
HAL Id: hal-00541469
https://hal.science/hal-00541469v1

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polychronous mode automata
Jean-Pierre Talpin, Christian Brunette, Thierry Gautier, Abdoulaye Gamatié

To cite this version:
Jean-Pierre Talpin, Christian Brunette, Thierry Gautier, Abdoulaye Gamatié. Polychronous mode
automata. EMSOFT ’06, Oct 2006, Seoul, South Korea. pp.83-92, �10.1145/1176887.1176900�. �hal-
00541469�

https://hal.science/hal-00541469v1
https://hal.archives-ouvertes.fr

Polychronous mode automata

Jean-Pierre Talpin
IRISA/INRIA-Rennes
Campus de Beaulieu

F-35042 Rennes, France

Jean-Pierre.Talpin@irisa.fr

Christian Brunette
IRISA/INRIA-Rennes
Campus de Beaulieu

F-35042 Rennes, France

Christian.Brunette@irisa.fr

Thierry Gautier
IRISA/INRIA-Rennes
Campus de Beaulieu

F-35042 Rennes, France

Thierry.Gautier@irisa.fr

Abdoulaye Gamatié
INRIA Futurs

6b Av. Pierre et Marie Curie
59260 Lezennes, France

Abdoulaye.Gamatie@lifl.fr

ABSTRACT
Among related synchronous programming principles, the mo-
del of computation of the Polychrony workbench stands
out by its capability to give high-level description of systems
where each component owns a local activation clock (such
as, typically, distributed real-time systems or systems on a
chip). In order to bring the modeling capability of Poly-

chrony to the context of a model-driven engineering toolset
for embedded system design, we define a diagramic notation
composed of mode automata and data-flow equations on top
of the multi-clocked synchronous model of computation sup-
ported by the Polychrony workbench. We demonstrate
the agility of this paradigm by considering the example of an
integrated modular avionics application. Our presentation
features the formalization and use of model transformation
techniques of the Gme environment to embed the extension
of Polychrony’s meta-model with mode automata.

Categories and Subject Descriptors
D.3 [Programming Languages]: Formal Definition and
Theory

General Terms
Design, Languages, Theory

1. INTRODUCTION
Inspired by concepts and practices borrowed from digi-

tal circuit design and automatic control, the synchronous
hypothesis has been proposed in the late ’80s to facilitate
the specification and analysis of control-dominated systems.
Nowadays, synchronous languages are commonly used in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-XXX-X/06/0010 ...$5.00.

European industry, especially in avionics, to rapidly proto-
type, simulate, verify embedded software applications.

In this spirit, synchronous data-flow programming lan-
guages, such as Lustre [11], Lucid Synchrone [9] and Sig-

nal [15], implement a model of computation in which time
is abstracted by symbolic synchronization and scheduling
relations to facilitate behavioral reasoning and functional
correctness verification. While block diagrammatic model-
ing concepts are best suited for data-flow dominated ap-
plications, control-dominated processes may sometimes be
preferably modeled using imperative formalisms, such as Es-
terel [3], Statecharts [12], or SyncCharts [1].

1.1 Design methodology
In the particular case of the Polychrony workbench, on

which Signal is based, time is represented by partially or-
dered synchronization and scheduling relations, to provide
an additional capability to model high-level abstractions of
system paced by multiple clocks: globally asynchronous sys-
tems. This gives the opportunity to seamlessly model het-
erogeneous and complex distributed embedded systems at
a high level of abstraction, while reasoning within a simple
and formally defined mathematical model.

In Polychrony, design proceeds in a compositional and
refinement-based manner. It first consists of considering a
weakly timed data-flow model of the system under consider-
ation. Then, partial timing relations are provided to grad-
ually refine the synchronization and scheduling structure of
the application.

Finally, the correctness of refined specification is checked
with respect to initial requirement specifications. That way,
Signal favors the progressive design of systems that are cor-
rect by construction using well-defined model transforma-
tions that preserve the intended semantics of early require-
ment specifications and that provide a functionally correct
deployment on the target architecture.

1.2 Model-driven design framework
Taking advantage of recent works extending Polychrony

with a meta-model, Signal-Meta [6], in the model-driven
engineering framework of Gme (Generic modeling environ-
ment [14]), we position our problem as extending the meta-
model on which Signal is based with an inherited meta-

Figure 1: A Mimad model of On flight.

(a) Computation part (ImaAspect) (b) Control part (ImaProcessControl)

Figure 2: The Position indicator process.

model of multi-clocked mode automata to finally demon-
strate how the latter can be translated into the former by
operating a model transformation. We put an emphasis on
simplicity both for the specification (one third of a page,
Fig. 4) and for the formalization (five rules, Section 5.3)
of mode automata. The framework of mode automata pre-
sented in this article was specified and implemented in the
matter of one month, thanks to the facilities offered by the
Gme environment. It is currently being ported to Eclipse [5].

1.3 A modeling paradigm
The modeling of integrated modular avionics (IMA) archi-

tectures are a typical case in which both the polychronous
model of computation and the need for mixed data-flow and
control-flow formalisms (as offered by mode automata) are
particularly well-suited.

As an example, consider the following diagram, Fig. 1,
from the Signal-Meta environment1. It represents a simple
avionic application within Gme. Its main function consists
of computing the current position of an airplane and its fuel
level and reporting that information. It is decomposed into
three processes:

• Position indicator produces information about the
current position of the aircraft.

• Fuel indicator produces information about the level
of kerosene in the aircraft.

1Signal-Meta is the model-driven front-end of Poly-

chrony designed with Gme

• Parameter refresher refreshes the parameters used
by other processes.

