
Integrating Human Instructions and Reinforcement Learners : An
SRL Approach

Pradyot Korupolu V N
Computer Science Dept.

IIT Madras
India

S S Manimaran
Computer Science Dept.

IIT Madras
India

Balaraman Ravindran
Computer Science Dept.

IIT Madras
India

Sriraam Natarajan
Translational Science Institute

Wake Forest University
USA

Abstract

As robots and other intelligent systems move
out from tailored environments and enter the
real world they would have to adapt quickly
and learn from their surroundings. Like hu-
mans, they would have to learn from various
sources - experience, peers, teachers, trial-
and-error etc. In earlier work, we proposed a
framework that facilitates a teacher-student
like relationship between humans and robots,
wherein the human-robot interactions were
restricted to certain classes of simple instruc-
tions. In this work we extend this framework
to handle multiple interpretations of instruc-
tions. Instead of the human teacher tak-
ing pains to carefully instructing the learn-
ing agent (robot) in a manner that it can
understand, the teacher instructs in his own
natural style and the agent appropriately in-
terprets them. The agent generalizes these
instructions by building relational models of
tasks using Statistical Relational Learning
techniques. In addition to learning from
teachers, the agent learns on its own us-
ing Reinforcement Learning (RL). The agent
chooses the most appropriate among these
knowledge models using certain confidence
measures. The generalization power of SRL
makes learning and transfer of knowledge to
related objects easy. The trial-and-error na-
ture of RL enables the agent to improve upon
what it has been taught and in some cases
unlearn human teaching.

1 Introduction

One of the long term goals of AI is to build adap-
tive systems that can interact and learn from humans.
Reinforcement Learning [25] (RL) provides a natural

framework for adaptive learning by receiving feedback
from the environment in the form of rewards based
on which it learns an action preference for each state
that it visits. Standard RL methods use an atomic,
propositional or propositional function representation
to capture the current state and possible actions of
the learner. Although this type of representation suf-
fices for many applications as demonstrated by suc-
cessful RL applications [27, 6], in many real world
problems such as robotics, real-time strategy games,
logistics and a variety of planning domains etc., there
is a need for relational representations. In such do-
mains, achieving abstraction or generalization by stan-
dard function approximators can pose significant diffi-
culties in terms of representation and requires a large
number of training examples.

On the other hand, these domains are naturally de-
scribed by relations among an indefinite number of
objects. Recently there have been algorithms pro-
posed that directly operate on these relational do-
mains [19, 20, 23, 30]. Sanner and Boutilier [23] used
situation calculus to capture the dynamics and pro-
posed a linear programming formulation for solving
the action selection problem. Wang et al. [30] on the
other hand, employed First Order Decision Diagrams
(FODDs) to capture the domain dynamics and the re-
ward and value functions. Action selection was then
posed as manipulation of these diagrams using sev-
eral arithmetic operators on FODDs that they defined.
While these methods are attractive, they still suffer
from the need to explore extensively in the environ-
ment in order to collect examples for learning. It is
natural in many domains that there is an availability
of a human expert who can provide guidance or in-
structions to the learner. In these RRL systems, the
expert can be utilized to design the reward functions
and even provide the models of the environment. This
is the approach taken by Thomaz et al. [28] where
the human teachers provide rewards for actions cho-
sen by the learner. This is a cumbersome process in
large domains compared to the possibility of the ex-



pert providing examples and direct instructions to the
learner. Recently, a policy-gradient approach to learn-
ing in relational domains has been proposed that can
use a small number of expert trajectories to initialize
the policy [11]. While this method can use the initial
trajectories, there is no interaction with the human
beyond the initial model.

