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Abstract— Low-cost robots such as floor cleaners generally
rely on limited perception and simple algorithms, but some
new models now have enough sensing capability and compu-
tation power to enable Simultaneous Localisation And Map-
ping (SLAM) and intelligent guided navigation. In particular,
computer vision is now a serious option in low cost robotics,
though its use to date has been limited to feature-based mapping
for localisation. Dense environment perception such as free
space finding has required additional specialised sensors, adding
expense and complexity.

Here we show that a robot with a single passive omnidirec-
tional camera can perform rapid global free-space reasoning
within typical rooms. Upon entering a new room, the robot
makes a circular movement to capture a closely-spaced omni
image sequence with disparity in all horizontal directions. A
feature-based visual SLAM procedure obtains accurate poses
for these frames before passing them to a dense matching
step, 3D semi-dense reconstruction and visibility reasoning.
The result is turned into a 2D occupancy map, which can be
improved and extended if necessary through further movement.

This rapid, passive technique can capture high quality free
space information which gives a robot a global understanding
of the space around it. We present results in several scenes,
including quantitative comparison with laser-based mapping.

I. INTRODUCTION

Even in the current era of many sensing options for mobile

robots (LADAR, structured light or time-of-flight depth cam-

eras, etc.), passive vision remains a highly attractive choice

as the primary outward-looking sense in many applications.

This is for practical reasons including cost, size, power

requirements and resolution as well as the intuitive appeal of

sensing the world in a human-like way and the huge long-

term potential of vision for cognitive scene understanding.

In particular, omnidirectional optics enable a practical

single camera setup to provide a view of the whole of a

robot’s immediate surroundings at once. It is well understood

that as wide a field of view as possible is advantageous

for localisation and SLAM, as illustrated for instance in the

choice of omni-vision in commercial products such as the

recently announced Dyson 360 Eye robot vacuum cleaner.

However, there is much untapped potential in the video

a robot with an omnidirectional camera can capture. In

particular, visual robots have lacked a human’s ability to

glance around during a brief exploration of a new space

in order to quickly get a global idea of its shape and key

features. Current commercial products focus on tracking

only. In this paper we give an omni-equippied robot the

ability to rapidly understand the global free space within

1Robert Lukierski, Stefan Leutenegger and Andrew J. Davison are with
the Dyson Robotics Laboratory, Department of Computing, Imperial College
London, London, UK {r.lukierski12, s.leutenegger,
a.davison}@imperial.ac.uk

a room, with the goal of enabling intelligent high level

planning and semantic understanding of spaces.

The strengths of omnidirectional vision are instant wide

coverage and ease of correspondence during extended move-

ment; while its weaknesses are low angular resolution and

hard to calibrate projection characteristics. In this paper

we address all steps of a global omnidirectional free space

mapping algorithm, and our contributions are in various

details as well as the impact of the whole system.

In our approach, we control a robot to perform short

circular motions to capture sequences of closely-spaced

frames with disparity in all horizontal directions. A feature-

based matching and bundle adjustment procedure provides

accurate estimates of the pose of each image. These are then

used to construct an omnidirectional photoconsistency cost

volume based on typically 100–160 frames. The cost volume

is used to generate an omnidirectional depth map which

can be transformed into a dense 3D vertex map. The key

problem in attempting dense passive reconstruction indoors

is that many rooms have textureless areas, and therefore

the omnidirectional depth map and corresponding dense 3D

geometry estimates typically have large areas where depth in

unreliable, even when regularisation is applied. We therefore

estimate depth standard deviation from the cost volume data

and threshold to extract only the semi-dense high quality

information. For use in indoor navigation, this 3D estimation

is followed by reduction to two dimensions and visibility

reasoning to estimate the occupancy of cells in a 2D grid.

We present results which show that in many small rooms

a single circular scan, taking only 10–20 seconds, is enough

to reliably find many metres squared of free space. In larger

rooms, the robot makes several circular scans in sequence,

moving to a new viewpoint in-between—whereby additional

parts of the room are revealed since occluding obstacles are

being rounded. The free space information obtained from all

of these scans is then merged into one global map.