To illustrate the use of mode automata at the process-
level of this application, we focus on Position indicator,
Fig. 2(a)-2(b). It is composed of two main aspects: the
ImaAspect includes the computational part and the ImaPro-
cessControl contains the control flow part. The computa-
tional part (see Fig. 2(a)) consists of a data-flow graph. It
contains Blocks of data-flow equations.

The control-flow part is best described in an imperative
manner by a mode automaton, shown in Fig. 2(b). Each
time the partition is active, the current state of the automa-
ton indicates which of the Blocks in the computational part
is executed. From the above descriptions, a corresponding
Signal program is automatically generated allowing one to
use the functionalities of Polychrony to formally analyze,
transform and verify the application model.

1.4 Overview
The scope of this article is to present the definition of

polychronous mode automata within the model-driven engi-
neering framework Signal-Meta. It consists of an extension
of the synchronous data-flow formalism Signal with multi-
clocked mode automata. To this end, the remainder of this
paper is organized as follows.

Section 2 firsts presents related works. Section 3 gives
an informal presentation of the Signal formalism and of
its extension. Section 4 outlines the meta-model of Signal,
defines its extension with mode automata and outlines the

use of Gme to define the transformation of mode automata
into Signal. Section 5 formalizes the model transformation
by considering the intermediate representation of Signal.
Section 6 provides operational semantics of mode automata
framework. Concluding remarks are given in Section 7.

2. RELATED WORKS
The hierarchical combination of heterogeneous program-

ming models is a notion whose introduction dates back to
early models and formalisms for the specification of hybrid
discrete/continuous systems.

The most common example is Matlab [18], which supports
the Stateflow notation to describe modes in event-driven and
continuous systems. Similarly, Ptolemy [7] allows for the hi-
erarchical and modular specification of finite state machines
hosting heterogeneous models of computation. Worth notic-
ing is Hyscharts [2], which integrates discrete and continu-
ous modeling capabilities within the same model-driven en-
gineering framework.

In the same vein, mode automata were originally pro-
posed by Maraninchi et al. [16] to gathering advantages of
declarative and imperative approaches to synchronous pro-
gramming and extend the functionality-oriented data-flow
paradigm of Lustre with the capability to model transition
systems easily and provide an additional imperative flavor.
Similar variants and extensions of the same approach to mix
multiple programming paradigms or heterogeneous models
of computation [7, 8] have been proposed until recently, the
latest advance being the combination of stream functions
with automata [10]. Nowadays, commercial toolsets such as
the Esterel Studio’s Scade or Matlab/Simulink’s Stateflow
are largely inspired by similar concepts.

In previous work, the introduction of preemption mecha-
nism in the multi-clocked data-flow formalism Signal was
previously studied by Rutten et al. [21]. This was done by
associating data-flow processes with symbolic activation pe-
riods. However, no attempt has been made to extend mode
automata with the capability to model multi-clocked sys-
tems, which is the aim of this article.

The main advantage of the multi-clocked approach over
previous installments of mode automata principles lies in
the capabilities gained for rapid prototyping: not only may
functionalities and components be abstracted with multi-
clocked specifications but mode describing early control re-
quirements may then allow rapid prototyping of the system,
while offering automated program transformation and code
generation facilities to synthesis the foreseen implementa-
tion in a correct-by-construction manner.

3. POLYCHRONY
We position the problem by considering partially synchro-

nized (or polychronous) specifications using the data-flow
formalism Signal [15].

3.1 Polychronous data-flow equations
A Signal process consists of the simultaneous composi-

tion of equations on signals. A signal consists of an infinite
flow of values that is discretely sampled according to the
pace of its clock, noted x̂. An equation partially relates sig-
nals with respect to an abstract timing model. Signal de-
fines the following primitive constructs:

• A functional equation x = f(y,z) defines an arith-

metic or boolean relation f between its operands y,z

and the result x.

• A delay equation x = y pre v initially defines the sig-
nal x by the value v and then by the value of the sig-
nal y from the previous execution of the equation. In
a delay equation, the signals x and y are assumed to
be synchronous, i.e. either simultaneously present or
simultaneously absent at all times.

• A sampling x = y when z defines x by y when z is true
and both y and z are present. In a sampling equation,
the output signal x is present iff both input signals y

and z are present and z holds the value true.

• A merge x = y default z defines x by y when y is
present and by z otherwise. In a merge equation, the
output signal is present iff either of the input signals
y or z is present.

• The synchronous composition (| P | Q |) of the pro-
cesses P and Q consists of simultaneously considering a
solution of the equations in P and Q at any time.

• The equation P / x restricts the lexical scope of a sig-
nal x to a process P.

3.2 Mode automata
To express mode automata, we consider an extension of

Signal which comprises the following base syntactic ele-
ments. init s specifies the initial state (mode) of an au-
tomaton a. s : p associates the behavior p with the mode s.
e ⇒ s → t gives the clock e (or guard) of the next transition,
from mode s to mode t, while e ⇒ s ։ t immediately tran-
sits from mode s to mode t upon the condition e (most likely
a condition on input signals such as an alarm). The support
of both weak preemption, noted e ⇒ s → t, and strong
preemption, noted e ⇒ s ։ t, greatly enhance modeling ca-
pabilities to facilitate design. Synchronous composition of
automata is noted a || b.

a, b ::= init s | (s : p) | (e ⇒ s → t) | (e ⇒ s ։ t) | a || b

3.3 Example of a crossbar switch
To support the presentation of our modeling techniques,

we consider the example of a simple crossbar switch. Its
interface is composed of two input data signals y1 and y2

and a reset input signal r.

r

$$HHHHH y1

��
y2 // switch //

��

x2

x1

Data signals are routed along the output data signals x1 and
x2 depending upon the internal state s of the switch. The
state is toggled using the reset signal by the functionality
s = toggle(r). Data is routed along an output signal x from
two possible input sources y1 or y2 depending on the value
of s by two instances of the functionality x = route(s, yi, yj)
with i 6= j and i, j ∈ {1, 2}.

