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We present a new approach to segmenting multiple time skeyiemalyzing the dynamics of cluster
formation and re-arrangement around putative segmentdaoi@s. This approach finds application
in distilling large numbers of gene expression profiles tetmporal relationships underlying biolog-
ical processes. By directly minimizing information-thetic measures of segmentation quality de-
rived from Kullback-Leibler (KL) divergences, our formtilan reveals clusters of genes along with
a segmentation such that clusters show concerted behaitiunwegments but exhibit significant
re-grouping across segmentation boundaries. The redith®e segmentation algorithm can be sum-
marized as Gantt charts revealing temporal dependenctibg iordering of key biological processes.
Applications to the yeast metabolic cycle and the yeastogele are described.

1. Introduction

Time course analysis has become an important tool for thly stidevelopmental, disease pro-
gression, and cyclical biological processes, e.g., tHeygele [8], metabolic cycle [9], and even
entire life cycles. The growing affordability of microayracreens has fostered the generation
of many time series datasets. Recent research efforts bagalered using static measurements
to “fill in the gaps” in the time series data [7], quantifyinging differences in gene expres-
sion [11], and reconstructing regulatory relationshids [6

One of the attractions of time series analysis is its pronugeveal temporal relationships
underlying biological processes: which process occursrkefhat, what are the “checkpoints”
that must be satisfied (and when), and whether there can éraatitie pathways of time se-
ries progression. Although such analysis can be condugtédbking individual genes whose
function is known, we desire to automatically mine, in anupesvised manner, temporal rela-
tionships involvinggroups of genes, which are natpriori defined. In particular, we desire to
identify both segments of the time course where groups sloowerted behavior and boundaries
between segments where there is significant “re-groupifigéaes. We cast this problem as a
form of time series segmentation where the segmentati¢erion is driven by measures over
cluster dynamics.

It is important to contrast our goals with prior work. Typli@aorks on time series segmen-
tation [3] are focused on segmenting a single time seriesedsave are focused on simultane-
ously segmenting multiple time series. Typical works omsegtation view it as a problem of
clustering time points with the constraint that data saspiea cluster must belong to succes-
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sive time points, whereas we have the twin goals of clugigiine points as well as clustering
the genes. Typical works on segmentation are focused on gemeity assumptions within a
segment whereas we explicitly model each segment as a getexrous mix of multiple clus-
ters which can themselves be redefined across segments.c@iuisvihence directly targeted to
mining datasets involving thousands of genes where there@nplex inter-relationships and
re-organizations underlying the dataset.
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Figure 1. Preview of results: the yeast metabolic cyclesdrtdop row) involves the staged coordination of a redegtiv
charging phase (time points [1-6]), followed by oxidativetabolism ([6—10]), followed by reductive metabolism 10
13]). Contingency tables capture the concerted groupingeoks within segments (second row) as well as the re-
groupings between segments (third row). Observe that théngency tables in the second row involve significant
enrichments whereas the tables in the third row approxiraaiaiform distribution. Gantt chart views (bottom row)
depict the temporal coordination of biological processedeulying the dataset. Only some of the enriched functions
are displayed, for lack of space.

As an example, consider the yeast metabolic cycle (YMChaishe dataset of Tt
al. [9]. The YMC is a carefully coordinated mechanism betweerductive chargingR/C)
phase involving degradation and ubiquination activitieBowed by oxidative metabolisnOx),
where oxygen is used up to generate adenosine triphospAdtes), culminating in reductive
metabolism R/B) characterized by decrease in oxygen uptake and emphagiblarreplica-
tion and cell division. Different genes are central to eatthese phases. Tet al. analyzed
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this time course by tracking ‘sentinel’ genes showing piddehavior and arrived at a segmen-
tation into nine intervals, corresponding to three conglastantiations of the YMC. One of
these cycles, spanning 3 segments and 13 time points, istdeépn Fig. 1 (top). We analyzed
3602 gene expression profiles over a 15 hour period usingegmentation algorithm and it
identified the same segmentation. Further, the clusteradh ef our segments are enriched in
the corresponding groups of genes, and demonstrate sagttifie-grouping across segments, as
shown in Fig. 1 (middle two rows). These time-bounded emniehts can be summarized using
a Gantt chart, as shown in Fig. 1 (bottom), which identifieddgjical processes as they become
active or inactive in different segments. We reiterate thattime point boundaries, the groups
of genes important in each segment, and the functions ettichthem, are inferred automati-
cally. No explicit modeling of periodicity or other priorddogical knowledge has been imparted
to the segmentation algorithm.

