvs-SimRank P-Rank, C-Rank SimRank

0 < 𝛾 < 1 rvs-SimRank* N/A SimRank*

𝛾 = 1 N/A N/A N/A

4.2.4 Derivatives of RG-SimRank. Besides the comprehensiveness

and inheritance, RG-SimRank also outperforms other link-based

similarity measures due to its generality. RG-SimRank enjoys the

most general form of the structure perspective, under which lots

of the similarity measures can be considered as its special cases,

as shown in Table 1. When 𝛾 = 0, the stay transitions are not

utilized, and we can set 𝜆 = 1 to consider only in-link transitions,

which reduces RG-SimRank to SimRank; similarly, RG-SimRank

is reduced to rvs-SimRank by setting 𝜆 = 0; and by setting 0 <

𝜆 < 1, both in- and out-link transitions are considered, and then

RG-SimRank is reduced to P-Rank and C-Rank. When 0 < 𝛾 < 1,

the stay transitions are considered, and we can further consider

in-link directions by setting 𝜆 = 1, which reduces RG-SimRank to

SimRank*; the out-link transitions can be considered by setting 𝜆 =

0, which reduces RG-SimRank to rvs-SimRank*; and for 0 < 𝜆 < 1,

there is no similarity measure of this kind. And when 𝛾 = 1, only

stay transitions are considered, and RG-SimRank is reduced to a

nonsense measure.

4.3 Enhancement of random surfer graph
Using random surfer graph, other link-based similarity measures

besides SimRank can also be computed similarly in a comprehensive

manner. The neglected similar objects would be returned by finding

out the mixed-link paths of any length.

Theorem 4.5. When 0 < 𝛾 < 1 and 0 < 𝜆 < 1, a similarity
measure, which considers path 𝜏 of length 𝑙1 + 𝑙2, would consider
any path 𝜏 ′ between 𝑎 and 𝑏 of length 𝑙 ′

1
+ 𝑙 ′

2
for 𝑙 ′

1
≤ 𝑙1 ∧ 𝑙 ′

2
≤ 𝑙2

by building a random surfer graph when computing the similarity
between 𝑎 and 𝑏.

Proof. Let 𝜏 be 𝑢0 d 𝑢1 d . . . d 𝑢𝑙1 = 𝑥 = 𝑣𝑙1 c 𝑣𝑙1−1 c
. . . c 𝑣0, and 𝜏

′
be 𝑎 = 𝑢 ′

0
d 𝑢 ′

1
d . . . d 𝑢 ′

𝑙 ′
1

= 𝑥 ′ = 𝑣𝑙 ′
1

c

𝑣 ′
𝑙 ′
1
−1 c . . . c 𝑣 ′

0
= 𝑏, where 𝑥 and 𝑥 ′ are the “center” objects.

In the random surfer graph, we can extend paths of length 𝑙 ′
1
to

𝑙1 and 𝑙
′
2
to 𝑙2 by staying at the nodes for 𝑙1 − 𝑙 ′

1
and 𝑙2 − 𝑙 ′

2
steps

respectively; and for the link directions, according to the definition

of random surfer graph, the link with any direction in 𝜏 can be

mapped in 𝜏 ′. Since 𝜏 is considered by the similarity metric, so 𝜏 ′

is utilized for computing similarity between 𝑎 and 𝑏. □

By building a random surfer graph, more paths would be utilized

for enhancing similarity computation of existing measures. For

example, SimRank* [45] that considers only the in-link paths can

be enhanced by utilizing the paths of different directions; P-Rank

[49] and C-Rank [42] that consider only symmetric paths can be

enhanced by utilizing the paths of any length; and RWR [36] can be

enhanced by utilizing the paths of different lengths and directions.

Similarly, the enhanced measures would inherit the mathematical

properties of the original ones.

5 EXPERIMENTAL STUDY
5.1 Setup
5.1.1 Datasets. We use the following four datasets in the experi-

ments. (1) DBLP. We extract a citation network from DBLP citation

dataset [35], from which 10,686 papers and 13,097 citations are

collected by breadth first search (BFS) over the links of “citation”

relationship starting from a randomly chosen paper. (2) Wikipedia.

We derive wikipedia network from Wikispeedia navigation path

dataset [38] that consists of 4,604 articles and 119,864 hyper-links

between these articles. (3) E-mail. The e-mail network is obtained

from Email-Eu-core dataset [40] that is generated using e-mail data

from a large European research institution. The e-mail network is

composed of 1,005 users and 25,571 links of “delivery” relationship

between these users. (4) Amazon. A co-purchased network is ex-

tracted from Amazon dataset [16]. We choose a product randomly

and generate 10,927 products and 21,686 links of “co-purchased”

relationship by BFS.

