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Adaptive Wavelet Packet Basis Selection
for Zerotree Image Coding

Nasir M. Rajpoot, Member, IEEE, Roland G. Wilson, François G. Meyer, Member, IEEE, and Ronald R. Coifman

Abstract—Image coding methods based on adaptive wavelet
transform and those employing zerotree quantization have been
shown to be successful in recent years. In this paper, we present
a general zerotree structure for an arbitrary wavelet packet
geometry in an image coding framework. A fast basis selection
algorithm which uses a Markov chain based cost estimate of en-
coding the image using this structure is developed. As a result, our
adaptive wavelet zerotree image coder has a relatively low compu-
tational complexity, performs comparably to the state-of-the-art
image coders, and is capable of progressively encoding images.

Index Terms—Basis selection, image coding, wavelet transform,
zerotree quantization.

I. INTRODUCTION

T HE development of image coding systems which can
produce visually pleasing results at low bit rates has

been an active branch of image processing for more than three
decades now. The study of the human visual system (HVS) has
played an important role in this work, largely because spatial
frequency subband decomposition appears to be a key feature
of the HVS [3]. Early subband image coding methods, such as
[1], [28], were motivated by this observation. The development
of wavelets by Strömberg [23] in 1981 and the work by Mallat
and Meyer [12], [13] in 1987 led to a surge of research in
wavelet transform based image coding, partly due to the fact
that the wavelet transform closely matches the feature of the
HVS mentioned above1 [13].

Wavelet basedzerotree image coding methods [21], [22]
exploit the similarities across wavelet subbands by grouping
coefficients belonging to subbands of different resolutions and
encoding the group as a single codeword. The zerotree coding
schemes are quite efficient in terms of both computational com-
plexity and compression performance. Moreover, embedded
(progressive) transmission (reconstruction), which is required
in many applications, using zerotrees with successive approx-
imation quantization (SAQ), is quite straightforward. Wavelet
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1In general, harmonic analysis,the study of harmonic components of a given
signal, has had an enormous impact on the evolution of present day image
coding techniques (for a detailed exposition on the topic; see [8]).

based methods, however, have a problem at low bit rates: while
they perform well on images containing smooth regions and
edges, they perform poorly on images with oscillatory patterns,
such as theBarbara image (Fig. 18). The quantization of
many low energy coefficients belonging to the high frequency
subbands causes artificial smooth regions (smearing) in the
areas of the image that contain rapid variations of intensity.

Wavelet packets were invented [4] to pinpoint signal compo-
nents present locally in the frequency domain. The nondyadic
nature of a wavelet packet (WP) transform allows us to find an
orthogonal basis adapted to the contents of given image and to
the purpose of representation. However, there has not been as
much research activity in wavelet packet image coding as in the
area of wavelet image coding, due to its being computationally
more expensive than the wavelet transform.

In this paper, we explore the possibility of wedding the adap-
tive wavelet packet transform with zerotree quantization. To the
best of our knowledge, the only wavelet packet image coding
algorithms found in the literature that employ zerotree quanti-
zation, partially or fully, are [30] and [2]. The rearrangement
algorithm of Cho and Ra [2] puts together the coefficients of
four split subbands to merge them back into a single subband,
as if no split was made. This rearrangement is iterated until a
wavelet-like subband decomposition is obtained. The SPIHT
coder is then applied to this wavelet-like decomposition. How-
ever, this algorithm faces the following consistency problem:
after the rerearrangement, four child coefficients of a coeffi-
cient in a lower frequency subband do not necessarily belong to
the same spatial location. The issue of wavelet packet zerotrees
was also addressed partially in the space-frequency quantization
(SFQ) algorithm of Xionget al.[30], which employs a rate-dis-
tortion (R-D) optimization framework to select the best basis
and to assign an optimal quantizer to each of the wavelet packet
subbands. In their work, however, the subband decomposition
was restricted to avoid theparenting conflict, a problem ex-
plained in Section III-B, a constraint which may result in the
selection of a suboptimal basis. Moreover, the compuational
complexity of the SFQ algorithm is quite high: according to the
authors [30], the overall complexity of their practical wavelet
coder using the suboptimal heuristic is the sum of the complex-
ities of [19] and [29].