(x1, x2) = switch(y1, y2, r)
def
=

0

@

s = toggle(r)
|| x1 = route(s, y1, y2)
|| x2 = route(s, y2, y1)

1

A /s

Figure 3: The Signal meta-model in GME.

The subprocess toggle defines the state of the switch by
the signal s. If the reset signal r is present and true, then
the next state t is defined by the negation of current state s
and otherwise by s.

s = toggle(r)
def
=
(s = t pre true || t = not s when r default s) /t

The subprocess route selects which of the values of its input
signals y1 or y2 to send along its output signals xi, i ∈ {1, 2}
depending on the boolean signal s. If s is present and true,
it chooses yi and else, if s is present and false, it chooses
yj 6=i.

Remember that Signal equations partially synchronize
input and output signals. In the route process, this implies
that none of the signals y1, y2 and s are synchronized, and
that the output signal xi, i ∈ {1, 2} is present iff either of yi

are present and s true or yj 6=i is present and s false.

xi = route(s, yi, yj)
def
=

xi = (yi when s) default (yj when not s), ∀0 < i 6= j ≤ 2

The switch is a typical example of specification where an
imperative automata-like structure is superimposed on a na-
tive data-flow structure gives a shorter and more intuitive
description of the system’s behavior.

The mode automaton of the switch consists of two states
flip and flop, in which routing is performed from y1,2 to
either x1,2 or x2,1 depending on the current mode of the au-
tomaton. The mode toggles from flip to flop, or conversely,
when the event r occurs.

(x1, x2) = switch(y1, y2, r)
def
=
0

B

B

@

init flip : (x1 = y1 ||x2 = y2)
|| flop : (x1 = y2 ||x2 = y1)
|| r ⇒ flip ։ flop

|| r ⇒ flop ։ flip

1

C

C

A

4. A META-MODELING APPROACH
To develop our meta-modeling approach, we have used the

Gme environment [14], Fig 3. Gme is a configurable Uml-
based toolkit that supports the creation of domain-specific
modeling and program synthesis environments. Gme uses
meta-models to describe modeling paradigms for specific
domains. The modeling paradigm of a given application
domain consists of the basic concepts that represent its in-
tended meaning from a syntactic and relational viewpoint.

4.1 TheSignal meta-model
The definition of a meta-model in Gme is realized using

the MetaGME modeling paradigm. First, modeling paradigm
concepts are described in an Uml class diagram. To achieve
it, MetaGME offers some predefined Uml-stereotypes [13],
among which FCO, Atom, Model, and Connection. FCO
(First Class Object) constitutes the basic stereotype in the
sense that all the other stereotypes inherit from it. It is used
for expressing abstract concepts. Atoms are elementary ob-
jects that cannot include any sub-part. On the contrary,
models may be composed of several FCOs.

Containment and Inheritance relations are represented as
in Uml. All the other types of relations are specified through
Connections. Some of these stereotypes are used in the class
diagram represented in Fig. 4. For the Signal meta-model,
called Signal-Meta [6], class diagrams describe all syntactic
elements defined in Signal v4 [4]. Among these concepts,
there are an Atom for each Signal operator (e.g. numeric,
clock relations, constraints), a Model for each Signal “con-
tainer” (e.g. process declaration, module), and a Connection
for each relation between Signal operators (e.g. definition,
dependence).

With these class diagrams, Gme provides a mean to ex-
press the visibility of FCOs within a model through the no-
tion of Aspect (i.e. one can decide which parts of the de-

Figure 4: Extension of the Signal meta-model with mode automata.

scriptions are visible depending on their associated aspects).
Moreover, it is possible to restrict the use of some FCOs
(add/remove in/from a Model) to a specific Aspect, even if
these FCOs are visible in other Aspects. Signal-Meta in-
cludes two main Aspects: Computation part and Clock and
Dependence Relations. The first one manages all data-flow
relations of the Model, and the second one, all clock relations
between signals.

Finally, OCL Constraints can be added to class diagrams
in order to check some “parametric” properties on a model
designed with this paradigm (e.g. the type of connections
linked to an FCO according to the value of a FCO attribute).
A parametric property depends on values given during the
edition of a model. In Signal-Meta, OCL constraints check
for example the validity of attribute values, such as the
uniqueness of names inside a Model.

4.2 Refinement of the meta-model with modes
To manage mode automata, we extend Signal-Meta with

a new class diagram represented in Fig. 4. An Automaton is
a Model composed of states, transitions, local signals, and
StateObservers. As for classical Statecharts [12], or Sync-
Charts [1], there are three kinds of states: AndState, Au-
tomaton, and State. The two former are Models composed
of other states (CompoundState), whereas the latter is a
terminal state describing Signal equations. An AndState
consists of several states composed in parallel.

An Automaton can be added to another Automaton as
a state (to create hierarchical automata), or to one of the
Signal-Meta Models (represented in the class diagram by the
ModelsWithDataflow Model). Thus, mode automata can be
composed of Signal programs or of sub-mode automata.
This abstract concept represents Models including the two
Aspects mentioned in the previous section and all operators
described in Signal-Meta. State inherits from this Model to
be able to describe Signal equations. Finally, the InitState

Atom is intended to be connected to the initial state of the
Automaton.

The automata transitions are represented as Connections
in the meta-model. Two kinds of transitions are considered:
StrongTransition, and WeakTransition. StrongTransitions
are used to compute the current state of the Automaton
(before entering the state), whereas WeakTransitions are
used to compute the state for the next instant.