5.1.2 Comparison Methods and Evaluation. The following algo-

rithms are implemented. (1) RG-SR, the proposed RG-SimRank; (2)

SR, the SimRank algorithm [10]; (3) rvs-SR, the reverse SR; (4) SR*,

the SimRank* algorithm [45]; (5) rvs-SR*, the reverse SR*; (6) PR, the

P-Rank algorithm [49]; (7) CR, the C-Rank algorithm [42]; (8) RWR,

the Random Walk with Restart algorithm [36]; and (9) rvs-RWR,

the reverse RWR. SR, rvs-SR, PR and CR are speeded up by partial

sums function [23], and SR* and rvs-SR* are speeded up by induced

bipartite graph [45]. According to the literature, the decay factors

of SR, rvs-SR, PR and CR are set as 0.8, the balance factor of PR is set

as 0.5, and the restart probability of RWR is set as 0.8. Parameters

𝛾 and 𝜆 of RG-SR are set to be 0.5 if not specified explicitly. Our

experiments are conducted on a 2.30 GHz Intel(R) Xeon(R) CPU

with 12 GB RAM, running Windows 8.1, and all algorithms are

implemented in C++ and compiled by using VS 2010.

The effectiveness is evaluated by the tasks of ranking and clus-

tering respectively. We randomly pick 500 objects as queries from

each dataset to retrieve similar objects, and the returned rankings

are evaluated by mean average precision (MAP) that is defined as

MAP𝐴,𝑘 = 1

|𝑄 |
∑ |𝑄 |
𝑖=1

𝜌𝐴,𝑘 (𝑣𝑖 ), where 𝑄 is a query set, 𝐴 is a sim-

ilarity measure, 𝑣𝑖 is the 𝑖-th object in set 𝑄 , and 𝜌𝐴,𝑘 (𝑣𝑖 ) is the
average precision of the returned top-𝑘 objects similar to 𝑣𝑖 , which

is defined as 𝜌𝐴,𝑘 (𝑣𝑖 ) = 1

𝑘

∑𝑘
𝑗=1 𝜑𝐴 (𝑣𝑖 , 𝑣 𝑗 ), where 𝑗 is the rank of 𝑣 𝑗 ,

and 𝜑𝐴 (𝑣𝑖 , 𝑣 𝑗 ) is the precision function for evaluating the effective-

ness of similarity between 𝑣𝑖 and 𝑣 𝑗 . Precision function 𝜑𝐴 (𝑣𝑖 , 𝑣 𝑗 ) is
defined similar to [10], in which the domain-specific properties that

are not used for similarity computation are utilized as the ground

truth. Specifically, in DBLP, 𝜑𝐴,𝑘 (𝑣𝑖 , 𝑣 𝑗 ) is defined as the fraction

of terms in 𝑣 𝑗 ’s title also in 𝑣𝑖 ’s title; in Wikipedia, there are 129

hierarchical categories and each article might belong to different

categories, by which 𝜑𝐴,𝑘 (𝑣𝑖 , 𝑣 𝑗 ) is defined as the fraction of the cat-

egories contain article 𝑣 𝑗 also contain 𝑣𝑖 ; in E-mail, the community

memberships are contained and each user belongs to exactly one of

42 departments, by which we define 𝜑𝐴,𝑘 (𝑣𝑖 , 𝑣 𝑗 ) as 1 if users 𝑣 𝑗 and
𝑣𝑖 are in a same department, and 0 otherwise; and in Amazon, there
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Figure 3: MAP on varying 𝛾

are 9,711 hierarchical categories and each product might belong to

different categories, by which 𝜑𝐴,𝑘 (𝑣𝑖 , 𝑣 𝑗 ) is defined as the fraction

of the categories contain product 𝑣 𝑗 also contain 𝑣𝑖 .

We apply K-Medoids [13] to perform clustering based on the

similarities returned by different algorithms. The clustering results

are evaluated by compactness (CP) that is defined as CP𝐴,𝐾 =

(𝐾−1) ∑𝐾𝑖=1 ∑𝑣𝑗 ∈𝐶𝑖 𝜑 (𝑚𝑖 ,𝑣𝑗 )∑𝐾
𝑖=1

∑
𝑣𝑗 ∈𝐶\𝐶𝑖 𝜑 (𝑚𝑖 ,𝑣𝑗 )

, where 𝐾 is the number of clusters to be

generated, 𝐴 is the similarity measure, 𝐶 = ∪𝐾
𝑖=1
𝐶𝑖 , 𝐶𝑖 is the 𝑖-

th cluster, and 𝑚𝑖 is the center of 𝐶𝑖 . Intuitively, the numerator

describes the precisions between centers and the objects that are

grouped into the current clusters; and the denominator represents

the precisions between centers and the objects that are in other

clusters. By the definition of precision function, we know that a

higher 𝜑 (𝑚𝑖 , 𝑣 𝑗 ) means 𝑚𝑖 and 𝑣 𝑗 are more similar, so a higher

CP𝐴,𝐾 demonstrates a better clustering performance.