2. Problem Formulation

We are given multiple vectors of measureme@its= {g1,g2,...,8,}, Where eachg; is a
time series ovefl = {t1,ts,...,t;}. The components o§; can refer to absolute/relative
gene expression values or some other processed versioe sathe, such as mean-centered
and log-transformed values, or even coefficients in a psalotomponent decomposition of
G. The problem of segmentation is to expréSsas a sequence of segments or windows:
{wi*, wit, ..., wi"} where each window*, ¢, < t., is a set of consecutive time points be-
ginning at (and inclusive of) time poirt and ending at (and inclusive of) time point Note
that adjacent windows have one time point overlap since @ piartitions of the time course
in terms of intervals rather than individual time points.

We first describe a way to evaluate a given segmentationéefesenting an algorithm for
identifying segmentations. We begin by studying the cagesiftwo adjacent windowswig
andwi;. Given two clusterings of genes, one for each of the windows evaluation criterion
requires that these two sets of clusters are highly disaimile., genes clustered together in
some cluster oﬁjfg move out of their clusters and are clustered together witaréint genes in
w}f;. For instance, given a dataset with 18 genes and 3 clusterthigr window, the evaluation
criterion prefers contingency table (a) below over tabl@sand (c). Here the rows refer to
clusters ofw;® and the columns refer to clusters ofc. We achieve this by enforcing that
the (projected) row-wise and column-wise distributior@irthe contingency table resemble a
uniform distribution.
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Formally, given two windowsﬂfz andw;°, which have been clustered intoand ¢ clusters
(respectively), we define the x ¢ contingency table over the clusterings. Entry in the
(i,7)t" cell of the table represents the overlap between the genstentd together in clustér
of wﬁz and in clusteyj of wic. The sizes of the clusters imfj; are given by the column-wise sums
across each row;. = Zj n;;, while the sizes of clusters im;j are given by row-wise sums
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across each columm.; = >, n;;. Using these, we defing + ¢) probability distributions,
one for each row and one for each column. The distributioresponding to row, R;, takes
values from the column indices, i.&.,. . ¢, with valuej (1 < j < ¢) occurring with probability
24 Similarly, the column dlstrlbut|0n for columy) C;, takes values from the row indices, i.e.,
1 .r, with valuei (1 < i < r) occurring with probablllty”” We capture the deviation of

these row-wise and column-wise distributions w.r.t. thiarm d|str|but|on as:

F= 1Y D@y + LY Desic, ) ®

i=1

whereD g (+]|-) is the Kullback-Leibler (KL) divergence between two probiabdistributions:

Dir(pllg) = Zp 10g

with the Iimits()log% — 0, p(x) 1og% — oo implied, andU(-) denotes the uniform
distribution whose argument is the probability of any oateo The optimization problem is
then to minimizeF.

Observe that the combinations of theow-wise KL-divergences andcolumn-wise KL-
divergences are averaged to fafim This is to mitigate the effect of lopsided contingency ésbl
(r > corec > r)wherein it is possible to optimiz& by focusing on the “longer” dimension
without really ensuring that the other dimension’s prajets are close to uniform. Finally, note
that Eq. 1 can be readily extended to the case where we haethaor two segmerits

Minimizing F will yield row-wise and column-wise distribution estimatéhat are close
to the respective uniform distributions and, hence, rasuilidependent clusterings across the
neighboring windows. However, there are special cases whenould have a minimum, but
the resulting clustering doesn’t quite meet our intuitiémaependent clusterings and hence, to
avoid these cases, we regulariZevith additional terms as described later.