AI has a long history of methods that use expert tra-
jectories for learning to act (Imitation Learning). Im-
itation learning has been studied under a variety of
names including learning by observation [24], learning
from demonstrations [2], programming by demonstra-
tions [7], programming by example [15], apprenticeship
learning [18], behavioral cloning [22], learning to act
[12], and some others. One distinguishing feature of
imitation learning from ordinary supervised learning is
that the examples are not iid, but follow a trajectory.
Nevertheless, techniques used from supervised learn-
ing have been successful for imitation learning [21].
Recently, imitation learning has been posed in highly
stochastic yet relational domains using a statistical re-
lational learning (SRL) [10] formulation and has been
solved using functional-gradient boosting [16]. Lately
there has been a surge in interest in developing ap-
prenticeship learning methods (also called as inverse
reinforcement learning) [1, 21, 17, 26]. Here one would
assume that the observations are generated by a near-
optimal policy of a Markov Decision Process (MDP)
with an unknown reward function. The approaches
usually take the form of learning the reward function
of the agent and solving the corresponding MDP. All
these methods discussed assume that the expert is op-
timal (or at least near-optimal) and the aim of these
methods is to generalize from the example trajectories
and emulate the expert in several scenarios.

We take a different approach to interacting and learn-
ing from humans. In our framework, the human expert
provides instructions – suggestions for actions selec-
tion or specification of relevant features in learning a
policy. This reduces the effort on the expert by not
providing examples for every possible scenario. In-
stead, the expert can interact with the system and
provide suggestions of actions or features periodically.
As mentioned earlier, we are interested in relational
domains where states are described using objects and
relations. More precisely, we consider a sorter robotics
setting where there are balls and baskets in room. In
such a setting the advice provided by the expert con-
cerns the ground objects or actions. For example, the
expert could gesture to the red ball in the hand of the
robot to be dropped in a red basket. While the expert
gestures at the red basket, there is an implicit gen-
eralization in that he/she refers to dropping the ball
in a basket of the same color. Hence, there is a need

to generalize the gestures of the expert to objects in
the domain. Also, the domain is noisy due to sensory
noise of robot, stochastic effects of actions etc. To gen-
eralize in this stochastic environment, we propose the
use of SRL to capture and reason with the instruc-
tions of the user. A related approach has been taken
by Branavan et al. [5] where natural language instruc-
tions are mapped into rewards for the learner. We on
the other hand, do not treat them as rewards but as
direct relevance statements on states and actions.

The chief contribution of our work is the ability to
handle multiple interpretations of instructions. As an
example to realize the necessity for such a framework,
consider a person searching for a misplaced key to his
cupboard and one of his friends points to a heavy pa-
per weight on a table nearby. The person will either
interpret the friend’s instruction as break the lock with
the paper weight or as search for the key near the pa-
per weight. As can be seen, interpretation of an in-
struction greatly varies the result of the task at hand.
In this paper, we propose a novel framework that en-
ables a learner to handle such instructions and choose
the best possible interpretation based on specific util-
ity measures. An additional contribution of our work
is treating the problem of generalization in sequen-
tial decision problems as a teacher-student setup where
the student retains the capability to unlearn what the
teacher has taught.

In the next section, we introduce the Sorter Domain, a
ball sorting domain, that we test our approach on. In
the later sections we introduce the background to the
problem, explain the different types of instructions we
use and explain the algorithm in detail.

2 Sorter Domain

The Sorter Domain (Fig 1) consists of 3 objects and
3 baskets. The task of a sorter robot is to drop the
objects into the basket with the same color i.e., a red
object should be dropped into a red basket. The col-
ors of the objects and baskets are chosen randomly
such that every object has at least one basket with
the same color. An episode is completed when every
object has been dropped into a basket. Once an ob-
ject is dropped into a basket it cannot be picked up
anymore. Dropping an object into the correct basket
is rewarded +50, a wrong match is rewarded -50 and
any other action is rewarded -1. Each action takes a
finite time to complete execution. An object or basket
occupies 1 of 6 fixed positions.



Figure 1: The Sorter Domain

3 Markov Decision Process

Sequential problems are generally modeled as Markov
Decision Processes (MDPs) in Reinforcement Learn-
ing. The MDP framework forms the basis of our defi-
nition of instructions.

