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Abstract—In wireless networks, a recent trend is to make
spectrum access dynamic for the sake of efficient utilization
of spectrum. In such a scenario, the spectrum is periodically
allocated to wireless users using an auction-based market mecha-
nism. A critical property required for designing such mechanism
is truthfulness which could avoid market manipulation. Such
mechanism design typically involves solving NP-hard problems
and hence approximation algorithms are always resorted in real
systems. However, recent results suggest that it is impossible to
implement reasonable approximations without losing robustness
to manipulation. In this paper, we solve the problem in a
novel perspective by relaxing the constraints of ensuring strong
truthfulness. We discuss the concepts of approximate truthfulness
and provide approximately truthful mechanisms to improve
efficiency (in terms of social welfare and spectrum utilization).
We first develop a computationally efficient mechanism that
achieves truthful in expectation. This mechanism is based on
the assumption that bidders are risk-neutral. Following that,
we break the assumption by proposing a hard-to-manipulate
auction, which makes it hard to manipulate the auction for profit
gains. Our extensive simulation results show that our mechanisms
can achieve significant improvement over the state-of-the-art
mechanisms.

Index Terms—Dynamic Spectrum Access, Spectrum Auctions,
Approximate Truthfulness, Algorithms.

I. INTRODUCTION

RADIO spectrum is a critical but scarce resource for
wireless communications. Usage of spectrum has long

been governed by government agencies (e.g., FCC in USA)
who allocate spectrum by assigning licenses. Only licensed
users are allowed to use the spectrum. Such kind of spectrum
allocation policy is in a very long term fashion with space-time
invariance. Recently, with the fast development of wireless
devices and applications, it has been widely recognized that the
spectrum is becoming increasingly crowded under the long-
term and exclusive management policy. However, It has been
widely understood that most of the licensed spectrum is under-
utilized [1], [2].

With the advances in cognitive radio techniques, Dynamic
Spectrum Access (DSA) has been proposed to address the
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above dilemma [3], [4]. Under DSA, licensed users (called
primary users) are encouraged to open up their idle spectrum
to unlicensed users (called secondary users). It is a win-win
situation because that primary users can obtain financial gains
by leasing their idle spectrum and the service requirements of
secondary users can be satisfied. Auctions are widely accepted
as an efficient approach to re-distribute spectrum among users
due to the perceived fairness and allocation efficiency [5].
Recently, designing auctions for re-distributing the spectrum
among secondary users (called Secondary Spectrum Auction,
SSA) has attracted lots of research interest [11]–[16].

A typical SSA is made up of a lot of small secondary users
distributed over a relatively small geographic region. As a
result, an efficient SSA is required to be quickly conducted.
In addition, spectrum reusability can be exploited to improve
spectrum utilization, which means that the same spectrum
band can be allocated to multiple well-separated bidders.
Spectrum reusability constitutes the fundamental difference
between spectrum auctions and conventional goods auctions
(e.g., painting auctions). A critical property required for de-
signing auction, including spectrum auction, is truthfulness
(i.e., strategy-proofness). Truthful auction could avoid market
manipulation which is a deliberate attempt to interfere with the
free and fair operation of the market and create artificial, false
or misleading appearances with respect to the price of market.
Truthfulness makes life easier for bidders. Otherwise, each
bidder has to figure out the others’ bidding strategies before
being able to get an optimal bidding strategy for herself.

One of the most attractive solutions to the above problem is
the VCG mechanism [17]–[19] which has advantages of being
truthful and allocatively efficient (it maximizes the value of the
allocation over all bidders) [33]. However, such solution has
the following problems. First, exploiting spectrum reusability
leads to addressing the interference constraints, which make
the problem of finding optimal spectrum allocation be NP-
Hard [7]. Therefore, approximate algorithms are always re-
sorted in practical. However, approximate algorithms make
ensuring truthfulness via VCG is impossible [22]. This is
because the VCG mechanism fails to be truthful when one
does not have access to optimal solution [9], [10]. On another
hand, traditional truthful auctions, e.g., k-position [24], will
lose truthfulness or become computationally prohibitive when
applied to spectrum auctions due to the spatial reuse of
spectrum, i.e., a spectrum band can be assigned to multiple
well-separated bidders [7], [14].

As the problem of finding the optimal spectrum allocation
under interference constraints is NP-hard, we introduce the
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concept of approximate truthfulness to release the burden
of providing strong truthfulness. Approximate truthfulness is
sufficient to guarantee bidders not to lie in auctions [22],
[25]. Moreover, it is helpful to make the mechanism designer
focus on designing efficient allocation algorithm to improve
allocative efficiency (including social welfare and spectrum
utilization) [8]. We first propose a computationally efficient
mechanism that achieves truthful in expectation. It guarantees
any bidder cannot gain positive profit in expectation from
non-truthful bid. In this situation, bidders are assumed to be
risk-neutral, i.e., bidders will have no preference between risk
aversion and risk seeking. Following that, we attempt to break
this assumption by relaxing truthfulness to a type of hardness
of manipulation, which guarantees that it is NP-hard to gain
at least any non-negative profit from non-truthful bid for any
bidder. In this situation, we move the difficulty of manipulation
from the mechanism to the manipulators, thereby achieving a
reasonable and tractable mechanism.

In this paper, we first provide a near optimal algorithm via
linear programming. The algorithm is shown to be monotone,
and thus a novel pricing scheme is proposed to ensure the
mechanism achieving truthful in expectation. Following that,
we attempt local improvements on the monotone algorithm
which improves the economic efficiency but unravels the
monotonicity. Therefore, the previous pricing scheme is no
longer suitable. In this case, we show that such improved
algorithm combined with a VCG-based payment scheme is
hard-to-manipulate.

The concept of approximate truthfulness is firstly introduced
in our conference paper [8] for spectrum auction design, where
an auction achieving truthful in expectation for strict request
model (named as ETEX) is proposed. ETEX is based on the
assumption that bidders are risk-neutral. This paper extends
it mainly by proposing an additional approximately truthful
mechanism which breaks the above assumption and improves
efficiency.

The main contributions of our work in this paper can be
summarized as follows:

1) To the best of our knowledge, we are the first to
introduce the concept of approximate truthfulness, which
can release the burden of providing strong truthfulness to
improve the allocation efficiency, for spectrum allocation
in DSA.