We believe that this could be a highly practical technique

for a modern vision-equipped robot to get a rapid under-

standing of the global shape of a new room it enters. In our

results we compare the free space information discovered by

omnidirectional vision against that from a laser range-finder

undergoing the same motions. Passive vision cannot compete

with LADAR in all cases, but we argue that in low-cost

robotics it is much more practical, and also has advantages

in terms of capturing genuine 3D information.

II. RELATED WORK

Reconstructing 2D free-space maps using laser range-

finders has been a standard robotics capability for many years



(e.g. [1]). Using occupancy grids as a free space map repre-

sentation was introduced in [2] and remains still very popular

to this day. Mainstream depth cameras are now beginning to

make the equivalent in 3D commonplace (e.g. [3], [4], [5]).

With passive RGB cameras, recovering dense depth and free

space information is much more challenging, but there has

been good progress in the vast computer vision literature on

multi-view stereo (MVS), and recently even in real-time with

methods like DTAM [6].

The non-standard projection geometry of omnidirectional

cameras means that building a 3D vision system involves

more complication than with standard lenses, and often much

published omnidirectional work has concentrated on mod-

elling and calibration (e.g. [7], [8], [?]) or estimating van-

ishing points (e.g. [?]). Recently there has been a resurgence

of interest in unconventional geometry computer vision,

most often high resolution panoramic images, stitched from

multiple cameras. For example, Cabral et al. [?] presented

a sophisticated panoramic image analysis which produces

not only free space mapping but full floor plans, and our

free space inference method takes inspiration from this.

Nevertheless their interest was rather different from mobile

robotics, with high resolution cameras, algorithms very far

from real-time performance and the goal of aesthetically

pleasing indoor models rather than navigable free-space.

Some work more closely related to this paper is described

in [9], [10], where the authors also built a complex omni-

directional robotic vision system, but they relied on sparse

EKF SLAM and thus, for dependable free space estimation,

had to employ a laser scanner sensor.

Other related papers are [?], [?], where the authors es-

timate free space information, but from an omnidirectional

stereo pair rather than a single moving camera. An omni-

directional MVS approach was presented in [11] but the

quality of results is rather poor.

The authors are aware of more recent approaches to

tracking [12] and mapping [13], but unfortunately these

algorithms rely heavily on the perspective camera model,

linear epipolar lines and currently do not work with generic,

non-classical, cameras.

III. METHOD

Our system consists of a number of connected processing

stages which will be explained in the following subsections.

The complexity of the system is substantial, mostly due to

the usage of a non-classical camera for which few off-the-

shelf tools or datasets are available.

A. Camera Calibration

First, we give details on the omnidirectional camera model

we use and our custom calibration method which obtains

extremely low reprojection error by capturing images of a

checkerboard displayed on a TFT LCD monitor.

1) Model: In our system we employ the Geyer & Barreto

([7], [8]) catadioptric camera model, which largely resembles

the pinhole model with the addition of an extra parameter

determining the curvature of the mirror. The model has the

following parameters summarised as V:

• V1 =
[

ϕ θ ψ tx ty tz
]

: extrinsic parameters

which form a rotation matrix RWC(ϕ, θ, ψ) and trans-

lation vector tW = (tx, ty, tz)
⊤,

• V2 =
[

ǫ
]

: mirror shape parameter,

• V3 =
[

k1 k2 γ1 γ2
]

: radial and tangential distor-

tion coefficients,

• V4 =
[

s f1 f2 u0 v0
]

: pinhole camera intrinsics.

First a point in the camera coordinate frame pC is pro-

jected onto the unit sphere:

pS =
pC

‖pC‖
=: (x, y, z)

⊤
. (1)

The next step is to perform the perspective projection:

uu =

(

x

z + ǫ
,

y

z + ǫ

)⊤
=: (uu, vu)

⊤
, (2)

where uu is the undistorted image plane coordinate.

The V2 parameter alters the projection, as it depends on

the mirror shape and defines therefore the camera type, e.g.

ǫ = 0 is a classical perspective camera, ǫ = 1 is a spherical

mirror catadioptric camera.