A MDP is a tuple 〈S,A, ψ, P,R〉, where S is a finite set
of states, A is a finite set of actions, ψ ⊆ SXA is the
set of admissible state-action pairs, P : ψ → [0, 1] is
the transition probability function with P (s, a, s′) be-
ing the probability of transition from state s to state
s′ by performing action a. R : ψ → IR is the expected
reward function with R(s, a) being the expected re-
ward for performing action a in state s (this sum is
known as return). As = {a|(s, a) ∈ ψ} ⊆ A be the
set of actions admissible in state s. We assume that
As is non-empty for all s ∈ S. π : ψ → [0, 1] is a
stochastic policy, such that ∀s ∈ S

∑
a∈As

π(s, a) = 1.
∀(s, a) ∈ ψ, π(s, a) gives the probability of executing
action a in state s.

The value of a state-action pair conditioned on pol-
icy π, Qπ(s, a), is the expected value of a sum of
discounted future rewards of taking action a, stat-
ing from state s, and following policy π thereafter.
The optimal value functions assign to each state-action
pair, the highest expected return achievable by any
policy. A policy whose value function is optimal is
an optimal policy π∗. Conversely, for any station-
ary MDP, any policy greedy with respect to the op-
timal value functions must be an optimal policy :
π∗ (s) = argmaxaQ

∗ (s, a)∀s ∈ S, where Q∗ (s, a) is
the optimal value function. If the RL agent knew the
MDP, it could be able to compute the optimal value
function, and from it extract the optimal policy. How-
ever, in the regular setting, the agent is only aware of
ψ, the state-action space and must learn Q∗ by explor-
ing. The Q-learning algorithm learns the optimal value
function by updating its current estimate,Qk(s, a), of
Q∗(s, a) using this simple update [32],

Qk+1(s, a) = Qk(s, a)+α
[
r+γmaxa′Qk(s′, a′)−Qk(s, a)

]
(1)

α is the learning rate of the algorithm, γ ∈ [0, 1] is the
discounting factor and a′ is the greedy action in s′.

An option (o) is a temporally extended action [3] or
a policy fragment. Q-learning applies to options too
and is referred to as SMDP (Semi Markov Decision
Process) Q-learning [3].

Qk+1(s, o) = (1−α)Qk(s, o)+α
[
R+γτmaxo′Qk(s′, o′)

]
(2)

where R is the sum of the time discounted rewards
accumulated while executing the option and τ is the
time taken for execution.

A state s in the Sorter Domain is given by the
features {isCarrying, Carrying(O), Color(O1), in-
Basket(O1), Color(O2), inBasket(O2), Color(O3),
inBasket(O3), Color(B1), Color(B2), Color(B3),
Botat(X)}. isCarrying - an indicator variable that is
true if the robot is carrying an object, Carrying(O) -
object in robot’s arm, Color() - color of object/basket,
inBasket(O) - indicates if object O has been dropped
into a basket and Botat(X) - robot’s current location
such that X = {O1, O2, O3, B1, B2, B3}. The set of
options are O = {Pickup, Drop, Goto(O1), Goto(O2),
Goto(O3), Goto(B1), Goto(B2), Goto(B3)}.

In real world robots, options such as Goto(.) are gen-
erally implemented using planners making them deter-
ministic in terms of the next state reached on execut-
ing the option. But the time taken to execute the plan
(option) can vary depending on the time taken to nav-
igate to the target making them stochastic in τ . The
option Goto(O2) will take different times to execute
depending on the robot’s current position. The sen-
sor’s noise is a chief contributor to this stochasticity
as it greatly affects the robot’s ability to observe the
world and localize itself. SMDP Q-learning helps by
providing a learning framework that can accommodate
the stochasticity mentioned above. By abstracting out
options as plans we also free ourselves from the has-
sles of a domain being continuous. In essence, we work
with a discrete state space now.

4 Instructions

We define Instructions as inviolate external inputs to
the RL agent which affect its decision making or direct
its exploration or alter its belief on a policy. For exam-
ple, an agent learning to wash cups can be instructed
to use the scrubber.

Instructions have also been used to specify regions of
the state space or objects of interest. In [8], a human
directs Sonja, a game player, using instructions. For
example, he instructs Sonja to Get the top most amulet
from that room. This instruction binds the region of
search and the object of interest yet withholding direct



information about solving the task.