2) We provide a near-optimal algorithm, and we combine
it with a novel pricing method to ensure that the mech-
anism achieves truthful in expectation in polynomial
complexity.

3) We attempt local improvements based on the monotone
algorithm to improve allocation efficiency. Although the
previous pricing method is unsuitable, we show such
an efficient algorithm combined with a VCG-payment
scheme is hard-to-manipulate.

4) Through extensive simulations, we show that our mecha-
nisms outperform existing truthful mechanisms by about
23%/27% in average in terms of social welfare and
spectrum utilization.

The rest of the paper is organized as follows. Sec. II reviews
the related work. Sec. III introduces the preliminaries on

auctions. The network model and problem statement are given
in Sec. IV. The auction achieving truthful in expectation is
proposed in Sec. V. We analyze the properties of ETEX in Sec.
VI. The hard-to-manipulate auction is described in Sec. VII.
Experimental results are shown in Sec. VIII. Sec. IX concludes
the paper.

II. RELATED WORK

How to efficiently allocate spectrum while enabling spec-
trum reuse has attracted great research interests. Gandhi et al.
[12] propose a real-time spectrum auctions framework which
considers interference constraints. To obtain computationally
efficient mechanisms, they choose to linearize the interference
constraints. Subramanian et al. [13] propose a greedy graph-
coloring based algorithm to approach the optimal revenue.
However, these auctions do not consider truthfulness.

Zhou et al. [14] firstly investigate the design of truthful
SSA and show that a greedy algorithm coupled with a VCG-
payment scheme will lose truthfulness. They propose VERI-
TAS [14] which consists of a greedy allocation algorithm and
a critical value based pricing scheme. Recently, this work has
been extended to consider double auctions [16]. In [21], the
authors aim to find a trade-off between social welfare and
fairness maintained. The other two works [15], [20] attempt
to maximize the expected revenue for cellular networks under
Bayesian settings, wherein each bidder’s valuation value is
drawn from a known probability distribution. In another work,
Wu et al. [32] design a spectrum auction mechanism based on
the VCG mechanism. However, their altered payment scheme
destroys the truthfulness property. Moreover, their mechanism
requires solving an integer linear programming (NP-hard)
problem, which makes their approach impractical for large
scales networks.

As another line of related works, there has been considerable
interest in recent years in characterizing approximately truthful
combinatorial auctions in economics, since the combinatorial
allocation problem is both NP-complete [28] and inapprox-
imable [29]. Feigenbaum et al. [30] have defined the concept
of strategically faithful approximations and proposed the study
of approximation as an important direction for algorithmic
mechanism design. Sanghvi et al. [25] force a bidder to reveal
information by making it too hard for that same bidder to
avoid revelation, i.e., any attempt to backsolve the computation
(to manipulate the result) will meet with difficulty. Archer et
al. [22] adopt similar notions of approximate truthfulness on
single-minded combinatorial auctions and propose a computa-
tionally efficient auction that achieves both truthful with error
probability and truthful in expectation.

Inspired by these work, we apply the approximate truthful-
ness in spectrum auction design to achieve a tradeoff between
allocation efficiency and truthfulness.

III. PRELIMINARIES ON AUCTION

An auction M(A,P ) consists of an allocation algorithm A
along with a pricing scheme P . All bidders submit the bids
and requests to the auctioneer simultaneously. After collecting
bid vector b = (b1, b2, · · · , bN ) and demand vector d =
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(d1, d2, · · · , dN ) from all bidders, the auctioneer determines
the winning bidders and allocates goods to them according
to the allocation algorithm A. A price pi will be charged
from each winner i according to the pricing scheme P . For its
requested goods, each bidder i has a true valuation vi, which
is private for other bidders. The utility (i.e., profit) of each
bidder i is computed as:

ui(bi,b−i) =

{
vi − pi, if i wins
0, otherwise, (1)

where b−i represents the bidders’ bids except bidder i, i.e.,
b−i = (b1, · · · , bi−1, bi+1, · · · , bN ).

A common goal in the auction design is to maximize the
social welfare, which is defined as the sum of bids submitted
by all winners. In the following, we summarize the basic
concepts and properties of truthful and approximately truthful
auction mechanisms.

A. Truthful Auction Mechanisms

Since bidders are selfish, a bidder may choose to submit a
bid bi(bi ̸= vi) to maximize its utility. An auction is truthful
if for any bidder i, the utility ui is maximized when biding
the true value vi, that is ui(vi,b−i) > ui(bi,b−i) for any bid
bi when fixing b−i. Truthful auctions will guarantee that no
bidders can obtain additional profit gains by lying on bids.

The Vickrey-Clarke-Groves (VCG) mechanism [17]–[19] is
famous for securing truthful bids from bidders. A mechanism
M(A,P ) belongs to the class of VCG mechanism if and only
if the allocation algorithm A finds the optimal allocation that
maximizes the social welfare and the price charged from each
bidder i is:

pi = WA(b−i)− (WA(b)− bi), (2)

where WA(b−i) and WA(b) denote the optimal social welfare
returned by running A with all bidders and all other bidders
except i, respectively. Note that the VCG mechanism fails to
be truthful when A does not get the optimal allocation [9],
[10].

B. Approximately Truthful Auction Mechanisms

Recently, the approximate truthfulness has received consid-
erable interest for combinatorial auction design in economics.
In this paper, we introduce this concept to spectrum auction
design. We consider two types of approximately truthful
auctions: truthful-in-expectation and hard-to-manipulation, as
defined below.

Definition 1 (Truthful-in-Expectation): A randomized
mechanism is truthful-in-expectation if for each bidder i, the
equation E[ui(vi,b−i)] ≥ E[ui(bi,b−i)] holds for any bid
bi when fixing b−i.

Definition 2 (Hard-to-Manipulate): A mechanism is hard-
to-manipulate if it is NP-hard for any bidder i to gain at least
any non-negative additional profit by lying on bids.