More precisely, the guards of the WeakTransitions are
evaluated to estimate the state for the next instant, and the
guards of the StrongTransitions whose source is the state es-
timated at the previous instant, are evaluated to determine
the current state. However, note that for each Automaton,
at most one StrongTransition can be taken at each instant.
To distinguish both kinds of transitions, a StrongTransition
is denoted by light arrow in the graphical representation (see
Fig. 5(a)), whereas WeakTransition is represented by a bold
one.

Contrarily to SyncCharts [1], in which as many transitions
as possible can be taken, in our model, at most two transi-
tions can be taken during one reaction: one StrongTransi-
tion and/or one WeakTransition. It is also the case in [10].
This guarantees that there is no infinite loop when deter-
mining the current state of an automaton. For example, the
determination of the current state for the Atm Automaton
represented in Fig. 5(a) when the event r is emitted would
be impossible if we allowed to take as many transitions as
possible. Note also that the guard of a StrongTransition
should not depend on signals defined in the state connected
to this transition.

Both kinds of transitions link, inside an Automaton, a
state to another one, or to the History Atom of one of the
CompoundState sub-state of this Automaton. If the transi-
tion taken to arrive at a CompoundState is connected to the
state itself, this CompoundState is automatically reinitial-
ized. This reinitialization corresponds, for an Automaton,

(a) The Atm Automaton (b) flip state (c) flop state (d) Synchronization of Atm

Figure 5: Description of the Atm Automaton in Gme.

to execute it from its initial state, and for an Andstate, to
reinitialize all its sub-states. On the contrary, the Com-
poundState retains its previous state if the transition is con-
nected to its History.

Each kind of transition has two attributes: Guard, in
which the guard of the transition is expressed, and Tran-
sitionPriority, in which an integer expresses the priority of
this transition among all transitions of the same kind (Weak-
Transition or StrongTransition) with the same source state.
The smaller the value associated with the transition is, the
higher the priority of the transition is. Thus, we can guar-
antee the determinism of the automaton. An OCL con-
straint checks that for each state, all outgoing WeakTransi-
tions (resp. StrongTransitions) have different priorities. A
third kind of Connection (InitialTransition) has been added
to link the InitState of an Automaton to any state that cor-
responds to the initial one. There can be only one such
Connection in an Automaton.

To observe the state of an automaton, we add a StateOb-
server Atom, which allows to call a process having the cur-
rent state of the automaton as input signal. The name of
this process is provided through the attribute ProcessName.
If this attribute is not defined, the current state is written on
the standard output. Basically, the clock of an automaton
depends on the clocks of the signals used in all its transitions
and states. Alternatively, the clock of an automaton can be
explicitly specified. In the meta-model, this is expressed by
the inheritance of Automaton from ConstraintInput.

4.3 Modeling of the crossbar switch
We illustrate the use of the mode automata extension in

the example of the switch. Fig. 5(a) represents the modeling
of the mode automaton of the switch in Gme. Atm contains
two terminal states (flip and flop). StrongTransitions are
guarded by the value of the event r, as labeled on the middle
of transitions. The 0 indicates the transition priority (it can
be omitted here). The content of flip (resp. flop) state
is represented in Fig. 5(b) (resp. 5(c)). In these figures,
dotted arrows correspond to partial definitions in Signal.
x1, x2, y1, y2 are references to signals from an upper Model.

The upper Model is that of the switch, and Atm and all
the signals it uses are declared there. In this Model, y1, y2,
and r are input signals, and x1 and x2 are output signals.
In Fig. 5(d), the clock of Atm is fixed to the union of the
clocks of y1, y2, and r. The clocks of x1 and x2 have to
be specified explicitly because they are defined using partial
definitions: a MinClock operator is used to define the clock
of x1 and x2 as the union of clocks of their partial definitions.
The DATA TYPE parameter is used to associate a generic type
with input and output signals.

4.4 Implementation in Gme

Gme offers different means to extend its environment with
tools, such as the MetaGME Interpreter, which, like a
compiler, checks the correctness of the meta-model, gener-
ates the paradigm file, and registers it into Gme. This file
is then used by Gme to configure its environment for the
newly defined paradigm.

In a similar way as the MetaGME Interpreter, we have de-
veloped a Gme Interpreter to analyze Signal-Meta Models
and produce the corresponding Signal programs. We ex-
tend this Interpreter to produce the Signal equations corre-
sponding to mode automata descriptions. The code in Fig.
6 is that generated by the Interpreter for the switch example
specified in Fig. 5 (note that in the concrete Signal syn-
tax: y$ init v is the real notation for y pre v; x^=y stands
for x̂ = ŷ; ^+ designates the union of clocks; x::=... and
x:=... represent respectively a partial definition and a com-
plete definition of x). The transformation works as follows.
For each automaton:

• One enumeration type is built (line 21). Each value of
the enumeration is the name of a state (the uniqueness
of names is checked).

• Four signals of this type are created. They corre-
spond to the current state (currentState), the previ-
ous state (previousState), the next state (nextState)
of the Automaton (lines 22-23) and its previous value
(zNextState).

• an event is created for each transition of the Automa-
ton (line 20). For a WeakTransition (resp. Strong-
Transition), this event is present when its guard is
true and when the currentState (resp. zNextState)
is equal to the source state of the transition. In this
example, we have only StrongTransitions (lines 5-6).

• If the Automaton contains CompoundStates (it is not
the case in our example), then two boolean signals are
added: history, and nextHistory. They are true if
the StrongTransition (resp. WeakTransition) taken to
determine the currentState (resp. nextState) is con-
nected to the History Atom of the destination Com-
poundState.