4.1 Mathematical Formulation

This section introduces a mathematical formulation
for instructions. Representing the policy π (s, a) as
shown below makes it easy to understand the two types
of instructions that we use in this paper :

π(s, a) = G(Φ(s), a) (3)

where Φ(s) models operations on the state space. G (.)
is a mapping from (Φ(s), a) to the real interval [0, 1].
Φ(s) can either model mappings to a subspace of the
current state space or model projections of the state s
onto a subset of features.

4.1.1 π-Instructions

Instructions of this type are in the form of action or op-
tion to be performed at the current state : Iπ(s) = a,
where a ∈ As. For example, in the Sorter Domain, the
instruction “Goto(O3)” is a π-Instruction. If policy
models are built over such instructions, their effect on
the policy would be π (s, a) ' 1.

4.1.2 Φ-Instructions

Instructions of this type are given as structured func-
tions [33] denoted by IΦ. In this paper, we restrict
ourselves to using only projections, a class of struc-
tured functions. Such an instruction, IΦ would be
captured by Φ(s) as ρD′ (s) , D

′ ⊆ D. D is the set
of features representing the state set S and ρD′ is the
projection operation. D′ ⊆ D captures the possibil-
ity that some features in a state representation are
inconsequential in learning the optimal policy. For ex-
ample, in the Sorter Domain, the instruction “Object
3” is a Φ-Instruction. The effect of this instruction
is to set D′ to {isCarrying, Carrying(O), Color(O3),
inBasket(O3), Botat(X)}. The other objects and bas-
kets are ignored.

5 Proposed Approach

In earlier work, we have shown in independent ex-
periments that using each of the instruction types
mentioned above is very effective in speeding up RL.
Choosing the best instruction type to be used proved a
challenge though. As explained in the “paper weight”
example in the introduction, interpretation of instruc-
tions is crucial. In this paper, we attempt to overcome
this dilemma by proposing an algorithm that can han-
dle multiple interpretations. In this section, we ex-
plain our approach and the heuristics used. We as-
sume a human instructs the agent in a manner that

enables the agent to interpret the instruction both
as a π − instruction and a Φ − instruction. Using
pointing gestures is one such instructing mechanism,
where pointing to an Object can either be interpreted
as “Goto(Object)” or D′ = {Objectfeatures}.

Although this difference in interpretation does not af-
fect the instructor, it greatly influences the learner.
For instance, a Φ − instruction results in projecting
the state space S onto a reduced feature space. The
projected state space S′ is smaller and usually the ap-
plicable set of actions AS′ is also smaller. Learning
the optimal policy on S′ is thus quicker. Whereas
π − instructions give the optimal action at a state
that can be generalized over similar states. As ex-
plained, although both types aid in learning, their ef-
fects are very different. Hence it is very important for
the learner to choose carefully.

In the following approach, we build both models in
parallel (Algo 1). The algorithm is split into two
phases. During the training phase, the learner accu-
mulates instructions, if available, to be used later to
train an instruction model. This model is used to se-
lect actions in the post-training phase. The learner
maintains an individual set of instructions for both π
and Φ Instructions, Dπ and DΦ. Every instruction,
I(s), is interpreted as an action (π − Ins) and as a
binding on the state space (Φ− Ins). I(s) = Pointing
gesture towards an object is interpreted as an action
Iπ(s) = Goto(Object) as well as a projection opera-
tion IΦ(s) = ρD′(s), where D′ = {ObjectFeatures}.
Although both Dπ and DΦ are updated, the agent ex-
ecutes Iπ(s). This is to make it easy to use the frame-
work on real world agents. Ideally, each instruction
model should suggest an action and both need to be
performed subject to being in the exact initial states,
same random seeds etc. This is not easy to setup in
a real world application and hence we choose to per-
form Iπ(s) at a state. This arrangement is only during
the training phase. In the case that instructions are
unavailable at any step, the learner chooses an action
suggested by a simple SMDP Q-Learner [4] that is in-
dependent of the instruction models.