The truthful-in-expectation mechanism let lying bidders
take risks of losing profit. Therefore, a bidder under such
a mechanism is generally assumed to be risk-neutral, i.e.,

a bidder is reluctant to bear the risk via lying. The hard-
to-manipulate mechanism breaks the assumption by making
it hard to manipulate the auction for profit gains. It moves
the difficulty of the manipulation from the mechanism to the
manipulators, which makes it hard for profit gain via lying.

IV. NETWORK MODEL AND PROBLEM STATEMENT

A. Network Model

In generally, we refer the primary user and its associated
secondary users as auctioneer and bidders, respectively. The
set of bidders are denoted as N (|N | = N ). The spectrum to
be auctioned is divided into K identical channels denoted as
K (|K| = K). Each bidder submits its bid bi (bi > 0) to the
auctioneer to request di (0 < di ≤ K) channels. Strict request
model is adopted here, where each bidder will win either all
di channels or nothing. We consider sealed-bid auctions where
all bidders simultaneously submit their bids to the auctioneer
and we assume that the bidders do no collude.

In this paper, we focus on the widely-used protocol in-
terference model [6], [7], a succinct model to formulate the
impact of interference within resource allocation problems, in
order to highlight our contributions in auction mechanisms.
With the protocol model employed, the interference can be
well captured by a conflict graph G(N , E), where E is the
collection of all edges [7]. An edge (i, j) belongs to E if
bidders i and j conflict with each other when they use the
same channel simultaneously. Let N(i) be the set of bidders
that interfere with i (i.e., the neighboring nodes of i in G).

B. Problem Formulation

In this paper, we focus on maximizing social welfare which
is a strong indicator of how efficiently the buyers make use of
the sold spectrum bands. We use the following binary variables
xi and aik to formally describe the allocation problem.

xi =

{
1, if bidder i is a winner,
0, otherwise. (3)

aik =

{
1, if channel k is assigned to bidder i,
0, otherwise. (4)

The channel allocation to achieve maximum social welfare can
thus be formulated as an Integer Programming (IP) problem:

max
N∑
i=1

bixi s.t. (5)

K∑
k=1

aik = xidi, ∀i ∈ N , (6)

aik + ajk ≤ 1, ∀(i, j) ∈ E , ∀k ∈ K, (7)
xi, aik ∈ {0, 1}, ∀i ∈ N , ∀k ∈ K. (8)

Constraints in (6) ensure that the request is strict, i.e.,
a bidder obtains either di or 0 channels. The interference
constraints require that any two bidders i and j sharing an
edge are not allowed to be assigned to the same channel, i.e.,
∀k ∈ K, aikajk = 0 if ∀(i, j) ∈ E , which can be linearized
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by (7) due to the integer constraints in (8). This optimization
problem is named as SA-SR (Spectrum Allocation with Strict
Request). The following theorem shows it is NP-hard and
inapproximable.

Theorem 1: The SA-SR problem is NP-hard. Moreover, it
does not admit any δ-approximation algorithm unless P=NP,
where δ is some positive constant.

Proof: Consider a special case with di = K = 1, ∀i ∈ N ,
the channel will be allocated to an independent set in conflict
graph (addressing interference constraints) with maximized
summation of bidders’ valuation. Therefore, finding the op-
timal social welfare for this case is equivalent to finding the
maximum-weight independent set, where the weight of a node
is the bid of a bidder. The maximum-weight independent set
problem is known to be NP-hard and it is also NP-hard to find
a constant-factor approximate algorithm for this problem. The
same results hold for the general SA-SR problem as well.

V. TRUTHFUL IN EXPECTATION

In this section, we develop ETEX, an auction achieving
truthful in expectation consisting of a suboptimal allocation
algorithm (referred as ETEX-Allocation) and a novel pricing
scheme (referred as ETEX-Prcing). Here, we assume bidders
are risk-neutral, i.e., bidders have no preference between risk
aversion and risk seeking.

A. ETEX-Allocation Algorithm

The allocation algorithm starts by solving linear program-
ming (LP), and it finds a solution based on the LP solutions.
The idea is similar with the solution of [31] which approx-
imates a routing problem where band is allocated to nodes
according to the LP solution, which is close to be optimal. The
ETEX-Allocation is based on the following strategy. First, it
runs the linear-programming (LP) relaxation of the problem.
Second, it uses the LP results to rank the bidders. Finally,
it sequentially allocates the channels to bidders based on the
ranking order while satisfying interference constants.

The LP formulation for the problem (5) is simply substitut-
ing Equ. (8) by the following equation (see Equ. 9), and the
other constraints stays unchanged.

xi, aik ∈ [0, 1], (∀i ∈ N , ∀k ∈ K) (9)

Let B = {x∗
1, · · · , x∗

n}, where x∗
i is the LP solution of Equ.

(5) for bidder i. We use B
′
= Sort(B) to sort the set B in a

descending order. We first use Breadth-First-Search procedure
BFS(G) to sort the topology G(N , E), which ensures the
updating process is executed sequentially. We then sequentially
allocate channels to bidders from high to low according to the
ordered solution set B

′
. The procedure Top(B

′
) gets the first

bidder in B
′
. For each bidder i, if |Avai(i)|, the number of

available channels of bidder i, is greater than the request di, we
then use Assign(i, di) to assign di channels from Avai(i) to
i. After allocating, we use the updating process Update(j) to
remove the allocated channels from the available channel sets
of bidder j for each j ∈ N(i). This process ensures that the
interference constraints are satisfied. We describe the detailed
algorithm in Algorithm 1. In the following section, we will

Algorithm 1: ETEX-Allocation Algorithm.
Input:

The network, G(N , E);
The bids vector, b;
The demands vector, d;

Output:
A feasible spectrum allocation;

1: BFS(G);
2: Set Avai(i) = K for i← 1 to N ;
3: Solve LP relaxation of (5) to get the determining set B;
4: B

′
= Sort(B);

5: while B
′ ̸= ϕ do

6: i = Top(B
′
); // get the first bidder in B

′
.

7: if di ≤ |Avai(i)| then
8: Assign(i, di);
9: Update(j) for each j ∈ N(i);

10: end if
11: B

′
= B

′\{x∗
i }; // remove the bidder i.

12: end while

show the ETEX-Allocation is monotone, which means that
bidder i will win by bidding higher than bi if it wins by bidding
bi.