• The previousState and zNextState are defined re-
spectively by the last value of currentState (line 12)
and nextState (line 13).

• To define the nextState (line 8) (resp. currentState
(lines 9-11)), the destinations of all WeakTransitions
(resp. StrongTransitions) are conditioned by the event
of the corresponding transition. The default values

1. process Switch =
2. { type DATA_TYPE; }
3. (? DATA_TYPE y1,y2; event r; ! DATA_TYPE x1, x2;)
4. (| min_clock(x2) | min_clock(x1)
5. | %Atm%(| __ST_0_flop_To_flip := when (r) when (_Atm_0_zNextState = #flop)
6. | __ST_1_flip_To_flop := when (r) when (_Atm_0_zNextState = #flip)
7. | _Atm_0_currentState ^= (y1 ^+ y2 ^+ r)
8. | _Atm_0_nextState := _Atm_0_currentState
9. | _Atm_0_currentState := #flip when __ST_0_flop_To_flip
10. default #flop when __ST_1_flip_To_flop
11. default _Atm_0_zNextState
12. | _Atm_0_previousState := _Atm_0_currentState$ init #flip
13. | _Atm_0_zNextState := _Atm_0_nextState$ init #flip
14. | case _Atm_0_currentState in
15. {#flop}: (| x2 ::= y1 | x1 ::= y2 |)
16. {#flip}: (| x2 ::= y2 | x1 ::= y1 |)
17. end
18. |)
19. where
20. event __ST_0_flop_To_flip, __ST_1_flip_To_flop;
21. type _Atm_0_type = enum(flop, flip);
22. _Atm_0_type _Atm_0_currentState, _Atm_0_previousState;
23. _Atm_0_type _Atm_0_nextState, _Atm_0_zNextState;
24. end
25. |); % process Switch

Figure 6: The code generated from the switch model by the Signal Interpreter

of the nextState and the currentState are respec-
tively the currentState and the zNextState. If the
Automaton is a sub-state of another one, the cur-

rentState is defined by the initial state of this Au-
tomaton if the history signal of the upper level Au-
tomaton is false. In our example, there is no Weak-
Transition, thus nextState is always defined by the
currentState. Note that the order of the transitions
is not important, except for states with several out-
going transitions. In this case, transitions are ordered
according to their priority.

• Mode changes are expressed according to the value of
currentState (lines 14-17).

In a given Automaton, the clock of currentState is syn-
chronized to that of nextState. Nonetheless, it may be
defined by that of another Automaton. At the top-level, the
clock of currentState is synchronized (line 7) only if there
is some explicit synchronization in the Model, such as the
Connection to Atm on the right of Fig. 5(d). For AndStates,
the Interpreter has just to compose the equations of all sub-
states. Finally, for States, equations are produced as for any
Signal-Meta Model [6].

5. FORMALIZATION
We use the Polychrony workbench to perform formal

verification (model checking and controller synthesis are pro-
vided with the Sigali tool [17]) and sequential and distributed
code generation (in C, C++ or Java) starting from mod-
els with mode automata. Taking advantage of the meta-
modeling framework provided by Gme, we define the nec-
essary generation of Signal code from the meta-model for
mode automata.

5.1 An intermediate representation
The data-flow synchronous formalism Signal supports an

intermediate representation of multi-clocked specifications

that exposes control and data-flow properties for the pur-
pose of analysis and transformation. In this structure, noted
G, a node g is a data-flow relation that partially defines a
clock or a signal. A signal node c ⇒ x = f(y, z) partially
defines x by f(y, z) at the clock c. A clock node x̂ = e
defines a relation between two particular signals or events
called clocks.

G, H ::= g | (G ||H) |G/x (graph)
g, h ::= x̂ = e | c ⇒ x = f(y, z) (nodes)

A clock c expresses a discrete sample of time by a set of
instants. It defines the condition upon which (or the time at
which) a data-flow relation is executed. The clock x̂ means
that the signal x is present (its value is available). The
clocks [x] and [¬x] mean that x is present and is true (resp.
false). A clock expression e is a boolean expression and 0 is
the clock that means never (or the empty set of instant).

c ::= x̂ | [x] | [¬x] (clock)
e ::= 0 | c | e1 \ e2, | e1 ∨ e2 | e1 ∧ e2 (expression)

The decomposition of a process into the synchronous com-
position of clock and signal nodes is defined by induction
on the structure of p. Each equation is decomposed into
a data-flow function and is guarded by a condition, that is
usually the clock x̂ of the output signal.

G[[x = y pre v]]
def
= (x̂ ⇒ x = y pre v) || (x̂ = ŷ)

G[[x = y when z]]
def
= (x̂ ⇒ x = y) || (x̂ = ŷ ∧ [z])

G[[x = y default z]]
def
= (ŷ ⇒ x = y)

|| (ẑ \ ŷ ⇒ x = z)
|| (x̂ = ŷ ∨ ẑ)

G[[p || q]]
def
= G[[p]] || G[[q]]

G[[p/x]]
def
= G[[p]]/x

5.2 Application to the crossbar switch
Let us construct the graph of the crossbar switch. It can

modularly be defined by one instance of the toggle function-

ality and two instances of the router. Each functionality is
decomposed into a set of guarded data-flow relations: its sig-
nal nodes, and its specific timing model, expressed by clock
nodes.

G[[switch]]
def
= (G[[toggle]] || G[[route1]] || G[[route2]]) /st

G[[toggle]]
def
= (ŝ ⇒ s = t pre true)

|| ([r] ⇒ t = not s)
|| (t̂ \ r ⇒ t = s) || (t̂ = ŝ)

G[[routei]]
def
= ([s] ⇒ xi = yi)

|| ([¬s] ⇒ xi = yj) 0 < i 6= j ≤ 2

5.3 Compilation of mode automata
The compilation of a mode automaton into multi-clocked

data-flow equations consists of its structural translation into
partial equations modeling guarded commands and of the
addition of the necessary synchronization relations described
by clock equations. The top level rule C[[a]] defines the cur-
rent state of a, represented by a signal x (its next value
being synchronously carried by the x′).