From here the model follows the classical pinhole per-

spective camera, with radial and tangential distortions:

ud = uu + d(uu,V3),

d(ud,V3) =

[

uu(k1ρ
2
u + k2ρ

4
u) + 2γ1uuvu + γ2(ρ

2
u + 2u2u)

vu(k1ρ
2
u + k2ρ

4
u) + 2γ2uuvu + γ1(ρ

2
u + 2v2u)

]

,

ρu =
√

u2u + v2u,

(3)

transforming undistorted image plane location uu into its dis-

torted counterpart ud. This is followed by the multiplication

of the pinhole camera intrinsic matrix:

u = K (V4)ud =





f1 f1s u0
0 γ2 v0
0 0 1



ud, (4)

to compute the final pixel location u from ud, where

the italic symbols denote homogeneous representations. We

denote the overall projection as u = h(pC ,V).

2) Calibration: Camera calibration was performed with

a chessboard pattern displayed on a LCD monitor, with

advantages over a typical printout due to precision (pixel

pitch), flatness and high contrast. Ten images were taken by

moving the camera around to cover the entire field of view.

In each image the rough location of the pattern is provided

by the user, unwrapped to a rectangular patch and corners

are detected. We employ Levenberg-Marquardt optimisation

to minimise the following energy function with respect to

the camera model parameters V:

F (V) =
1

2

m
∑

i=1

∥

∥h
(

R⊤
WCpWi −R⊤

WCtW ,V
)

− ũi

∥

∥

2

2
,

(5)



where m is the number of point correspondences, pWi is

the location of a corner on the chequerboard pattern in Eu-

clidean world coordinates and ũi is the corresponding image

measurement of the same point on the image. By using this

optimisation (with auto-differentiation) we routinely achieve

average reprojection error around 0.1[pix] or below.

3) Unwrapping the image into a spherical panorama:

A raw omnidirectional image makes subsequent steps like

point feature matching and dense stereo complicated, so we

perform a Look-Up-Table (LUT) unwrapping to a spherically

mapped panoramic image for subsequent processing. This

involves sub-pixel interpolation, but has the advantages that

image dimensions fit well with GPU memory and that each

pixel represents a uniform area on a surface of the sphere.

The final projection model for the spherical panorama, hs

is as follows. We use the notation of a 3D-point in the camera

coordinate frame, PC = (xC , yC , zC)
⊤ and spherical image

coordinates us = (us, vs)
⊤:

us = hs(pc, w, h, am, ar)

=

(

w − (arctan
yC

xC
)
w

2π
, (arccos

(

zC

‖PC‖2

)

− am)
h

ar

)⊤
,

(6)

where w and h denote the panorama image width and height

in pixels, and am, ar are the minimal vertical viewing angle

and range respectively. These are estimated from the original

camera model at the image boundaries. The pseudo-inverse

of the camera model transforms input pixel coordinate us

back to a Euclidean normal vector:

ϕ = π −
u

w
2π

θ = am +
v

h
ar

n = h+
s (u, w, h, am, ar)

= (sin θ cosϕ, sin θ sinϕ, cos θ)

(7)

B. Accurate Feature-Based Motion Estimation

Our experimental robot has odometry which is not syn-

chronized with image capture and for dense stereo recon-

struction we need highly accurate camera pose estimates

so we use our own keypoint-based omnidirectional structure

from motion and bundle adjustment implementation to glob-

ally register all of the image frames in each experiment (even

those in large rooms with multiple scan circles). Odometry

factor terms are included to define overall scale.

In order to provide a good guess for the optimiser, we

use robot’s odometry as the initialisation for the camera

SE(3) poses (the robot base to camera transform TRC can

be regarded as identity in our setup, see also Figure 1).

1) Features: Features are detected with the FAST corner

detector [14] and described with the SIFT descriptor [15].

Note that while we did not optimise this particular part of our

pipeline, this particular choice does not limit the generality

of the method described in the following.