3. Clustering across windows

We now turn our attention to the clustering algorithm thasthalance two conflicting criteria:
the clusters across neighboring windows must be indepébdéthe clusters must exhibit con-
certed behavior within a window. In typical clustering aligoms, each cluster has a prototype
and the data vectors are assigned to the nearest cluster lmas®me distance measure from
these prototypes. The prototypes are iteratively impraodohd the best possible clusters.
Again, we develop our notation for two adjacent windows dreddxtension to greater num-
bers of windows is straightforward. Given a gene vegjaret its projection onto the ‘left’ win-
dOWw be referred to ag;,, and its projection onto the ‘right’ window,® be referred to agy.

aAn alternate formulation is to cast the uniform distribaticequirement over all the contingency table entries rather
than over row and column marginals separately as done hewgeér, our approach is more intuitive since the converse
problem of finding highly dependent clusters then reducssiply maximizing Eq. 1. This converse problem is known
as associative clustering and has been previous studiesifj measures such as the Bayes factor.

bThe objective function defined in Eq. 1 has connections tptheiple of minimum discrimination information (MDI)
introduced by Kullback for the analysis of contingency ésbj4]. The MDI principle states that ifis the assumed or
true distribution, the estimated distributipnmust be chosen such thBtx 1. (p||q) is minimized. In our case is the
uniform distribution desired angis the distribution estimated from observed data.
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Recall that sets of such projections are clustered sepasateh that the clusters are maximally
dissimilar. Letr andc be the number of clusters farandy vectors, which results inax ¢ con-
tingency table. Letnz(.:”) be the prototype vector for théh cluster of thex vectors. The assign-
ment of a data vector to the clusters is given by the prolighiistributionV (x;,) = {V;(xx)},
where)"!_, Vi(xx) = 1. The probabilities/; (x;,) are the cluster membership indicator vari-
ables, i.e., the probability that data samples assigned to clusteér Similar cluster prototypes
m§y), distributionsV (yy ), and cluster indicator variablé$ (y) are defined foy vectors as
well. Then contingency table counts can be calculated;as= >, V;(xx)V;(yx). In hard
clustering algorithms, like the traditionat-means, each data sample is assigned to the nearest
cluster with a probability of 1. However, calculatimg; using hard memberships renders the
function F in Eq 1 non-differentiable at certain points, as a result bfolv we cannot lever-
age classical numerical optimization algorithms to miziey. To avoid this problem, cluster
indicator variables are typically parameterized as a smhwtction that is continuously differ-
entiable and which assigns a non-zero cluster membersbigapility for each data sample, i.e
Vi(xk), Vi(yx) € (0,1). We present a novel smoothing approximation that track<lirgter
indicator variables with high accuracy. First, we define

I —my| 2 — e — my”|

Veiiny (Xk) = 5 A<ii' <r

whereD is the point-set diameter

D:I?%;(ka —xp|}1 < kK <wv

A well known approximation tenin v, i) (xx) is the Kreisselmeier-Steinhauséf §) envelope
function [10] given by

-1 r
KSi(xe) = —n [ 3 exp(—p760 (1))
i'=1
wherep > 0. The K S function is a smooth function which is differentiable to ahggree.
Using this the cluster memberships are redefined as:

Vilx) = Z(x) " exp |p KSi(001)|

where Z(x) is a normalizing function such th3f; Vi(x;) = 1. The cluster memberships
for the “right” window, V;(y), are also smoothed similarly. If the data sample belongs to a
cluster, the cluster membership probability is slightlysehan 1 and for all the other clusters it
is slightly greater than 0.