The clock of the mode automaton is hence x̂. It is syn-
chronized to the clock expression ex, the activity clock of
the automaton: if at least one signal y defined by the au-
tomaton has an active clock ŷ, the automaton is activated
to compute it and to possibly perform some transition.

The rule Cx[[init s0]] defines x initially by the initial state
s and then by the previous value of the next state x′ unless
one of the conditions c of strongly preemptive transitions
prevails. The rule Cx[[c ⇒ s → t]] defines the next state x′

by t if the current state s is x and the condition c holds.
The rule Cx[[c ⇒ s ։ t]] defines the current state x by t

when the condition c holds upon entering state s (i.e. when
the previous value of the next state x′ is s). The rule
Cx[[s : p]] defines a mode s by guarding the process p with
the condition [x = s]. The condition [x = s] can equally be
regarded as the clock [y] where the signal y is defined by the
equation y = eq (x, s).

C[[a]]
def
= (Cx[[a]] || (x̂ = x̂′) || (x̂ = ex)) /x, x′

with ex
def
=

W

y∈defs(a) ŷ

Cx[[init s0]]
def
= x̂ \ fx ⇒ x = x′ pre s0

with fx
def
=

W

(c⇒s։p)∈a
c

Cx[[c ⇒ s → t]]
def
= [x = s] ∧ c ⇒ x′ = t

Cx[[s : p]]
def
= [x = s] ⇒ G[[p]]

Cx[[c ⇒ s ։ t]]
def
= [(x′ pre s0) = s] ∧ c ⇒ x = t

Cx[[a || b]]
def
= Cx[[a]] || Cx[[b]]

The notation [x = s] ⇒ G conditions G, the behavior of
an automaton in the mode s, by the condition [x = s]. It
can be decomposed into a set of core Signal equations by
application of the following translation rules:

c ⇒ (G ||H)
def
= (c ⇒ G) || (c ⇒ H)

c ⇒ (x̂ = e)
def
= (c ∧ x̂) = (c ∧ e)

c ⇒ (G/x)
def
= (c ⇒ G)/x, x 6∈ vars(c)

c ⇒ (d ⇒ x = f(y1..n))
def
= (c ∧ d) ⇒ x = f(y1..n)

6. SEMANTICS OF MODE AUTOMATA
We complete the formalization of our extension to the

Signal meta-model by the definition of the operational se-

mantics of polychronous automata. It starts with the expo-
sition of a micro-step automata theory and continues with
the specification of the micro-step automata admitted by
polychronous modes.

6.1 Micro-step automata
We first consider the theory of synchronous micro-step

automata proposed by Potop et al. [19]. As already demon-
strated for Signal in [22], this framework accurately renders
concurrency and causality for synchronous (multi-clocked)
specifications.

Micro-step automata communicate through signals x ∈ X.
The labels l ∈ LX generated by the set of names X are
represented by a partial map of domain from a set of signals
X noted vars(l) to a set of values V ⊥ = V ∪{⊥}. The label
⊥ denotes the absence of communication during a transition
of the automaton. We write supp(l) = {x ∈ X | l(x) 6= ⊥}
for the support of a label l and ⊥X for the empty support.
We write l′ ≤ l iff there exists l′′ disjoint from l′ and such
that l = l′ ∪ l′′.

An automaton A = (s0, S, X,→) is defined by an initial
state s0, a finite set of states S noted s or x = v, labels LX

and by a transition relation → on S ×LX ×S. The product
A1 ⊗ A2 of Ai = (s0

i , Si, Xi,→i) for 0 < i ≤ 2 is defined by
((s0

1, s
0
2), S1 × S2, X1 ∪ X2,→) where (s1, s2) →l (s′1, s

′
2) iff

si →
l|Xi s′i for 0 < i ≤ 2 and l|Xi

the projection of l on Xi.
An automaton A = (s0, S, X,→) is concurrent iff s →⊥ s
for all s ∈ S and if s →l s′ and l′ ≤ l then there exists
s′′ ∈ S such that s →l′ s′′ and s′′ →l\l′ s′.

A synchronous automaton A = (s0, S, X, c,→), of clock
c ∈ X, consists of a concurrent automaton (s0, S, X,→) s.t.

1. if s →l s then l = c or c 6∈ l : a clock transition always
happens alone.

2. if s0 →c s0 and s →c s′ then s′ →c s′ : a clock
transition can stutter.

3. if si−1 →li si, ∀i ∈]0, n] and li 6= c for i < n and
ln = c, then vars(li) ∩ vars(lj) = ∅ for all 0 < i 6= j <
n : a reaction is composed of transitions on disjoint
supports.

The composition of automata is defined by synchronized
product and synchronous communication using 1-place syn-
chronous FIFO buffers. The synchronous FIFO of clock c
and channel x is noted sfifo(x, c). It serializes the emission
event !x = v followed by the receipt event ?x = v within the
same transition (the clock tick c occurs afterwards).

sfifo(x, c)
def
=

0

@s0, {s0..2}, {?x, !x, c}, c, s0c 99
!x=v// s1

?x=v// s2

c

__

1

A

Let Ai = (s0
i , Si, Xi, ci,→i)i=1,2 be two synchronous au-

tomata and c a clock and write A[c2/c1] for the substitution
of c1 by c2 in A. The synchronous composition A1 ||

cA2

is defined by the product of A1, A2, and a series of syn-
chronous FIFO buffers sfifo(x, c) that are all synchronized
on the same clock c.