2) Feature matching: Our feature-based motion estima-

tion runs iteratively and with each new frame matches newly

detected features against the current landmark map or, for

completely new features, initialize a new landmark in the

map. Features are matched in an inner loop against the

current landmark map, based on reprojection error in the

image plane and SIFT descriptor distance. These are putative

matches and with them the preliminary bundle adjustment

(described below) is run. Putative match is rejected if its

reprojection error is too large. This selection and rejection

is repeated twice and then the final bundle adjustment is

performed. When generating new landmarks it is important

to have relatively uniform coverage of the viewing angles.

The image is divided into 16 patches and we select keypoints

in such a way that in each patch we retain at least 5 features

(including already matched) - an approach also called buck-

eting. Each new keypoint has to be at least 10 pixels away

from all the others to ensure a uniform distribution of high

quality features. New landmarks are initialized at 7.5[m] and

later bundle adjusted to the correct depth.

l1 l2

TWC,1 TWC,2

TWC,3

D1 D2

TRC

Fig. 1: Geometry of feature-based motion estimation, show-

ing both visual and odometry constraints.

3) Bundle Adjustment: Bundle Adjustment uses non-

linear optimisation to jointly estimate the locations of the

landmarks (Figure 1 l1 and l2) and camera poses (TWC).

The method is widely regarded a “Gold Standard” in sparse

structure from motion, and offers higher accuracy per compu-

tational effort when compared to EKF filtering as described

in [16]. Furthermore, we include odometry data in order to

obtain scale. Thus in addition to classical factors involving

cameras and landmarks we add pose constraints (D1 and D2

in Figure 1) that constrain distances between camera poses.

The objective is to minimise the following energy function

and find accurate estimates for camera poses TWC,j =
[Rj , tj ] and landmarks li positions:

min
Tj , li

(Ev + Ed) . (8)

It is composed of two parts. The visual part

Ev =

n
∑

i=1

m
∑

j=1

bij

∥

∥

∥

∥

[ 1
σv

0

0 1
σv

]

(

hs(R
⊤
j li −R⊤

j tj)− ũij

)

∥

∥

∥

∥

H

,

(9)



imposes constraints between camera poses Tj , landmark

poses li and their respective matched keypoint detections

ũij . The variable bij is a binary control that reflects matched

features (i.e. feature i seen on frame j or not). This results in

a error metric in the pixel space and is then multiplied by the

precision matrix as a means of weighting between visual and

odometry constraints before being normalised with Huber

norm (marked ‖‖H ). The standard deviations σu and σv in

the precision matrix are set to 0.5[pix]. The second term

Ed =

m−1
∑

j=1

∥

∥

∥

∥

1

σd

(

‖tj − tj+1‖2 − ‖oj − oj+1‖
)

∥

∥

∥

∥

C

, (10)

represents the constraints from the odometry so the final

result will keep the original scale of the problem. The Eu-

clidean distance between each two consecutive camera poses

Tj and Tj+1 is compared against the travelled distance as

by the robot’s odometry readings oj and oj+1, which is then

weighed and robustified with Cauchy loss function (marked

‖‖C). The standard deviation for this type of constraint σd
is proportional to the square root of distance travelled and

equal to 10[mm] per 200[mm] travelled.

The solution is obtained by the iterative Levenberg-

Marquardt algorithm [17] with the Jacobians calculated by

means of auto-differentiation.

C. Semi-Dense Depth Reconstruction

Now, with an accurate pose estimate for each frame,

we calculate a dense omnidirectional cost volume around

a reference frame, in which we seek to find the depth

values for all pixels that minimise brightness discrepancies

with all other images. Such methods often apply additional

regularisation cost terms, in order to obtain a smooth and

fully dense depth map despite the fact that some image

regions may be badly conditioned for depth estimation due

to the lack of texture. In the context of free space mapping,

however, we had rather discard these regions where depth is

essentially invented by the regularisation. We therefore resort

to a semi-dense approach that only considers depth estimates

of high confidence when fusing into the occupancy map.