The following questions are addressed in this paper: 1) Can
the zerotree quantization strategy be applied to the wavelet
packet transformed images? 2) If so, how can the spatial
orientation trees, or zerotrees, be defined in order to predict the
insignificance of corresponding wavelet packet coefficients,
given a parent coefficient? 3) Is there an efficient way of
selecting the best basis adapted to both image contents and the
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purpose of representation, i.e., encoding by zerotree quantiza-
tion? The validity of the first of these questions arises from the
fact that there is less self-similarity among the wavelet packet
subbands than among the wavelet subbands. We first provide an
answer to 2), assuming that zerotree quantization can be applied
to the wavelet packet decomposition of an image. A generalized
zerotree structure termed thecompatible zerotreestructure,
which provides a quantization framework for encoding the
wavelet packet coefficients, is presented. The answer to 1)
becomes clear from the successful testing of this structure and
the coding results. In addressing 3), we suggest a fast way of
estimating the cost of compatible zerotree quantization. This
cost estimation function enables us to present an efficient basis
selection algorithm resulting in azerotree friendlybasis.

This paper is organized as follows. The next section gives a
brief review of both fixed and adaptive wavelet transforms. The
idea of zerotrees is extended from wavelet zerotrees to com-
patible zerotrees for wavelet packets in Section III, and rules
for generating the compatible zerotrees are presented. In Sec-
tion IV, the hypothesis that the significance of child coefficients
in a compatible zerotree can be predicted by knowing the signifi-
cance of the parent coefficient is described and tested. A Markov
chain based cost function that allows us to efficiently select the
best basis is given in Section V. The coding algorithm and exper-
imental results are presented in Section VI. The paper concludes
with a summary and discussion of results.

II. A DAPTIVE WAVELET TRANSFORM

A. Introduction

The introduction of multiresolution image representations
has been one of the most important developments in image anal-
ysis and coding over the last two decades [1], [11], [20], [24],
[26], [27]. The idea of analyzing a signal locally at different
scales has resulted in a multidisciplinary boom in research on
wavelets, attracting researchers from many different branches
of science [7], [9], [13], [16]. The principle behind wavelets is
that shifts and dilations of a prototype function , also known
as themother wavelet function, are chosen as basis functions
to represent a signal, while the scaling function is used to
approximate the function at different scales. In the case of the
wavelet transform of a signal of length , the approximation
space of the signal at a resolution is decomposed into
a lower resolution space and a detail space . This
is done by dividing the orthogonal basis
of into two bases of and

of , where
and , using lowpass and highpass filters

and , respectively, in a two-channel filter bank.
A more general form of the wavelet basis, known as the

wavelet packet basis[4], [5], adaptively segments the frequency
axis. Frequency intervals of varying widths are adaptively se-
lected to extract the frequency content present in the given
signal. In order to approximate the signalbelonging to an ap-
proximation space at a resolution using wavelet
packets, the space is decomposed into two orthogonal
spaces and . Each of these spaces can be further de-
composed into two orthogonal spaces. In general, Coifman and

Meyer [4] proved that if is an orthonormal
basis of , where , and ,

, then , is
also an orthonormal basis of , where

(1)

(2)

and . The discrete wavelet packet trans-
form (DWPT) of a one-dimensional (1D) discrete signalof
length can be computed as follows [4],

(3)

where ; , is the transform
coefficient corresponding to the wavelet packet function which
has relative support size , frequency and is located at

. In other words, , and can be regarded respectively as
the scale, frequency and position indices of the corresponding
wavelet packet function. The coefficients and cor-
respond to the lowpass and highpass filters respectively for a
two-channel filter bank and the transform is invertible if appro-
priate dual filters , are used on the synthesis side. The
DWPT can be regarded as a decomposition which removes the
constraint of only decomposing the lowpass filtered signal, so
that all subbands can be further decomposed. This results in a
combinatorial explosion of possible bases from which to select
a suitable basis. Since this library of available bases provides an
overcomplete description, a fast optimization algorithm is re-
quired to select a basis from this library.