Minimizing the functionZ in Eq 1 should ideally yield clusters that are independerdss
windows and local within each window. However, using smadtister prototypes gives rise
to an alternative minimum solution where each data samgedigyned with uniform probabil-
ity to every cluster. Recall the contingency table exampenfSec 2; each of the 18 samples
can be assigned to the 3 row clusters (and 3 column clustéits)pwobability [1/3,1/3,1/3]
and the estimate of count matrix from these soft counts watildbe uniform in each cell
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(>°k Vi(xk)Vj(yx) = 2). To avoid degenerate solutions such as these, we requkienma de-
viation of individual data vector probabilitie¥(x; ) andV;(yx)) from the uniform distribution
over the number of clusters. This leads to the regularizgettilze function:

=AY DrnRAU) + 2 3 D (U ()
i=1 Jj=1

)
__ZDKL (X ||U __ZDKL (Yk ||U( ))
where\ is the weight, set to a value greater than 1, to give more egmipl@ minimizing the

row and column wise distributions. This also enforces e@lisdter sizes. Substituting the
KL-divergencesin Eq. 2:

>opey Vilxu)Viyr) Yo Vixie)Vi(yw) 1
ZZ ¥ Vi(xp) 1°g2( iZZIW(Xk) /c)

1171

L2 ZZ Zk L Vi (X Vj(yk)logg (Zzzlu‘/i(xk)vj(yk)/})

j=1 i=1 Vi(y) > ore Vilyr) r
__ZZV (XK logg(ZV (xk /—)——ZZV Vi logg(ZV yk/ )
k=1 i=1 k=1 j=1

The derivative of this function w.r.t the prototypﬁé” is given by:

s mm L (R e )

[ Vi(yk) Zk’ 1 (Xk’)Vj(Yk’)}
Zk’ y Vir (x) Zk’ 1 (Vir (xx7))?

_ %{ . [1+1D(Zk'z:1kl I(Xk/()y‘;gyw) /1)} [%}}

Jj=1

_ %[1 + (Vi) / })]) XV i Vi (34

where

2p(x — m;”

(@)
Voo Vi (x) = I )<5i',i‘/i(><k)—eXP(—PWi',z')(Xk))(W(Xk))QZ(X)

+ Z [ i (xk))? exp(—py(ir 5y (%k))Vir (%) Z () | = Vi(xx) Vir (Xk)>
i"=1

Hered, ; is the Kronecker’s delta. The index variables are as follows’, and:” over the
clusters inx vectors,j over the clusters in thg vectors, and: andk’ over the data vectors. The
derivatives w.r.t. prototypes1§.y) are calculated analogously.
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4. Segmentation Algorithm

Let7 = {t1,t2,...,t;} be the given time series data set, dpgd, andl,,.. be the minimum
and maximum window lengths respectively. For each timetpgire 7', we define the set of
windows starting fromt, asS;, = {w;" |lmin < to —ta + 1 < lyas }. Given awindoww;’, the
choices for the next window are given By, , the set of windows starting formy. We experi-
mented with both dynamic programming and greedy algoritbut$he results were not qualita-
tively different and we present the greedy algorithm foreeafsexposition. We cluster the data
in wﬁz simultaneously with each of the windowég € S,, using the objective function in Eq 2
and choose the windowﬁg that has the minimum value for the objective function. Ojatan
tion of the objective function for clustering is performezing the conjugate gradient procedure
in the LANCELOT FORTRAN package for optimization. The iaiticluster prototypes are set
using individualk-means clusters in each window. The conjugate gradienepioe iteratively
improves these initial prototypes till a local minimum oétbbjective function is attained. Since
local optimization procedures are sensitive to initigi@a, we perform 100 random restarts of
the procedure (each time with different k-means prototypead in individual windows) and
choose the best (minimum) of the optimized solutions as ¢beesfor the next window choice.
The window corresponding to the minimum of these best clsagselected as the next window.
This process is continued till we reach the end of the timesmu

5. Experiments

Datasets: Our experimental datasets constitute gene expressionunegasnts spanning the
yeast metabolic cycle (YMC) and the yeast cell cycle (YCC}. #tated earlier, the YMC
dataset [9] consists of 36 time points collected over 3 cwmtiis cycles. The original dataset
consists of 6555 unique genes from Beerevisiae genome. We first eliminated those genes
that do not have an annotation in any GO biological procetsgoay (revision 4.205 of GO
released on 14 March 2007), resulting in a universal set@23@nes. The gene expression val-
ues were log transformed (base 10) and normalized suchhthat¢an expression of each gene
across all time points is zero. To segment this dataset werempnted with the number of clus-
ters in each segment ranging from 3 to 15, a minimum windowtleh,,;,, of 4 and maximum
window lengthi,,... of 7, andA = 1.4. The A value was adjusted to give approximately equal
sized clusters with good intra-cluster similarities. Th€X was taken from the well known
experiment of Spellman et al. [8]. Due to lack of space, wecdles our analysis on only the
«a—factor time course from [8], which has 6076 genes with 18 tpuits over approximately