Once the training period is over, the models Π̂π and
Π̂Φ are learned using the training sets. Learning these
models requires us to represent the probabilistic de-
pendencies among attributes of the related objects.
We use Markov Logic Networks (MLN) [9] to per-
form the generalization as they can succinctly repre-
sent these dependencies resulting in sample-efficient
learning and inferring. Combining MLNs and RL is
not new and has been done successfully in the past.
Torrey et al. [29] have successfully used MLNS and
RL to transfer knowledge from a simple 2-on-1 Break-
away task to a 3-on-2 Breakaway task in the Robocup



simulated-soccer domain. Wang et al. [31] approxi-
mate an RL agent’s policy using MLNs where they
update the weights of the MLN using Q-values. On
similar lines, we use MLNs to model a human instruc-
tor’s preference where the inputs to the MLN are either
actions or attention pointers.

Algorithm 1 LearnWithInstructions

while Training Period do
s is the current state
if I(s) available then
a← Iπ(s)
Dπ ← Dπ ∪ {s, Iπ(s)}
DΦ ← DΦ ∪ {s, IΦ(s)}

else
a← Π̂Q(s)

end if
Update Q(s, a)

end while
Train(Π̂πIns,Dπ)
Train(Π̂ΦIns,DΦ)
while Episode not terminated do

Π̂(s)← max conf(Π̂πIns(s), Π̂ΦIns(s), Π̂Q(s))

a← Π̂(s)
Perform option a
Update Q(s, a)

end while

In the second phase, instructions are absent and the
trained models are used to choose actions. The avail-
able action models are Π̂πIns(s), Π̂ΦIns(s) and Π̂Q(s)
(π− Ins,Φ− Ins and Q−Learner). The action sug-
gested by the most confident model is used. The con-
fidence a model is measured by

conf = max
a

Π̂(s, a)−max
b6=a∗

Π̂(s, b) (4)

where a∗ = arg maxa Π̂(s, a). The selected action is
performed and the Q − Learner is accordingly up-
dated.

5.1 Using the Π̂ΦIns model

The Φ− Instructions result in a projection ρD′ of the
state space onto a reduced space. By learning the op-
timal policy in the reduced space, the optimal policy
in the original space can be derived by lifting actions
suitably. Since in this paper we work with simple pro-
jections, the lifting of actions is trivial. An action in
the reduced space is lifted to be the same in the orig-
inal state space. A detailed explanation of learning
using ΦIns has been given in our earlier work [14].

5.2 Learning the models

We transform the state features into a set of predi-
cates and ground them using the feature values. The
instructions at a state are also transformed into predi-
cates. For example, the π−Instruction Go to object is
transformed into a predicate Go-to-object that is set to
true along with the set of ground predicates describing
the state.

We use the techniques proposed in [9] to learn the
structure of the MLNs and for inference. Every time a
new state is encountered, an action (π(s)) and a cor-
rect binding (Φ(s)) are inferred by treating the ground
predicates representing the state as the evidence. In
our experiments, we use the Alchemy package [13] for
the tasks mentioned above.

The state features are represented as predicates
{isCarrying, Carrying(O), Color(O1,c), inBas-
ket(O1), Color(O2,c), inBasket(O2), Color(O3,c), in-
Basket(O3), Color(B1,c), Color(B2,c), Color(B3,c),
Botat(X)}. isCarrying - true if robot is carrying
an object, Carrying(O) - true if object O is in
robot’s arm, Color(., c) - true if color of corresponding
object/basket is c ∈ {c1, c2, c3, c4, . . .}, inBasket(O)
- true if object O has been dropped into a basket
and Botat(x) - true if robot’s current location is x
such that x ∈ {O1, O2, O3, B1, B2, B3}. The set of
actions A = {Pickup, Drop, Goto(O1), Goto(O2),
Goto(O3), Goto(B1), Goto(B2), Goto(B3)}. The
colorequal(a,b) predicate is True if a and b have
the same color. We assume background knowl-
edge such as ∀a, isBasket(a) ⇒ ¬isObject(a) and
isCarrying ⇒ ¬Pickup.