Our 3D reconstruction method, similarly to [6] and other

MVS techniques a using large numbers of images, relies on

the use of a “cost volume” which is a volumetric representa-

tion where each voxel accumulates squared photometric error

between images (robustified by the Huber norm). The cost

volume element Cr value from reference image Ir, for pixel

u and depth d over the set of images I(r) is defined as:

Cr (u, d) =
1

c

∑

m∈I(r)

‖ρr (Im,u, d)‖H , (11)

with c being the number of successful reprojections. The two

view photometric error is defined as:

T−1
WC,mTWC,r =

[

Rmr tm
0 1

]

,

ρr (Im,u, d) = Ir (u)− Im
(

hs

(

Rmrdh
+
s (u) + tm

))

.

(12)

Each row of photometric errors at pixel u can be then

searched to find the minimal photometric error and therefore

its depth. Alas, such depth estimates, even when incorporat-

ing a subpixel interpolation step, tend to be very noisy.

The method described in [6] employs a weighted Huber-

ROF TV-L1 regulariser. This method performs very well in

scenarios for which this algorithm was designed for, i.e.

highly textured workspace scale areas. Unfortunately, for

room scale data with significant textureless areas this leads

to poor performance or requires parameter settings that lead

to oversmoothing.

As a substantial proportion of the 3D reconstructed area

has poor depth estimates we need a way to decide which

measurements are trustworthy. Our method relies on esti-

mating depth standard deviation, as illustrated in Figure 2.

We show two extreme cases; (A): a low texture area in

the middle of a wall, and (B): a high texture area, with

contrasting energy responses in their respective cost volume

depth sampling. By fitting a parabola to the minimum we can

estimate the standard deviation of the depth estimate. In ad-

dition, fitting a parabola provides subpixel depth resolution.

In Figure 2 parabolae for (A) and (B) have vastly different

a parameters which determine the standard deviation in the

inverse depth domain: σε (u) =
1√
2a

. This is then converted

into standard deviation in the depth domain as follows:

σd (u) =
σε (u)

d (u)
2 , (13)

where d(u) is the subpixel depth estimate for pixel u.

Thresholding in the depth standard deviation domain is

superior to other heuristics, as demonstrated in Section IV-A.

The resultant depth measurements are not now fully dense,

but much more reliable for free space inference.

In our implementation the depths are represented in inverse

form and the depth range is sampled into 64 bins.

D. Visibility Reasoning and Occupancy Map Estimation

With a semi-dense depth map we can now infer the

amount of free space area around the reference frame camera

pose. Here having spherical panoramic unwrapping is very

convenient, as each column of the depth map represents

a different viewing angle around the 360◦ field of view.

Thus, for each column we need to find the closest valid

depth measurement. Since we are trying to find drivable

free space for a small robot, we start by looking for depth

measurements in a column below the horizon row (to deal

with the case where there might be free space under a table or

other overhanging furniture). If no valid measurements are

found then we examine the rest of the column (above the

horizon), on the assumption that some vertical walls might

be blank at camera height but have useful texture higher up.

If no depth estimates survive standard deviation thresholding

in an entire column then we assume that for this particular

viewing direction the free space boundary is at εmax (usually

500mm), a fail safe measure. This area is not truly measured

but the safe passage of the width of the robot plus some
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Fig. 2: Depth standard deviation estimation. Patch (A) has low texture and therefore poor depth estimate quality, with patch

(B) the opposite. Fitting a parabola provides us with subpixel depth estimate as well as depth standard deviation.

Fig. 3: Synthetic dataset, from top to bottom: reference

frame, ground truth depth map, estimated depth map, im-

age gradient thresholded to produce 50% coverage, depth

standard deviation thresholded to produce 50% coverage.

margin usually provided by local sensors means that we can

remove it from our occupancy maps.

For columns where a closest depth estimate is successfully

found then this is used as a boundary point for the free space

region and from the reference frame pose to this point a line

of sight marks underlying occupancy grid cells as free space

by checking line to cell intersection and increasing a free

space counter of the intersected cell. Integrating hundreds of

free space boundary points from a single depth map and later

integrating multiple depth maps, spaced across the room and

processed in the same manner, generates a global free space

map in the occupancy grid. We use an occupancy map cell

size of 100mm in all experiments.