Algorithm 2: ETEX-Pricing Algorithm.
Input:

The network, G(N , E);
The bids vector, b;
The demands vector, d;
The charged bidder, i;

Output:
The payment, pi;

1: owned ch =
∑k=K

k=1 aik;
2: pi = 0;
3: if owned ch == 0 then
4: return pi;
5: end if
6: select a random bid ui in [0, bi] uniformly;
7: Run ETEX-Allocation(G,d, (b−i, ui)) and update

owned ch;
8: owned ch =

∑k=K
k=1 aik;

9: if owned ch == 0 then
10: pi = di;
11: end if
12: return pi;

B. ETEX-Pricing Scheme

A mechanism is truthful if and only if the allocation
algorithm is monotone and the pricing method guarantees
the payment for any bidder i is its critical value [27]. The
monotonicity property ensures that if any bidder i wins by
bidding bi, it will also win by bidding higher than bi. A
monotone allocation algorithm implies there is a critical value
such that any bidder will win by bidding higher than this
value, and will lose by bidding lower than that. Although,
ETEX-Allocation is monotone (see Lemma 3), a natural way
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of finding the single critical value requires binary search
on the bid bi which requires multiple times of running LP.
Instead of providing exact critical value, in this paper, we
develop a technique to find the payment approximately to
achieve truthful in expectation. This greatly minimizes the
computational overhead. The basic idea behind ETEX-Pricing
scheme is finding the expected value of critical value for each
winner.

In the pricing algorithm, we randomize the price for each
winner i. Let random variable pi denote the randomized
payment. The strategy for determining the value of pi is as
follows: select a random bid ui ∈ [0, bi] uniformly, and run
the ETEX-Allocation once again with bidder i bidding ui (the
other bidders’ bids do not change). If the bidder i loses, then
we set the payment pi = bi. Otherwise, i.e., bidder i still
wins, we set pi = 0. The detailed algorithm is described
in Algorithm 2, where owned ch is the number of channels
currently owned by i. In the following section, we will show
that the expected value of the payment from bidder i is its
critical value (see Lemma 4).

VI. PROPERTIES ANALYSIS

In this paper, we evaluate the properties of mechanisms in
terms of truthfulness and computational complexity. We first
prove ETEX is truthful in expectation by showing the expected
utility of each bidder i is maximized with truthful bidding, and
then we analyze the computational complexity of ETEX.

A. Truthfulness

To prove ETEX is truthful in expectation, we try to prove
ETEX-Allocation is monotone and ETEX-Pricing charges
each bidder its expected critical value.

We firstly characterize the properties of ETEX-Allocation
algorithm. We start by establishing the following two lemmas.

Lemma 1: ∀b−i, if b
′

i > bi, then x∗
i (b

′

i,b−i) ≥
x∗
i (bi,b−i), where x∗

i (b
′

i,b−i) and x∗
i (bi,b−i) represent the

LP solution of bidder i with bids (b
′

i,b−i) and (bi,b−i),
respectively.

Proof: To simplify the description, we use S and S
′

to denote the LP solution vector when bidding (bi,b−i)
and (b

′

i,b−i) respectively (i.e., Si = x∗
i (bi,b−i) and S

′

i =
x∗
i (b

′

i,b−i)). Since S is the optimal solution to the linear
program, and S

′
is a feasible solution, we have

n∑
i=1

S
′

ibi ≤
n∑

i=1

Sibi (10)

Similarly, we get

Sib
′

i +
∑
j ̸=i

Sjb
′

j ≤ S
′

ib
′

i +
∑
j ̸=i

S
′

jb
′

j (11)

Let (11) plus (10), and move the right part of (10) to the
left, move the left part of (11) to the right, we get

(b
′

i − bi)(S
′

i − Si) ≥ 0 (12)

As b
′

i − bi > 0, then S
′

i − Si ≥ 0, i.e., x∗
i (b

′

i,b−i) ≥
x∗
i (bi,b−i).

...S 'S... ... ...

... ...

... ... ... ...

... ...Y

jx kxix
'

j
x '

i
x '

kx

ixay ...... ... ...
'Yby

'
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'
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)( ixpos )( '
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Fig. 1: Two lists of LP solutions (S and S
′
) where only bidder

i’s bid is different. The lists Y and Y
′

are the corresponding
LP solutions of i’s neighbors, which are sorted in descending
order. pos(xi) and pos(x

′

i) denote the position in the list of
Y and Y

′
respectively.

Lemma 2: Consider two bidding lists (b−i, bi) and
(b−i, b

′

i), and the corresponding LP solution lists are (x−i, xi)
and (x

′

−i, x
′

i), respectively. If bi < b
′

i, we have xk ≥ x
′

k,
∀k ∈ N(i), where N(i) is the set of neighboring bidders of i.

Proof: With Lemma 1, we get x
′

i ≥ xi, which means
bidder i will get more fractional spectrum when its bid
increases, and the increased spectrum allocated to bidder i
is ∆d = (x

′

i − xi)di. Since (x−i, xi) and (x
′

−i, x
′

i) are
both optimal solutions, bidder i’s increased spectrum would
result in decreasing the spectrum of its neighbors. Bidder i
increases ∆d and thus one of its neighbor would reduce at
most ∆d spectrum according to the interference constraints,
which means that other bidders can improve at most ∆d when
bi increases. We now assume that there exists one neighbor
k of bidder i improves its LP solution, i.e., x

′

k > xk. Since
k can improve at most ∆d spectrum yet k’s neighbor i have
improved ∆d spectrum, which means that k cannot improve
spectrum anymore by the interference constraints. That is
if x

′

k > xk, (x
′

k,x−i) would be the optimal solution for
(bi,b−i). This is a contradiction which leads to x

′

k ≤ xk, ∀k ∈
N(i).

With Lemma 1 and Lemma 2, we can prove the ETEX-
Allocation is monotone.