2 cycles. We considered the genes with no missing values @aah iwentered each gene’s ex-
pression across all time points to zero. From this data, weved the genes that do not have
an annotation in GO biological process category which teduh a final set of 2196 genes. To
segment this dataset, again we ranged from 3 to 15 clusteesmwindow, a minimum window
lengthl,,,;,, of 3 and maximum window length, ... of 5, and\ = 1.25 (adjusted as before).
Evaluation metrics: We evaluate our clusterings and segmentations in five wdystet sta-
bility, cluster reproducibility, functional enrichmergegmentation quality, and segmentation
sensitivity. We assesduster stability using a bootstrap procedure to determine significance of
genes brought together. Recall that each window exceptrtafid last windows has two sets
of clusters, one set independent with respect to the prewidndow and the other independent
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with respect to the next window. We are interested in the géimat are significantly clustered
together in these two sets of clusters, as they represegeties that are specific to the window
under consideration. We calculate a contingency table émtwhese two clusterings for each
window (excluding the first and the last window). Each celilia contingency table represents
the number of genes that are together across the two indepesets of clusters. We randomly
sample 1000 sets of clusters and compute the contingenegtab.t. them. The distribution of
counts in each cell of the table was tabulated and found t@peoaimately normal (Shapiro-
Wilk normality test withp = 0.05). We now evaluate each cell of the actual contingency table
with respect to the corresponding random distribution atain only those cells that have more
genes than that observed at random witk: 0.05 (Bonferroni corrected with the number of
cross clusters to account for multiple hypothesis testifig)ensurgeproducibility of clusters,

we retain only those genes in each significant cell of theingahcy table that are together
in more than 150 of the 200 clusterings (conducted with dff¢ initializations). For the first
and last windows, which have only 100 randomly initializéasterings, we retain those genes
that are clustered together in more than 75 of the 100 cing®r After the above two steps,
we performfunctional enrichment using the GO biological process ontology (since we are
tracking biological processes) over the selected clustiegenes. A hypergeometric-value is
calculated for each GO biological process term, and an apiate cutoff is chosen using a false
discovery rate (FDRy— level of 0.01.

The segmentation qualityis calculated as a partition distance [5] between the “tsesj-
mentation (from the literature of the YMC and YCC) to the segtations computed by our
algorithm. Since this measure requires partitions with verlap between blocks, we view each
segment/window as a set of unit-sized intervals, rather time points. Thus, the window?
has carinality 3 and two elements in common wifh Given two segmentation® andS:, the
partition distance is given by:

|waﬂza lwi® N 2|
T wenstion Rl 5 5 o v e

wb €81 2,0 €S> b eS8y wyb €51

The segementation sensitivityto variations in the number of clusters is calculated as the
ratio of average KL-divergences between the segments todxanum possible KL divergence.
Suppose we havks| windows in a given segmentatioh = {wge, w;”, ..., wi*, wi' } with ¢
clusters in each window. Lef,,,, be the objective function value for the maX|maIIy similar
clustering (the: x ¢ diagonal contingency table as in the example in section2¢nThe measure
we compute is
Fluge ity Frugt ity

|S|_1 Fmam Fmam Fmam

1 F

ta .ty
{“’zl Wi,

KLavg =

where}‘ is the objective function value obtained during clustetimg pair of adjacent

tc}
WlndOWS{wt , wt 1. Lower values of this ratio indicate that the segmentataptares maximal
independence between adjacent segments while higheisvaltieate the clusters obtained are
more similar in adjacent segments.
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Results