IV. RESULTS

We present results which first evaluate our semi-dense

depth map reconstruction technique using synthetic omni-

directional images we have generated using ray tracing from

a modelled scene with ground truth depth. Then we move

onto real experiments which test our whole system in three

different office-like rooms which have significant low-texture

regions similar to the target application domain of low-cost

robotics in domestic environments. Our experimental setup

consists of a Pioneer 3DX mobile robot platform, Point Grey

Flea3 camera, Sony RPU-C2512 low-profile omnidirectional

lens, SICK LMS-511 laser scanner and Nvidia CUDA capa-

ble laptop.

The laser scanner is not a part of our method, but provides

precise ground truth free space measurements for comparison

with our vision algorithm. The laser scanner’s pose with

respect to the camera was estimated using the factor graph

technique of [18] to align incremental motion estimates from

vision with those from laser scan matching.

For visual comparison and to help the reader understand

the experimental context, we have also used a 3D RGBD

dense SLAM system [19] to reconstruct each experimental

room, and present screenshots from this alongside our free

space maps from omnidirectional vision.

A. Synthetic Data

We have performed experiments using synthetic omnidi-

rectional image data to investigate the performance of om-

nidirectional dense and semi-dense reconstruction using cir-

cular motions as in our real experiments. We have generated

photorealistic data using the open source PoVRay ray-tracing

software by re-rendering the data of Handa et al. [20] using

an omnidirectional camera model, and a circular camera

trajectory with 30 evenly sampled poses. We construct depth

estimates from a multi-view stereo cost volume generated

using all 30 images and ground truth camera poses.

The results are shown in Figure 3, where we see a compar-

ison and between the ground truth depth map (second row)

and that recovered from our omnidirectional reconstruction

(third). The depth maps correspond well in areas of high

texture, and as expected less well in blanker areas. We have

tried two types of threshold for deciding which of these depth

measurements to keep for free space mappling. In the lower

two rows of Figure 3 we show the result of thresholding to

retain 50% of the image area based either on a simple image

gradient threshold (fourth row) or a depth standard deviation

threshold as explained in Figure 2 (bottom).

Image gradient thresholding produces much more noisy

output and also leaves horizontal edges where there is no real

disparity for depth estimation. The depth standard deviation

thresholding, on the other hand, favours better estimated

areas that are closer (with finer depth sampling in the cost

volume) and exhibit vertical edges.

One final thing to point out is that these synthetic images

include a textured floor which is observed by the camera and

reconstructed. In our later real experiments, due both to the



camera’s limited down-angle and the lack of texture of real

floors we only reconstruct room elements above the floor.

B. Single-Circle Mapping in Small Rooms

We now move to experiments using our real robot plat-

form. In small rooms, we have tested the performance of

omnidirectional depth map reconstruction and free space

mapping based on a single circular motion.

During every circular motion we estimate 3 depth maps

from equally spaced views. From 126 frames in the circle

it takes roughly 6.9[s], which for our application can be

considered rapid.

1) Cluttered Office: This is a dataset in an office room,

with the elementary motion of a 0.5m diameter circle. The

robot captured 126 frames regularly spaced around the circle

which were bundle adjusted to estimate accurate poses. From

3 reference poses the depth and depth standard deviation

estimation procedures (Section III-C) were performed to

create 3 dense depth maps with their respective standard

deviation maps; Figure 4 shows one depth map result.

(a) “Cluttered Office”: occupancy grid from one circular
motion and three reference images, comparing our vision-
based estimate with LADAR mapping. Green: vision and
laser agree; blue: found by laser but not by vision; red: found
by vision but not by laser; black: area close to robot known
to be empty.

(b) “Cluttered Office”: top-down view of the room for
comparison (screenshot from an RGBD 3D SLAM system).

Fig. 5

After thresholding the depth standard deviation maps and

estimating the free space boundary from the semi-dense map,

each boundary was integrated into the occupancy grid shown

in Figure 5a (to be compared with the visualisation in 5b).

We highlight the green area, where the free space recovered

from omnidirectional vision agrees with LADAR. The single

circle motion, without any exploration and taking only a few

seconds, uncovers over 80% of the room’s floor area.