Lemma 3: The ETEX-Allocation algorithm is monotone,
i.e., if bidder i wins by bidding bi, i will also win by bidding
b
′

i where b
′

i > bi.
Proof: Consider two bidding lists where only bidder i’s

bid is different and the corresponding LP solutions are S and
S

′
respectively (see Fig. 1). In S, the bidder i is allocated

by bidding bi, and the corresponding LP solution is xi. In
S

′
, the bidder i bids b

′

i with b
′

i > bi, and the corresponding
LP solution is x

′

i. Let yk, k ∈ N(i), be the corresponding
LP solutions of the bidder i’s neighbors in S. Let Y denote
the sorted set (in descending order) of {yk, k ∈ N(i)} ∪ xi,
and the position of bidder i in Y is pos(xi). Similarly, let
y

′

k, k ∈ N(i) be the corresponding LP solutions of bidder i’s
neighbors in S

′
, and let Y

′
denote the sorted set of {y′

k, k ∈
N(i)}∪x′

i. The position of bidder i in Y
′

is pos(x
′

i). We have
y

′

k ≤ yk, k ∈ N(i) by Lemma 2. Therefore we get pos(xi) ≥
pos(x

′

i). We know that only bidder i’s neighbors would cause
conflicts such that bidder i would not be allocated. Now we
prove our claim by contradiction. We assume bidder i loses
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Fig. 2: The graph shows the each bidder i′s winning proba-
bility Zi as a function of different bids bi when fixing b−i,
where ci is critical value.

by bidding b
′

i, which means that a neighboring bidder with
smaller position has caused conflict to bidder i in Y

′
. Since

pos(xi) ≥ pos(x
′

i), the conflicting neighbor will also make
bidder i not be allocated in Y according to allocation rule.
This leads to a contradiction.

Now we characterize the properties of ETEX-Pricing algo-
rithm by showing that the charged price for each bidder i is
the expected value of its critical value.

Lemma 4: Let pi be the random variable to denote payment
charged from bidder i, the expected value of pi is its critical
value ci, i.e., E[pi] = ci.

Proof: We use Zi to denote the overall probability that i
wins his desired channels, and ci to denote the critical value.
According to the definition of critical value, we know bidder
i will be allocated with the requested channels when bidding
bi > ci, where ci is its critical value. Otherwise, i will lose by
bidding lower than ci. Therefore, we can describe Zi(bi,b−i)
as a step function of bi when fixing b−i, as show in Figure
2. Note that b−i is fixed throughout this discussion, so we
suppress it in the notation for convenient. After that, according
to the pricing strategy, it is easy to compute the expectation
of the payment pi for winner i is ci according the following
equation.

E[pi] = Prlose ·bi+Prwin ·0 =
ci
bi
·bi+(1− ci

bi
)·0 = ci. (13)

where Prlose and Prwin denote the probability of winning
and losing, respectively.

Based on the characterizations of allocation method and
pricing scheme, we now show that ETEX is truthful in
expectation. With the ETEX-Allocation rule and the pricing
scheme, we obtain:

Theorem 2: The ETEX is truthful in expectation.
Proof: Let vi be the truthful bidding of bidder i, and bi

be the bidding such that bi ̸= vi. We have the following two
cases according to whether bidder i loses or wins:

• CASE 1: i loses by bidding bi, then i will also lose by
bidding vi by Lemma 3. Therefore the utility of bidder i
is ui(vi,b−i) = ui(bi,b−i) = 0.

• CASE 2: i wins by bidding bi. If i also wins by bidding
vi, because the payment of critical value is same, then
E[ui(bi,b−i)] = vi − ci = E[ui(vi,b−i)]. If i loses by

bidding vi, then the critical value ci must be greater than
vi. Therefore the utility by bidding bi is E[ui(bi,b−i)] =
vi − c < 0 = E[ui(vi,b−i)].

In both cases, we have E[ui(bi,b−i)] ≤ E[ui(vi,b−i)],
this completes the proof.

Computational Complexity: We now analyze the com-
putational complexity of ETEX. Despite the process of LP,
the ETEX-Allocation takes O(N + L) to sort the topology,
where L is number of edges in G (L ≤ N(N−1)

2 ), and takes
O(N logN) time to sort B. For each process of updating the
available channels of the neighbors of i, it takes at most O(N)
time. That is, ETEX-Allocation runs in O(L+N logN+N2).
For pricing algorithm, it runs the allocation algorithm again
without BFS procedure for each winner. Therefore, the ETEX
runs in time O(L+N2 logN+N3) plus ♯+1 times of the time
consumed by the LP process with bounded K×N parameters
[23], where ♯ is the number of winners in the allocation.

Note that we use Karmarkars Algorithm to obtain the LP
solution in this paper. Karmarkars Algorithm belongs to the
interior point method, which generates a sequence of points
inside the feasible region and finally approaches the optimal
vertex [23] and its computational complexity is bounded by
O(N4K4C), where C is encoded bits of aik.

VII. HARD-TO-MANIPULATE

In this section, we attempt to break the assumption where
bidders are risk-neutral by proposing a hard-to-manipulate
auction. Instead of performing a single greedy algorithm, we
attempt local improvements in the ordering of the bidders.
Specifically, we repeatedly improve the solution quality by
making a single change in the order of the bids, and run a
greedy algorithm on the modified order. The improvements
can improve social welfare and spectrum utilization. However,
such an efficient allocation algorithm will not guarantee the
monotonicity which makes the payment scheme hard to be
designed to ensure truthfulness. We solve the problem by
moving the difficulty of manipulation from the mechanism to
the manipulators. We adopt a concept of hard-to-manipulate
that states the problem of computing a useful non-truthful bid
given knowledge of the bids from other agents is NP-hard.

Specifically, we perform climbing-hill (CH) based on E-
TEX, and the corresponding mechanism are referred as HMA
(Hard-to-Manipulate Auction). In the following, we give the
allocation rule and pricing scheme accordingly.

A. HMA Allocation Rules

The allocation algorithm proceeds in two phases: In the first
phase we sequentially allocate the channels to bidders accord-
ing to the sorted linear programming solutions. Actually, this
phase is the ETEX-Allocation process. In the second phase,
we perform a hill-climbing process based on the sorted bids in
the first phase. The two steps of the allocation algorithm can
be described as follows, and the detailed algorithm is given in
Algorithm 3.