The π − Instruction model (Π̂πIns(s)) is a set of
MLNs, where each MLN represents one among the
options Pickup, Drop, Goto(basket), Goto(object). In
addition to the π− Ins model, we also learn a Φ− Ins
model and pit the two against an SMDP Q-Learner. In
other words, we choose between three candidate poli-
cies using the earlier confidence measure. The learner
acts according to the chosen policy at the current state.
We normalize the output probabilities of the instruc-
tion models to get their action policies and use an
ε−Greedy action selection for the Q-Learner. We sim-
ilarly choose a policy for the agent at each state that
it visits. Some of the weights learned by the Π̂πIns(s)
for the action Goto(basket) are shown in Table 1.

The table shows that the MLN has learnt that one of
the important features of the task is that the agent has
to “go to the basket that is of the same color as the
object it is carrying”. In addition, the MLN has also
learnt the importance of the system dynamics such as
“a basket is not an object” and “cannot be near an
object that is already in a basket” etc.



Weight Formula
17.015 ¬ isBasket(a1) ∨ ¬isObject(a1)
16.4008 botat(a1)
-15.5892 ¬Carrying(a1) ∨ ¬colorequal(a1,a2) ∨

¬Goto(a2)

7.9959 isObject(a1)
8.28407 isBasket(a1)
-8.25381 Goto(a1)
-9.01076 colorequal(a1,a2)
10.1116 ¬inBasket(a1) ∨ ¬botat(a1)

Table 1: Some formulas learned and their weights.

6 Results

In this section, we discuss the performance of our ap-
proach on the Sorter Domain.

All experiments involved a training period of six
episodes during which all actions performed were as
instructed by a human. Our framework accumulates
the training data and simultaneously updates its Q-
Learners (one for the standard SMDP Q-Learner and
one for the Π̂ΦIns model’s reduced space). It is to be
noted here that we do not employ any kind of func-
tion approximators for representing value functions.
The instruction models serve as policy approximators
though. The standard SMDP Q-Learner does not use
any relational features. We refer to our approach as
the Instruction Framework (IF) henceforth.

6.1 Experiment 1

In this experiment, we compare the performance of
IF with standard SMDP Q-Learning. The purpose
of this experiment is to gauge the generalization abil-
ity of IF. The experiment is split into blocks of 200
episodes. The learners are initialized with the same
starting state for each of the 200 episodes. At the end
of every block, one of the colors is replaced with a new
one resulting in a different set of states for the learners.

The SMDP Q-Learner’s performance drops drastically
(Fig 2) whereas IF generalizes very well. This is due
to the introduction of new states for which the SMDP
Q-Learner has to learn a policy from scratch. IF gen-
eralizes well due to the availability of the instruction
models. Although there are no human inputs after
the training phase, the performance of IF improves as
the experiment proceeds. This is due to the increas-
ing confidence of IF’s Q-learner. As more states are
visited, the Q-learner’s estimates of the actions’ re-
turns improves and thus control slowly shifts from the
instruction models to the Q-learner. Since the train-
ing examples were insufficient, the instruction mod-
els learnt were not complete resulting in them having

Figure 2: Comparison of IF with SMDP Q Learning

Figure 3: Comparison of Π̂πIns, Π̂ΦIns and IF.

low confidence at certain states. By combining the
Q-learner with these models we overcome this insuffi-
ciency in training data.

6.2 Experiment 2

This experiment demonstrates the importance of in-
terpreting instructions properly and how IF helps by
choosing between possible interpretations.

In this experiment we use 3 different learners, one
which interprets instructions as π−Instructions alone
(A), one that interprets them as Φ−Instructions alone
(B) and one that interprets them as both (IF). They
are plotted as “Pi+Q”, “Phi+Q” and “Pi+Phi+Q”
respectively in Fig 3. In this experiment each of these
learners are provided with random starting states for
each episode i.e., the colors of the baskets and objects
are chosen randomly but ensuring that a solution ex-
ists. All three learners are given the same set of in-
structions during the training phase.