YMC: The segmentation generated for the minimum number (3) ctets is: [1-6], [6-10],
[10-13], [13-16], [16-21], [21-26], [26-31], [31-36], wtih correspond to alternating R/B, R/C,
and Ox phases. The GO categories enriclped (le — 7) in one cycle of this dataset has already
been depicted in Fig. 1. This segmentation is stable uptdtag®f 8 clusters after which it
begins to deviate from the “true” segmentation (discussetthér below).

timepoints
1 2 3 4 5 6 7 8 91011121314 151617 18

cytokinesis, completion of separation ~— fem— . — b
regulation of exit from mitosis ~— [— o ——
DNA replication initiation — [ee— ..o — ek
strand elongation |- - ——— e —
RNA processing |- - m—s— oo —
G1/S-specific transcription |+ - |——— ] —
mitotic sister chromatid cohesion ] [— g
mitotic spindle elongation o | e J— g
mitotic metaphase/anaphase transition -] e p——

Figure 2. Gantt chart resulting from segmentation of Spafiret al. dataset. To preserve space, only some of the
enriched GO biological process terms are shown.

YCC: The segmentation (Fig. 2) generated for YCC—[1-3], [3-619], [9-12], [12-15], [15-
18]—is also periodic with the stages approximately coroesling to alternating M/G¥G1,S},
{G2,M} phases. Note that each phase is of very short length in thisrement as compared to
YMC: the phases M/G1, G1, S each last for approximately 2 fimiats, while the G2 phase
lasts only for one time point. Due to our minimum window lemgf 3 (set so that we recover
significant clusterings and re-groupings), we cannot kesthlese short-lived phases. A possible
approach is to use continuous-representations such a djiti to gain greater resolution of
data sampling. Nevertheless, the key events occurringeisetsegments are retrieved with high
specificity p < 1e — 7) as shown in Fig. 2.

—t—vmc
—A—vee

s 4 s 6 7 8 9 10 11 12 13 14 15
No. of Clusters

Figure 3. Tracking (left) segmentation sensitivity anglft) segmentation quality with number of clusters.

The effect of the number of clusters on segmentation cheniatits is studied in Fig. 3. In
Fig. 3 (left), we see that as the number of clusters incre@sssncreasingly difficult to obtain
independent clusterings and hence, for higher values afitiheber of clusters, the segmenta-
tion problem actually resembles associative clusterifg€ove that this curve tends toward a
K Lqvg value of 0.5). Fig. 3 (right) tracks the segmentation quadihd shows that the correct
segmentation is recovered for many settings in the lowegadar number of clusters but, as
the number of clusters increases, while there are fewercehdor the segmentation algorithm,
all of which considerably deviate from the true segmentatievertheless, comparing the two
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plots, we see thak L, tracks the segmentation qualifyp well and hence can be a useful
surrogate for determining the “right” number of clusters.

Biological significance:One of the applications of our methods is to decode tempelation-
ships between biological processes. Since cell divisioogsses are enriched in both YCC and
YMC, we superimposed those segments of the two Gantt chieota Fig. 1 and Fig. 2) and no-
ticed that the oxidative metabolism phase of YMC typicaligqedes the transition from G1to S
in the YCC. Such a connection has been investigated in #raliire by Futcher [1] but through
the use of a custom experiment observing metabolism duniegourse of the cell cycle. As
the budding yeast grows in size, it is hypothesized that ticermamulation of carbohydrates is
one of the ways in which it gets past the size checkpoint oflittg entry into S. This finding

demonstrates the potential for knowledge discovery by mgi@antt charts using our methods.
6. Discussion

We have presented a novel approach to simultaneously seégmudtiple time course data using
clusters and movement of data points across clusters aviagddriterion for optimization.

It is important to emphasize that our objective criteria aaturally posed over contingency
tables, rather than over other indirect measures of cluste@ement. Our approach recovers the
periodicity of the underlying biology even though the algon is not steered toward modeling
it. The Gantt charts resulting from our analysis can sereebtisis for reconstructing temporal
dependencies underlying biological processes. In futamywe aim to develop richer models
of cluster re-organization, e.g., dynamic revisions inrtbeber of clusters and split-and-merge

behaviors of clusters, leading to inference of completetanal logic models.
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