• STEP 1: Run ETEX-Allocation algorithm and record the
obtained social welfare W (π), where π is the sorted
bidder set according to sorted set B

′
.
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• STEP 2: For j = 2 to N , do
– π

′ ← (π with bidder j moved to first place).
– Sequentially allocate exact channels to bidders ac-

cording to π
′

while satisfying interference con-
straints. Let W (π

′
) denote the obtained social wel-

fare on π
′
. If W (π

′
) ≥ W (π), return the allocation

on π
′
.

Algorithm 3: HMA Allocation.
Input:

The network, G(N , E);
The bids vector, b;
The demands vector, d;

Output:
A feasible spectrum allocation;

1: Run ETEX-Allocation and record the social welfare
W (π);

2: Initial π as the ordered bidder set according to sorted set
B

′
in ETEX-Allocation;

3: for j = 2 to N do
4: π

′ ← (π with element j moved to first place);
5: Sequentially allocate exact channels to bidders

according to π
′

and record the social welfare W (π
′
);

6: if W (π
′
) ≥W (π) then

7: return the allocation on π
′
;

8: end if
9: end for

10: return the allocation on π;

Due to the local improvement is performed, the monotonici-
ty will not be guaranteed. As a result, a threshold payment does
not exist for ensuring the truthfulness. We therefore redesign
the payment scheme based on the VCG payment scheme.

B. A VCG-Based Payment Scheme

The idea of the pricing scheme is similar with VCG
mechanism. Intuitively, the payment of winner i is the social
welfare for everyone else without i in the system minus that
for everyone else with i in the system. For easy description,
we use H denote the above HMA allocation algorithm, then
the price pi we charge from each winner i is:

pi = WH(b−i)− (WH(b)− bi) (14)

Where the item WH(b−i) and WH(b) are the social welfare
of H running on the bids b−i and bids b, respectively.

C. Properties Analysis

Since our heuristic approach HMA is not optimal and thus
the truthfulness will not be guaranteed due to the limitation
of VCG mechanism. However, we show manipulating such an
auction of a bidder for profit gaining will be hard. We first
define the manipulation problem and then prove that it is NP-
hard.

Definition 3 (H Manipulation Problem): For the spectrum
auction, given bids set (d,b) where d is the vector of de-
mands (d1, · · · , dN ) and b is the vector of bids (b1, · · · , bN ),

returning a bid (d̃i, b̃i) that gives bidder i at least ϵ (ϵ > 0)
additional utility than what it would have received from being
truthful in that auction, or outputting “impossible” if no such
manipulation exists.

Definition 4 (Simple-Case H Manipulation Problem):
Consider a simple case for the spectrum auction where
conflict graph is complete graph, given bids set (d,b),
returning a bid (d̃i, b̃i) that gives bidder i at least ϵ (ϵ > 0)
additional utility than what it would have received from being
truthful in that auction, or outputting “impossible” if no such
manipulation exists.

To prove the H manipulation problem is NP-hard, we just
need to prove the simple case H Manipulation Problem is
NP-hard. A recent work in [25] has investigated the hard-
to-manipulate auctions and consider the necessary properties
of VCG-based auctions that will allow us to say that their
manipulation is hard. The main result in [25] is that the
allocation algorithm of a VCG-based auction satisfying the
properties of Greedy Optimality (called “G-OPT”) and Strong
Consumer Sovereignty (called “SCS”) are the necessary con-
dition on the auction that make manipulation NP-hard. As
an instance, the authors show that the condition is also the
sufficient condition for the VCG-based combinatorial auction
[26], which is a classic economic auction. Inspired by this,
we prove the Simple-Case H Manipulation problem is NP-
Hard by showing our allocation algorithm satisfying G-OPT
and SCS which are defined in the following.

Definition 5 (Greedy Optimality): An allocation algorithm
satisfies greedy optimality if it ensures that the algorithm
does not leave channels unassigned when other request them,
i.e., there does not exist a losing bidder whose demand di is
less than the available channels, and does not assign more
channels than that it requests, i.e., a bidder obtains either
exact di channels or zero channel.

Definition 6 (Strong Consumer Sovereignty): An
allocation algorithm satisfies strong consumer sovereignty if
there does not exit a single bidder would contribute more
social welfare than the total value the algorithm achieves,
i.e., there does not exist a bidder i with bi > W , where W is
the total social welfare achieved by the algorithm.

Based on the definitions, we can prove the following two
lemmas.

Lemma 5: The allocation algorithm H satisfies Greedy
Optimality.

Proof: Firstly, the allocation algorithm H scans through
the bids set, allocates channels to bidders that can be allocated
to. At the end, either all bidders are allocated to, or any
remaining bidders could not possibly be allocated to given the
current allocation. Secondly, since we adopt the strict request
here, we allocate the exact di or zero channels to bidder i.
This completes the proof.

Lemma 6: The allocation algorithm H satisfies Strong
Consumer Sovereignty.

Proof: We assume that there exists a bidder i whose
bi > W where W is the total social welfare achieved by the
allocation algorithm H . If bidder i wins in the allocation, then
W must contain the bi which indicates W ≥ bi and leads to a
contradiction. If i loses in the allocation, then by STEP 2 of H ,
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bidder i will win the auction and this leads to a contradiction.

Now we provide a simple NP-Hard problem (see Lemma 7),
and then we show deducing the Simple-Case H Manipulation
Problem to it.

Lemma 7: The following problem (Simple-Case-Winner-
Determination) is NP-Hard: Consider the simple case for
the spectrum auction where conflict graph G is complete
graph, determining whether an allocation can achieve V total
valuation (social welfare), and outputting that allocation if it
exists.

Proof: The simple case of spectrum auction with maxi-
mizing social welfare can be reduced to classic 0/1 Knapsack
Problem, where bid is equivalent to ‘value’ and demand is
equivalent to ‘weight’. Therefore the above problem is equiv-
alent to the decision form of classic 0/1 Knapsack Problem,
which is known to be NP-hard.

Now we can prove the Simple-Case H Manipulation Prob-
lem is NP-Hard by deducing it to the Simple-Case-Winner-
Determination problem.

Theorem 3: The Simple-Case H Manipulation Problem is
NP-Hard.

Proof: Suppose the Simple-Case Manipulation Problem
could be solved in polynomial time. We provide a polynomial
time solution to Simple-Case-Winner-Determination.