B performs the worst suggesting that interpreting the
instructions as Φ − Ins was not entirely beneficial in
this domain. A performs much better compared to
B implying that interpreting the instructions as Π −



Ins was overall more beneficial in this domain. The
performance of IF is very similar to A implying that
our approach selects the better interpretation. At this
point, it is to be noted that IF chooses interpretations
at each state independent of its choice at other states.

6.3 Importance of Confidence Measures

On carefully analyzing the working of IF, we noticed
that although the combined framework seems to be
overcoming the weaker interpretation, it does not com-
pletely eliminate it. There are certain states when IF
chooses the weaker interpretation.

Figure 4: Comparison of percentage of times the action
recommended Π̂πIns, Π̂ΦIns and SMDP Q-Learner
models is taken. The proposed framework’s perfor-
mance (no. of steps taken to solve the task) has also
been plotted. The plots have been Bezier smoothed
for visibility purposes. The trends are evident in the
unsmoothed data.

In Fig 4, we have plotted the performance of IF (in
terms of length of episodes i.e, no. of steps taken to
solve the task) and the fraction of states in which each
of the models Π̂ΠIns, Π̂ΦIns and Π̂Q are preferred. As
learning progresses, although the performance of IF
improves, the fraction of times Π̂ΦIns is preferred is
slightly increasing. Although the Sorter Domain tasks
can be solved in 11 steps, IF solves them in 13 (at
the end of 1000 episodes). We doubt this loss in per-
formance is due to preferring Π̂ΦIns at a few states.
One possible reason for this could be the confidence
measure that we are using. The current confidence
measure is naive and does not capture the confidence
of the instruction models effectively. We are currently
testing our approach with better confidence measures
and have some initial results that show that perfor-
mance improves with better confidence measures.

We have also been running a few simple experiments
with noisy instruction models. We notice that the with
better confidence measures our approach seems to be

able to overcome the incorrect models quite well, i.e.,
our approach retains the ability to unlearn incorrect
instruction models. The observations are only from
initial experimenting though and are not presented
here.

7 Conclusion

We have shown that handling multiple interpretations
is advantageous and have proposed a novel framework
that handles this effectively. We have tested our pro-
posed framework on a reasonably challenging domain
highlighting the generalization capabilities achieved by
using MLNs and importance of properly interpreting
instructions.

As mentioned earlier, a future direction of research
would be to use better measures of confidence and in-
tegrate the earned returns into the confidence calcula-
tion.

References

[1] P. Abbeel and A. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of
ICML 04, 2004.

[2] B. Argall, S. Chernova, M. Veloso, and B. Brown-
ing. A survey of robot learning from demonstra-
tion. Robotics and Autonomous Systems, 57:469–
483, 2009.

[3] Steven J. Bradtke and Michael O. Duff. Rein-
forcement learning methods for continuous-time
markov decision problems. In NIPS, pages 393–
400, 1994.

[4] Steven J. Bradtke and Michael O. Duff. Rein-
forcement learning methods for continuous-time
markov decision problems. In Proceedings of
NIPS, 1994.

[5] S. R. K. Branavan, Harr Chen, Luke S. Zettle-
moyer, and Regina Barzilay. Reinforcement learn-
ing for mapping instructions to actions. In Pro-
ceedings of ACL, ACL ’09, pages 82–90, Strouds-
burg, PA, USA, 2009. Association for Computa-
tional Linguistics.

[6] Mark Brodie and Gerald DeJong. Learning to
ride a bicycle using iterated phantom induction.
In Proceedings of the Sixteenth International Con-
ference on Machine Learning, ICML ’99, pages
57–66, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[7] S. Calinon. Robot Programming By Demonstra-
tion: A probabilistic approach. EPFL Press, 2009.



[8] David Chapman. Vision, instruction, and action.
MIT Press, 1991.

[9] Pedro Domingos, Stanley Kok, Hoifung Poon,
Matthew Richardson, and Parag Singla. Unify-
ing logical and statistical ai. In Proceedings of the
21st national conference on Artificial intelligence
- Volume 1, AAAI’06.

[10] L. Getoor and B. Taskar. Introduction to Statis-
tical Relational Learning. MIT Press, 2007.