Efficiency comparison includes the running time of similarity

computation and the sizes of non-zero similarity matrices.

5.2 Effectiveness
5.2.1 On Ranking Task. Figures 3 and 4 show the MAP scores on

varying 𝛾 and 𝜆 respectively, where 𝑙 = 10 and 𝑘 = 10. In Figures 3,

the curves for different datasets show a similar change as𝛾 increases.

At the beginning, the curves show an upward trend in a small range

and become stable or change slowly in a long range, and then drops

rapidly. In Figures 4, in DBLP, the MAP scores increase rapidly

in a small range and then become slow as 𝜆 increases, and finally

show a rapid downward. The MAP change of Wikipedia is not

so evident as DBLP, this is might because there are some cyclic

paths between articles while the paths between papers are acyclic,

and similar change is shown in E-mail. In Amazon, the change

trends are not evident though we set a smaller range in Y-axis for

clear observation since the “co-purchased” relationship between
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(d) Amazon

Figure 4: MAP on varying 𝜆
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Figure 5: MAP comparison in DBLP

products is bi-directional and the change of 𝜆 gives little affect to

similarity computation. Empirically, when 𝛾 and 𝜆 are set as 0.5,

the MAP scores are in a stable range.

Figure 5(a) shows the MAP scores on varying 𝑙 in DBLP, where

𝑘 = 10. As 𝑙 increases, the MAP scores of most algorithms increase

and finally become stable, and the MAP score of RG-SR is always

higher than other algorithms since it considers the mixed-link paths

of any length. Generally, the MAP scores of the algorithms with

considering more paths are relatively higher. For example, SR*

shows a better performance than SR, since it considers the paths of

any length, and similarly PR and CR are higher than SR and rsv-SR

due to the consideration for the mixed-link paths.

Figure 5(b) shows the MAP scores on varying 𝑘 in DBLP, where

𝑙 = 10. We observe that the curves of all the algorithms show a

downward trend as 𝑘 increases. This is because the higher-ranking

objects are more similar and should be closed to the given query,

and the low-ranking objects should be relative in the rear order of

the list of similar objects. The results demonstrate that RG-SR can

not only find more objects similar to queries but also give a better

quality of rankings.
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Figure 6: MAP comparison in Wikipedia
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Figure 7: MAP comparison in E-mail
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Figure 8: MAP comparison in Amazon

Figure 6(a) shows the MAP scores on varying 𝑙 in Wikipedia,

where 𝑘 = 10. As 𝑙 increases, RG-SR is always higher than other

algorithms even the improvement is not so evident as DBLP. Differ-

ently, SR* has a downward trend from 𝑙 = 3 since it considers only

the paths of current iteration, and different iterations might produce

different similarity scores, which does not guarantee monotonically

increasing in theory, and rvs-SR* drops from 𝑙 = 3 similarly.

Figure 6(b) shows the MAP scores on varying 𝑘 in Wikipedia,

where 𝑙 = 10. Similar to DBLP, the curves of different algorithms

show a downward trend as 𝑘 increases. And the curve of RG-SR is

higher than most of other algorithms. Generally, the superiority of

RG-SR is evident except a minority of cases. For example, though

the curve of RG-SR is lower than rvs-RWR when 𝑘 = 5, it shows an

evident superiority subsequently; and the curve of RG-SR is lower

than PR when 𝑘 = 15, 20, 25, but the MAP scores before 𝑘 = 10 are

evidently higher.

Figures 7(a) and 7(b) show the MAP change on varying 𝑙 and

𝑘 respectively in E-mail. In Figure 7(a), the curves of RG-SR and
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Figure 9: Compactness comparison

Table 2: MAP improvement on ranking task

Dataset SR* RG-SR* PR RG-PR CR RG-CR RWR RG-RWR

DBLP 0.019 0.028 0.016 0.025 0.018 0.026 0.011 0.027
Wikipedia 0.273 0.233 0.289 0.302 0.255 0.273 0.264 0.289
E-mail 0.546 0.559 0.563 0.558 0.485 0.560 0.565 0.600
Amazon 0.115 0.114 0.100 0.113 0.102 0.114 0.114 0.113

Table 3: CP improvement on ranking task

Dataset SR* RG-SR* PR RG-PR CR RG-CR RWR RG-RWR

DBLP 3.859 4.811 7.471 5.548 5.444 9.703 5.035 7.957
Wikipedia 2.466 2.204 4.514 17.301 10.98411.936 7.258 7.411
E-mail 1.292 1.018 11.351 9.979 5.628 8.871 4.657 2.053

Amazon 6.626 7.167 7.244 16.897 9.885 8.157 5.828 9.532

rvs-RWR are close as 𝑙 increases. This is might because there are

some mutual “delivery” relationship between users, which weakens

the superiority of RG-SR. SR* and rvs-SR* drop slowly as 𝑙 increases

since the convergence is not guaranteed theoretically as mentioned.