Denote θ as a vector ((d1, v1), · · · , (dN , vN )) where N is
the number of bidders. First, run the allocation algorithm on
θ. Let the total valuation of the result be x. If x ≥ V , then
we are done: output “yes” and return the allocation, where V
is the total valuation. We suppose otherwise, i.e., V > x.

Denote θ
′
= ((d1, v1), · · · , (dN , vN ), (K,V −ϵ)). We know

that V > x, and thus V − ϵ > x (since ϵ is of arbitrarily small
precision). Therefore, when run on θ

′
, the allocation algorithm

will allocate total K channels to N +1 by SCS. Since no one
else can be allocated to, agent N + 1’s payment is x, and its
utility is V − x− ϵ.

Now we prove the main reduction: θ has an allocation
achieving V total valuation if only and if bidder N + 1
can achieve at least ϵ units of manipulating in θ

′
. Since the

next derivation process is similar with that of VCG-based
combinatorial auction in [25], we omit here.

Based on the above understanding, we claim the H Manip-
ulation Problem is NP-Hard.

Theorem 4: The H Manipulation Problem is NP-Hard.
Proof: Since H Manipulation Problem generalizes the

Simple-Case H Manipulation Problem, it is only harder.
Computational Complexity: We now analyze the computa-

tional complexity of HMA. The complexity of HMA allocation
consists of two parts, i.e., STEP 1 and STEP 2. The complexity
comes form step 1 is the complexity of ETEX-Allocation,
i.e., O(L + N logN + N2) plus the time consumed by LP
process. The complexity comes from step 2, which needs at
most N2 times of assigning and updating process. This step
needs O(N3) time. To charge each winner in pricing scheme,
we need to run HMA allocation algorithm once again without
BFS procedure. Therefore the total complexity of HMA is time
O(L + N2 logN + N3 + N4) plus ♯ + 1 times of the time

consumed by the LP process with bounded K×N parameters,
where ♯ is the number of winners in the auction.

VIII. PERFORMANCE EVALUATION

In this section, we use simulation experiments to evaluate
the performance of the approximately truthful mechanisms.

A. Simulation Methodology

1) Network Topology. We assume a single auctioneer that
conducts an auction in a relatively small geographic area.
Bidders are randomly deployed in a square of 1.0 ×
1.0 area. We vary the network density by varying the
number of bidders from 50 to 500 (the default is 300). To
generate the interference graph, we set the interference
range as 0.1, i.e., if the distance between any two bidders
is less than 0.1, they will interfere with each other when
using the same channel simultaneously.

2) Channels, Bids, and Demands. We set up an auction
of total channels varying from 2 to 20 with the default
being 6 channels. The per-channel bid of bidder i (i.e.,
bi/di) is randomly distributed within (0,1]. The channel
demand of bidder i (i.e., di) is randomly chosen from the
interval [1,K] where K is the total number of available
channels.

3) Performance Metrics. We use the following perfor-
mance metrics to evaluate the efficiency:

• Social Welfare: the sum of all winners’ bids, i.e.,∑i=N
i=1 xibi.

• Spectrum Utilization: the sum of allocated chan-
nels over winners, i.e.,

∑i=N
i=1 xidi.

• Bidder Satisfaction: the percentage of winners, i.e.,∑i=N
i=1 xi

N .

B. Approximately Truthful vs. Truthful

We now evaluate the performance on the approximately
truthful mechanisms by comparing them with VERITAS [14]
and the method in [21] (referred as SW-Fair). VERITAS is one
of the most famous SSA with the objective of maximizing
social welfare. VERITAS consists of a greedy allocation
algorithm and a critical value based pricing method. SW-Fair
is also a greedy-based mechanism. Here we describe these
mechanisms briefly in the following:

VERITAS-Allocation: Firstly, the per-channel bids of all
bidders are sorted from high to low, then the algorithm allo-
cates exact channels to bidders sequentially from the bidder
with the highest bid to the lowest one. For each bidder i, the
algorithm first checks whether there are enough channels to
satisfy the request while satisfying interference constraints. If
so, the request of bidder i is satisfied, otherwise means the
opposite.

VERITAS-Pricing: VERITAS charges each winner i with
the per-channel bid of its critical neighbor multiplied by the
number of channels allocated to i. The critical neighbor of
bidder i is the first winning neighbor who makes the number
of i’s available channels below its demand di when running
VERITAS-Allocation on bids b−i.
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Fig. 3: Generated social welfare of auction mechanisms. The default number of auctioned channels is 6 (figure (a)), the default
number of bidders is 300 (figure (b)) and the channel demand of each bidder is set to 2 (figures (c)).
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Fig. 4: Generated spectrum utilization of auction mechanisms. The default number of auctioned channels is 6 (figure (a)), the
default number of bidders is 300 (figure (b)) and the channel demand of each bidder is set to 2 (figures (c)).

50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
id

d
e
r 

S
a
ti
s
fa

c
ti
o
n

Number of bidders

VERITAS

SW−Fair

ETEX

HMA

(a)

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

B
id

d
e
r 

S
a
ti
s
fa

c
ti
o
n

Number of Auctioned Channels

VERITAS

SW−Fair

ETEX

HMA

(b)

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
id

d
e
r 

S
a
ti
s
fa

c
ti
o
n

Number of bidders

VERITAS

SW−Fair

ETEX

HMA

(c)

Fig. 5: Generated bidder satisfaction of the mechanisms. The default number of auctioned channels is 6 (figure (a)), the default
number of bidders is 300 (figure (b)), and the channel demand of each bidder is 2 (figure (c)).

SW-Fair is similar with VERITAS, while SW-Fair aims to
achieve a trade-off between social welfare and fairness. The
main difference between SW-Fair and VERITAS is that SW-
Fair considers the impact to neighbouring nodes when sorting
bidders, i.e., SW-Fair sorts the bidders by the computed virtual
bid, which is defined as bi

|N(i)|+1 for bidder i, where |N(i)| is
the number of i’s neighbors. The detailed algorithm can be
referred in [21].