A1 ||
cA2

def
= (A1[c/c1]) ⊗ (A2[c/c2]) ⊗

O

x∈(vars(X1)∩vars(X2))

sfifo(x, c)

A[[a]]
def
=

0

@sa, Sa

[

(s:p)∈a

Sp, vars(a), τ,
[

(s:p)∈a

0

@Tp[s/sp]

(c⇒s→t)∈a
[

u∈ final (Tp)\sp

““

T u,r
c ∪ r

τ
−→t

”

/r
”

(c⇒s։t)∈a
[

u∈ init (Tp)\sp

T u,t
c

1

A

1

A

Figure 7: Semantics of a mode automaton

6.2 Micro-step semantics ofSignal

Micro-step automata provide a simple and expressive op-
erational framework to formalize the semantics of multi-
clocked specifications.

Clocks
A clock expression e corresponds to a transition system T s,t

e

from s to t which evaluates the presence of signals in accor-
dance to e.

T s,t
c

def
=

“

s
lc−→t
”

T s,t

c∨d

def
=

`

T s,t

c∧d ∪ T s,t
c ∪ T s,t

d

´

T s,t

c∧d

def
=

0

B

B

B

@

s′ ld

""FF
FF

s

lc ;;xxxx

ld
##FF

FF
lcld // t

t′
lc

<<xxxx

1

C

C

C

A

/s′t′

We write lc for the label l that corresponds to the clock c
and canonically denote vx the generic value of the signal x
: lx̂=def(?x = vx), lx=def(?x = 1) and l¬x=def(?x = 0)

Relations
A synchronization relation x̂ = e accepts the events x̂ and
e in any order, or none of them, and then performs a clock
transition c. Hence, the conditions expressed by x̂ and e
need to occur at the same time.

A[[x̂ = e]]
def
=

0

@s, {s, t}, {c, x} ∪ vars(e), c,
“

t
c

−→s
”

vx∈V
[

vy∈V | y∈vars(e)

T s,t

x̂∧e

1

A

Equations
A partial equation c ⇒ x = f(y) synchronizes x with the
value of f(y) at the clock c. But x may also be present when
either c or y is absent. Therefore, the automaton requires
x to be emitted with the value f(vy) only after the events
y and c have occurred. If at least one of either c or y is
present, then x may or may not be present with some value
u computed by another partial equation. The semantics
(combinatorially) generalizes to the case of c ⇒ x = f(y1..n)
with n ≥ 0.

A[[c ⇒ x = f(y)]]
def
=

s0, {s0..1, s2..4
vy

| vy ∈ V }, {x, y} ∪ vars(d), τ,
Svz∈V | z∈vars(c)

vx,vy∈V
0

B

B

B

B

B

B

B

B

B

@

s1

τ

}}{{
{{

{{
{ ?y=vy

""DD
DD

DD
D

?x=vx

��
s0

τ

,,

?x=vx

22
lc

NN

?y=vy

��

lc?y=vy // s3
vy

!x=f(vy)// s4
vy

τ // s0

s2
vy

τ

``AAAAAA lc

=={{{{{{

?x=vx

OO

1

C

C

C

C

C

C

C

C

C

A

Structuring constructs
Composition p || q and restriction p/x are defined by struc-
tural induction starting from the previous axioms with

A[[p || q]]
def
= A[[p]] || cA[[q]] A[[p/x]]

def
= (A[[p]])/x

Example 1. Consider the transition system for the switch

process (the notation yjxi stands for two steps ◦ →?yj=v

◦ →!xi=v ◦). The switch automaton consists of two mir-
rored structures that allow for concurrently receiving y1 and
y2 and transmitting them along x1 or x2 according to the
mode s1 or s2, toggled using the signal r.
0

B

B

B

B

B

B

B

B

@

◦

cvv

y2x1

��

◦

c((

y2x2

��
s1c 88

y1x2

66

y2x1 ((

y1x2y2x1
** ◦

c

jj
r

''
◦

c
**

r

gg s2 cff

y1x1

hh

y2x2vv

y1x1y2x2jj

◦

c

hh

y1x2

??

◦

c

66

y1x1

__

1

C

C

C

C

C

C

C

C

A

6.3 Operational semantics of mode automata
The operational semantics of a mode automaton is de-

scribed using one equation, Fig. 7, to define the micro-step
automaton A[[a]] corresponding to the mode declaration a.
To this end, a mode automaton a is considered as a set of
synchronously composed modes and transitions. Hence, we
write (s : p) ∈ a and (c ⇒ s → t) ∈ a for the modes and
transitions it contains.

The semantics of a mode automaton a consists of a tran-
sition system that is the union of the transition systems of
all modes (s : p) ∈ a. The transition system of a mode
(s : p) consists of Tp (that of the process p) where sp (the
initial state) is substituted by s (the mode state). For all
mode transitions c ⇒ s → t ∈ a, the transition system is
completed with the transitions from the final states u of Tp

to the mode state t.
We write init (T) and final (T) = {t | t →τ s ∈ T} for the

initial and final states of T (the sources and sinks of clock
transitions τ in T) and Sa = {s | (s : p) ∈ a} for the states of
a. As usual, sa denotes the initial state of a and, referring
to automaton A[[p]] of a process p, sp its initial state, Sp its
states, Xp its variables and Tp its transition system.

Example 2. In the case of the switch, this amounts to
superimposing two transitions of condition r to the transition
systems of the flip and flop modes.

Tswitch =

Tflip◦
r ++

◦Tflop

r

kk

!