And the MAP change in Figure 7(b) is similar to Figure 6(b).

Figures 8(a) and 8(b) show the MAP change on varying 𝑙 and

𝑘 respectively in Amazon. In Figure 8(a), the curves of SR, rvs-SR,

P-Rank, C-Rank, RWR and rvs-RWR are almost overlapped due to

the bi-directional “co-purchased” relationship, and similarly SR*

and rvs-SR* are overlapped. And SR* and rvs-SR* become close to

RG-SR as 𝑙 increases since they also consider the paths of different

lengths. And in Figure 8(b), the MAP scores show a downward

trend as 𝑘 increases, which is consistent with the results of other

datasets and can be explained similarly.

5.2.2 On Clustering Task. Figure 9(a), 9(b), 9(c) and 9(d) show the

CP scores on different cluster number 𝐾 . In most cases, the CP
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Figure 10: MAP v.s. running time
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Figure 11: MAP v.s. similarity matrix size

scores of RG-SR are evidently higher than the comparison algo-

rithms. Though RG-SR is lower than a few of other algorithms in

some cases, the differences are not so evident as the improvement.

In Amazon, SR, SR* and RWR are close to their reverse forms at

different 𝐾 since the “co-purchased” relationship between products

is bi-directional. Generally, RG-SR achieves better performances

than the comparison algorithms, which suggests that the proposed

approach not only do well in ranking objects but also can improve

the effectiveness of clustering.

5.2.3 Using random surfer graph to enhance other metrics. We next

use random surfer graph to enhance SR*, PR, CR and RWR, and the

enhanced versions are denoted by RG-SR*, RG-PR, RG-CR and RG-

RWR respectively. TheMAP improvement on ranking task is shown

in Table 2, where 𝑙 = 10 and 𝑘 = 10. In DBLP and E-mail, all the

MAP scores are evidently improved; in Wikipedia, only the MAP

score of SR* is decreased, this is might because the circles or circuits

between articles disturb the similarity computation; and in Amazon,

PR and CR are improved while SR* and RWR are decreased, since

the bi-directional “co-purchased” relationship between products

dilutes the enhancement of SR* and RWR, and both of them consider

the paths of any length originally.

Table 3 shows CP improvement on clustering task, where 𝑙 = 10

and 𝐾 = 10. In DBLP, the CP scores of SR*, CR and RWR are

evidently improved; in Wikipedia, the CP scores of PR, CR and

RWR are improved; in E-mail, CR is enhanced; and in Amazon,

only CR is decreased. Generally, in most cases, the quality of the

results for ranking and clustering tasks is evidently improved by

using random surfer graph.

5.3 Efficiency
Figures 10 and 11 show the MAP scores versus computation cost.

During the similarity computation, we optimize RG-SR by the

threshold-sieved approach in the literature [22], which speeds up

the similarity computation by pruning similarity scores lower than

a given threshold. Specifically, we tune the threshold from 0 to 0.05,

and a higher threshold requires less computation cost. The leftmost

ends of the curves of RG-SR correspond to the results when the

threshold is set as 0, which is same to parameter settings in previ-

ous experimental setup. The parameter settings of the comparison

algorithms are same to previous settings, and each algorithm cor-

responds to one point in the figures. When the threshold is set as

0, RG-SR requires higher time cost than most of the comparison

algorithms since the mixed-link paths of any length are considered,

but it still keeps a higher MAP score even the time costs are reduced.

The results on the MAP scores versus matrix sizes can be analyzed

similarly, in which symbol “M” in the caption refers to “1024*1024”

and only the non-zero entries are stored.

6 CONCLUSION
This paper proposed RG-SimRank for comprehensively comput-

ing link-based similarities by building a random surfer graph. In

contrast to existing similarity measures, RG-SimRank integrates all

the possible paths of any direction and any length into similarity

computation. With inheriting the mathematical properties, exist-

ing optimization techniques on SimRank are still applicable to the

similarity computation. RG-SimRank provides a general solution

to similarity computation, which makes lots of existing similarity

measures become its special cases. And other similarity measures

besides SimRank can also be enhanced similarly. Empirical studies

on real datasets through comparison with the state-of-the-art sim-

ilarity measures demonstrated the effectiveness and efficiency of

the proposed approach.
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