[11] Kristian Kersting and Kurt Driessens. Non-
parametric policy gradients: a unified treatment
of propositional and relational domains. In Pro-
ceedings of the 25th international conference on
Machine learning, ICML ’08, pages 456–463, New
York, NY, USA, 2008. ACM.

[12] R. Khardon. Learning action strategies for plan-
ning domains. Artificial Intelligence, 113:125–
148, 1999.

[13] S. Kok, M. Sumner, M. Richardson, P. Singla,
H. Poon, D. Lowd, and P. Domingos. The
Alchemy system for statistical relational AI.
Technical report, Department of Computer Sci-
ence and Engineering, University of Washington.

[14] Pradyot Korupolu V N, Manimaran Sivamuru-
gan S, and Balaraman Ravindran. Instructing a
reinforcement learner. In the Proceedings of the
25th FLAIRS Conference, FLAIRS ’12.

[15] H. Lieberman. Programming by example (intro-
duction). Communications of the ACM, 43:72–74,
2000.

[16] Sriraam Natarajan, Saket Joshi, Prasad Tade-
palli, Kristian Kersting, and Jude W. Shav-
lik. Imitation learning in relational domains: A
functional-gradient boosting approach. In In Pro-
ceedings of IJCAI ’11.

[17] G. Neu and C. Szepesvari. Apprenticeship learn-
ing using inverse reinforcement learning and gra-
dient methods. In Proceedings of UAI, pages 295–
302, 2007.

[18] A. Ng and S. Russell. Algorithms for inverse re-
inforcement learning. In ICML, 2000.

[19] Martijn Van Otterlo. A survey of reinforcement
learning in relational domains. Technical report,
CTIT Technical Report Series, 2005.

[20] Robert Givan Prasad Tadepalli and Kurt
Driessens. Relational reinforcement learning: An
overview. In In Proceedings of the ICML04 Work-
shop on Relational Reinforcement Learning, 2004.

[21] N. Ratliff, A. Bagnell, and M. Zinkevich. Maxi-
mum margin planning. In ICML, 2006.

[22] C. Sammut, S. Hurst, D. Kedzier, and D. Michie.
Learning to fly. In ICML, 1992.

[23] Scott Sanner and Craig Boutilier. Approximate
linear programming for first-order mdps. In In
Proc. UAI05, 509 517, 2005.

[24] A. Segre and G. DeJong. Explanation-based ma-
nipulator learning: Acquisition of planning abil-
ity through observation. In Conf on Robotics and
Automation, 1985.

[25] Richard Sutton and Andrew Barto. Reinforce-
ment Learning : An Introduction. MIT Press,
1998.

[26] U. Syed and R. Schapire. A game-theoretic ap-
proach to apprenticeship learning. In NIPS, 2007.

[27] Gerald Tesauro. Temporal difference learning of
backgammon strategy. In ML, pages 451–457,
1992.

[28] A.L. Thomaz, G. Hoffman, and C. Breazeal. Re-
inforcement learning with human teachers: Un-
derstanding how people want to teach robots.
In The 15th IEEE International Symposium on
Robot and Human Interactive Communication,
2006. ROMAN 2006., pages 352 –357, sept. 2006.

[29] Lisa Torrey, Jude Shavlik, Sriraam Natarajan,
Pavan Kuppili, and Trevor Walker. Transfer in
reinforcement learning via markov logic networks.
In Proceedigns of AAAI workshop on Transfer
Learning for Complex Tasks 2008.

[30] Chenggang Wang, Saket Joshi, and Roni
Khardon. First order decision diagrams for re-
lational mdps. JAIR, 31(1):431–472, March 2008.

[31] Weiwei Wang, Yang Gao, Xingguo Chen, and
Shen Ge. Reinforcement learning with markov
logic networks. In Proceedigns of European Work-
shop on Reinforcement Learning 2008, 2008.

[32] Christopher J. C. H. Watkins and Peter Dayan.
Q-learning. Machine Learning, 1992.

[33] Bernard P. Zeigler. Toward a formal theory of
modeling and simulation: Structure preserving
morphisms. J. ACM, 19, 1972.