7. CONCLUSIONS
We have presented a model of multi-clocked mode au-

tomata defined by extending the meta-model of the syn-
chronous data-flow specification formalism Signal in the
tool Gme. A salient feature of our presentation is the sim-
plicity incurred by the separation of concerns between data-
flow (that expresses structure) and control-flow (that ex-
presses a timing model) that is characteristic to the design
methodology of Signal.

From a user point of view, this simplicity translates into
the ease of hierarchically and modularly combining data-
flow blocks and imperative modes and significantly acceler-
ates specification by making its structure closer to design
intuitions. an example is the 28 lines long encoding of state
transitions in the crossbar switch, Fig 6, as opposed to its
4 lines specification, end of Section 3. The same remark
applies and scales to the more realistic on-flight example,
Fig 2(b), by simplifying the specification of the mode tran-
sitions using implicit states.

While the specification of mode automata in related works
requires a primary address on the semantics and on compi-
lation of control, the use of Signal as a foundation allows
to transfer this specific issue to its analysis and code gen-
eration engine Polychrony. Furthermore, it exposes the
semantics and transformation of mode automata in a much
simpler way by making use of clearly separated concerns ex-
pressed by guarded commands (data-flow relations) and by
clock equations (control-flow relations).

8. REFERENCES
[1] C. André. Representation and analysis of reactive

behaviors: a synchronous approach. In Computational
Engineering in Systems Applications. IEEE, 1996.

[2] K. Bender, M. Broy, I. Peter, A. Pretschner, T.
Stauner. Model-based development of hybrid systems:
specification, simulation, test case generation. In
Modelling, Analysis, and Design of Hybrid Systems.
Lectures notes in computer science, 279. Springer, 2002

[3] G. Berry and G. Gonthier. The Esterel synchronous
programming language: design, semantics,
implementation. Science of Computer Programming, v.
19(2). Elsevier, 1992.

[4] L. Besnard, T. Gautier, and P. Le Guernic. Signal V4:
reference manual. http://www.irisa.fr/espresso/
Polychrony/doc/document/V4 def.pdf

[5] J. Bézivin, C. Brunette, R. Chevrel, F. Jouault, and
I. Kurtev Bridging the Generic Modeling Environment
(Gme) and the Eclipse Modeling Framework (EMF)
4th Workshop on Best Practices for Model Driven
Software Development, OOPSLA, San Diego, 2005.

[6] C. Brunette, J.-P. Talpin, L. Besnard, and T. Gautier.
Modeling multi-clocked data-flow programs in the
Generic Modeling Environment. Synchronous
Languages, Applications, and Programming (SLAP’06).
Elsevier, 2006.

[7] J. T. Buck, S. Ha, E. A. Lee and
D. G. Messerschmitt. Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems. In
International Journal of Computer Simulation, special
issue on Simulation Software Development. v. 4, pp.
155-182. Ablex, 1994.

[8] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous
Modeling and Design of Control Systems. In
Software-Enabled Control: Information Technology for
Dynamical Systems. IEEE Press, 2002.

[9] J.-L. Colaço, A. Girault, G. Hamon, and M.
Pouzet. Towards a higher-order synchronous dataflow
language. In Embedded Software Conference, Springer
Verlag lectures notes in computer science, 2004.

[10] J.-L. Colaço, B. Pagano, and M. Pouzet. A
conservative extension of synchronous data-flow with

state machines. In Embedded Software
Conference. ACM Press, 2005.

[11] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud. The synchronous dataflow programming
language Lustre. IEEE, vol.79(9), pages
1305-1320. Septembre, 1991.

[12] D. Harel. Statecharts: a visual approach to complex
systems. Science of Computer Programming. Elsevier,
1987.

[13] ISIS, Vanderbilt Uni. Gme User Man.
www.isis.vanderbilt.edu/Projects/gme.

[14] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai,
J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle,
and P. Volgyesi. The Generic Modeling Environment.
Workshop on Intelligent Signal Processing. IEEE, May
2001.

[15] P. Le Guernic, J.-P. Talpin, and J.-C. Le
Lann. Polychrony for system design. Journal of
Circuits, Systems and Computers. World Scientific,
2003.

[16] F. Maraninchi, and Y. Rémond. Mode-automata: a
new domain-specific construct for the development of
safe critical systems. Science of Computer
Programming, v. 46(3). Elsevier, 2003.

[17] H. Marchand, E. Rutten, M. Le Borgne, M. Samaan.
Formal verification of programs specified with SIGNAL
: application to a power transformer station controller.
Science of Computer Programming, v. 41(1). Elsevier,
2001.

[18] The Mathworks. Matlab’s Simulink and
Stateflow. http://www.mathworks.com

[19] D. Potop-Butucaru and
B. Caillaud. Correct-by-construction asynchronous
implementation of modular synchronous
specification. In Application of Concurrency to System
Design. IEEE Press, 2005.

[20] D. Potop, and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specifications. In Applications of Concurrency to
System Design. IEEE Press, 2005.

[21] E. Rutten, F. Martinez. Signal GTI: implementing
task preemption and time intervals in the synchronous
data flow language Signal. In Euromicro Workshop on
Real-Time Systems. IEEE Press, 1995.

[22] J.-P. Talpin, D. Potop-Butucaru, J. Ouy,
B. Caillaud. From multi-clocked synchronous processes
to latency-insensitive modules. International
Conference on Embedded Software. ACM Press, 2005.

[23] Vernadat, F., Percebois, C., Farail, P., Vingerhoeds,
R., Rossignol, A., Talpin, J.-P., and Chemouil, D. The
Topcased project - a toolkit in open-source for critical
application and system development. International
Space System Engineering Conference - Data Systems
in Aerospace. Eurospace, 2006.