Now we compare VERITAS and SW-Fair with our mech-
anisms. The key distinction between them is that our mecha-
nisms seek to improve the efficiency in terms of social welfare
and spectrum usage. We compare these mechanisms in three

scenarios. First, we fix the number of auctioned channels
(K = 6) and vary the number of bidders from 50 to 500.
Second, we fix the number of bidders N = 300 and vary
the number of auctioned channels from 2 to 20. In the above
two scenarios, the demand of each bidder di is randomly
chosen from the interval [1,K] where K is the total number of
available channels. Finally, we fix the demand of each bidder
(di = 2), fix the number of bidders (N = 300), and vary the
number of auctioned channels from 2 to 20.

We plot the results in Fig. 3, Fig. 4 and Fig. 5. From these
results, we observe that: (1) ETEX and HMA outperforms
slightly better than VERITAS by about 23% and 27% in
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Fig. 6: Evaluate the performance on the further improvements
on hill climbing, where HMA-CH2 is the two element im-
provement on ETEX.

average respectively. (2) The hill-climbing increases the
efficiency (social welfare and spectrum utilization) by about
4% in average. (3) Our mechanisms performs slightly better
than SW-Fair, but when the number of bidders increases,
SW-Fair performs better than ETEX while is slightly worse
than HMA (See Fig. 3(a) and Fig. 4(a)). This is because
that the impact of neighboring nodes when allocation is
enlarged when the number of bidders increases (i.e., more
bidders would conflict). (4) In the first two scenarios, the
performance gap increases with the growing in the number
of bidders (channels). The main reason for the increased
performance of our methods is due to the higher bidder
satisfaction which we plot in Fig. 5. That is more bidders
succeed in our mechanisms. The performance gap increases as
the number of bidders (auctioned channels ) grows confirmed
the intuition that the LP-based allocation methods performs
well since LP takes mutual interference between neighbours
into consideration when allocation. This intuition is also
confirmed in [31]. In the third scenario, the performance gap
decreases with the growing in the number of channels. This
is because more bidders can be satisfied and they can be all
allocated with channels when the number of channels is large
enough. (5) The metric of bidder satisfaction reflects the
fairness of these mechanisms when we use the Jain’s fairness
index [34] to quantify the fairness of our mechanisms. The
Jain’s fairness index is computed as 1

N

∑N
i=1

Xi

Xf
, where Xi

denotes the allocation of bidder i and Xf =
∑N

i=1 X2
i∑N

i=1 Xi
is the

fair allocation mark. Because we adopt strict request model
in our context, i.e., Xi is a binary variable which indicates
whether i wins or loses. As a result, the Jain’s fairness index
here means the bidder satisfaction. Therefore, we claim our
mechanisms performs better than other methods in terms of
fairness by the results in Fig. 5.

C. Further Improvements on Hill Climbing
Recall that the local improvements method in hard-to-

manipulate auction, where we just simply move the element j

3
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Fig. 7: Fixed Topolgies: Ring (left) and Star (right).

TABLE I: Comparison to Optimum on Random Topologies

Performance Loss Social Welfare (%) Spectrum Utilization (%)
VERITAS 5.24 8.15
SW-Fair 3.02 4.68
ETEX 3.16 5.02
HMA 2.62 3.88

(j = 1, · · · , N ) to the first place. Here we tried a further
improvement where two elements (i = 1, · · · , N − 1 and
j = i+1, · · · , N ) are moved to the first and second position in
the order accordingly. We referred this modified mechanism as
HMA-CH2. We compared the performance of the two variants
of improvements. The results are given in Fig. 6. From the
results, we observe that the performance gap is no more than
2%, while the two element variation costs more computational
complexity than our simple improvement.

D. Compare to the Optimal Solution

In this section, we now compare the performance derived
from our proposed heuristic approaches to the optimal value.
Given the complexity of the exhaustive search scales expo-
nentially with the number of bidders, we use two typical
topologies (see Fig. 7) with limited number of bidders and
channels. Topology I and II are two extreme topologies: a star
topology with one vertex interferes with the rest and a ring
topology with uniformed interference condition.

Fig.8 and Fig.9 summarize the results for 20 nodes ring
topology and 20 nodes star topology, assuming 2 channels
are auctioned. Results are represented as mean of 10 runs.
We observe that our proposed approaches achieve similar
performance compared to the global optimal.

Following that, we also consider a set of small random
topologies assuming 2 channels to be auctioned to 20 bid-
ders. For a clear illustration, we evaluate the performance by
computing the performance loss compared to the optimum. If
the obtained result is T and the global optimum is Topt, the
performance loss is defined as 1 − T/Topt. This definition
is natural and can measure the difference of performance
provided by our mechanisms and the global optimum. We
summarized the results averaged over 100 random topologies
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Fig. 8: Comparison to the optimal solution using 20 nodes ring topology. The channel request of each bidder is 2.
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Fig. 9: Comparison to the optimal solution using 20 nodes star topology. The channel request of each bidder is 2.

in Table I. We observe that our mechanism HMA provides the
better approximation compared to other methods again.

Overall, our methods provide better approximation com-
pared to VERITAS. This is because our methods are based on
LP solutions which take mutual influence between neighboring
bidders into consideration, and thus achieve better approxima-
tion.

IX. CONCLUSION

In this paper, we study the secondary spectrum auction with
single seller and multiple buyers (bidders). We release the
burden of ensuring the hard truthfulness by introducing the
concept of approximate truthfulness. We show that finding the
optimal spectrum allocation under strict-request model is NP-
hard. To solve this problem, we first provide a suboptimal
algorithm which is shown to be monotone. To minimize the
computational overhead, we propose a novel pricing scheme
to ensure the mechanism containing the monotone algorithm
along with the pricing scheme achieving truthful in expecta-
tion. Following that, we perform hill-climbing based on the
monotone algorithm, which improves the social welfare and

spectrum utilization but breaks the monotonicity. Although
the novel pricing scheme is no longer suitable, we show it
is a hard-to-manipulate auction when combining with a VCG-
based payment scheme. Compared to the mechanism achieving
truthful in expectation, the hard-to-manipulate auction breaks
the assumption that bidders are risk-neutral and improves the
allocating efficiency. Theoretical analysis shows the computa-
tional efficiency of these approximately truthful mechanisms,
and simulation results show that our approximately truthful
mechanisms can achieve significant improvement over the
state-of-the-art mechanisms.
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