2) Empty Office: The second example we present is from

an empty and newly painted office. This room is interesting

because it clearly demonstrates the weaknesses of a passive

stereo method in challenging, highly untextured scenes. As

before, the robot drove in a 0.5m diameter circle and 3 depth

map and free space measurements were estimated. Each one

contributed to the occupancy grid, as seen in Figure 6.

Fig. 6: Dataset “Empty Office”, from top to bottom: refer-

ence frame, estimated depth Map, estimated depth standard

deviation map, depth threshold mask.

As before, we draw attention to the green area in Figure

7a, which is the free space area mapped by omnidirectional

vision which agrees with ladar. In this scenario the compar-

ison between ground truth laser sensor measurements and

our vision system are more meaningful, as there is almost

no furniture and both sensors observe similar obstacles.

However, due to the low texture conditions there are larger

blue areas where meaningful depth measurements have not

been made. Still, even in such unfavourable conditions for

the vision system we are able to uncover 50% of the free

space in the room with a rapid circular motion.

C. Incremental Mapping in a Large Office Environment

This dataset is of a much larger scale than the ones

described in the previous subsections. It illustrates how a

full free space map of a room can be built incrementally. The

robot moves in a 1[m] diameter circle, performs all the steps

of the method (Section III, i.e. estimates three depth maps

and integrates free space estimates into a global occupancy

grid) three times, it then traverses a short distance to another

location and makes another circle. The whole trajectory is

globally bundle adjusted for globally consistent poses. This

means that the free space information recovered at each

circle location can be fused incrementally to eventually cover

almost the entire room. This is repeated 4 times across the

room and each and every step uncovers more of the free

space area, finally reaching almost the entire room, as can

be seen in Figure 8f.



Fig. 4: Dataset “Cluttered Office”, from top to bottom: reference frame, estimated depth Map, estimated depth standard

deviation map, depth threshold mask.

(a) Dataset “Large Office”, one of the measurements, from top to bottom:
reference frame, estimated depth map, estimated depth standard deviation map,
depth threshold mask.

(b) Dataset “Large Office”: top-
down view of the room for
comparison (screenshot from an
RGBD 3D SLAM system).

(c) Dataset “Large Office”: Oc-
cupancy grid, step 1

(d) Dataset “Large Office”: Oc-
cupancy grid, steps 1-2

(e) Dataset “Large Office”: Oc-
cupancy grid, steps 1-3

(f) Dataset “Large Office”: Oc-
cupancy grid, steps 1-4

Fig. 8

In this example it might appear that only 50% of the free

space area was discovered (as compared to the laser), how-

ever here the laser scanner, due to its sensing characteristics

and placement on the robot with respect to the camera, shines

through chairs, under the desks and sometimes through the

door-frame, heavily distorting actual drive-able free space

area. Rather, we would like to highlight how such a large

area of free space has been reliably found using a sensor

which is not an obvious one for such a job, and in difficult

real-world conditions. This gives great promise for getting

more from the cameras already installed in many low-cost

robots without the need for hardware changes.

V. CONCLUSION

We have presented a complete system for rapid mapping of

free space around a mobile robot from a passive monocular

omnidirectional camera. We illustrated the validity of the

proposed approach with extensive results. The system was

implemented in C++ with GPU acceleration, running on a

laptop in near real-time, and we expect it to run on genuine

low-cost embedded platforms in the near future. We rate the

described method as promising for real-world applications,



(a) Dataset “Empty Office”: Occupancy grid

(b) Dataset “Empty Office”: top-down view of the room for
comparison (screenshot from an RGBD 3D SLAM system).

Fig. 7

since it offers a viable alternative to expensive and inherently

power consuming active cameras. As all passive stereo vision

based systems, also ours will rely on sufficient texture in

the scene. Furthermore, discoverable depth is limited by the

chosen baseline – defined by the dimension of the circles

that the robot follows.

Our system already estimates dense depth maps, depth

standard deviation maps and a semi-dense point cloud.

In future work, we thus would like to explore its use

for more strongly modelled scene understanding and place

recognition. Additionally, we would like to integrate active

exploration capabilities so that the robot can autonomously

and safely map an entire space.
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