B. Number of Possible Bases

Following the notation of [14], awavelet packet treefor a 1D
signal is a tree which (1) has the original signal as its root node

and (2) each of the two sibling nodes elsewhere in the tree
represent two subbands and resulting from the de-
composition (or split) of their parent node . There can be
nodes at a depthof the wavelet packet tree in the case of a 1D
signal. This makes a total of nodes in a wavelet packet
tree of maximum depth . The binary nature of this wavelet
packet tree suggests that the number of possible basesat a
depth satisfies the following relation

(4)

with and is bounded as follows [14]

(5)

The DWPT of a two-dimensional (2-D) image can be obtained
by employing two separable 1D wavelet packets in each direc-
tion. The 4-ary nature of the wavelet packet tree now suggests
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that the number of possible bases,, satisfies the following
equation

(6)

with and is bounded as follows [17]

(7)

This huge collection of wavelet packet bases must be searched
to find an appropriate basis for a given image, resulting in a
sparse representation adapted to the image contents with respect
to certain criterion, as discussed below.

C. Basis Selection

It is clear from (7) that the number of possible basesfor
a wavelet packet tree of depthgrows exponentially as in-
creases. A brute force approach that tries each possible basis
to find out the most suitable one is, therefore, not practical.
Coifman and Wickerhauser [6] applied Bellman’s optimality
principle (OP) to develop a fast algorithm which prunes the
full wavelet packet tree2 into the best wavelet packet tree for
a given signal based on a particular cost function. According to
the OP, an optimal subtree starting from a nodeat a depth

must include optimal subtrees starting from its child nodes
and at depth . In other words, the optimal

subtrees of all the children nodes of a node should be known
before deciding whether the children should be kept or merged.
Let denote the cost of a subband nodecomputed from
wavelet packet coefficients ; for simplicity, we de-
note by . Starting from the terminal nodes of a full
wavelet packet tree of depth, the algorithm decides for each
set of sibling nodes whether to keep them or their parent node

, for all (see Figs. 1–4 for the convention
used to denote these nodes in the case of images), depending on
which of the following two is smaller: or

. Assuming that is anadditivecost function3 a series
of such decisions at depth to keep the children nodes (split)
or to keep the parent node (merge) gives an optimal subtree for
each node at depth . Proceeding in a similar fashion in a
bottom-up direction, the full wavelet packet tree can be pruned
and the best basis with respect tocan be obtained when we
reach the root node of the tree. The time complexity of this
basis selection algorithm for a 1D signal is , where

denotes length of the signal. The extension of this algorithm
to images is straightforward.

2A full wavelet packet treeis a wavelet packet tree whose each node except
the leaf nodes hass children, wheres = 2 and� denotes the number of
dimensions of the signal.

3A cost functionC(w ) of a vectorw is calledadditive if it satisfies the
following relation:

C(w ) = C(�) = C(w );

wherejP j denotes the number of partitions andw , k = 1; 2; . . . ; jP j, are
nonoverlapping and completely covering partitions ofw .

Fig. 1. Wavelet packet (WP) tree for a 2-level wavelet decomposition.

Fig. 2. Split of the 2-D spatial frequency plane due to a 2-level wavelet
decomposition.

III. W AVELET PACKET ZEROTREES

Zerotree quantization is an effective way of exploiting the
self-similarities among high frequency subbands at various res-
olutions. The main thrust of this quantization strategy is in the
prediction of the significance of corresponding wavelet coef-
ficients in higher frequency subbands at the finer resolutions
by exploiting the parent-offspring relationship. This prediction
works well, in terms of efficiently encoding the wavelet coeffi-
cients, due to the statistical characteristics of subbands at var-
ious resolutions and is related to the scale-invariance of edges in
high frequency subbands of similar orientation. Moreover, em-
bedded (progressive) transmission and reconstruction, which is
required in some applications, using zerotrees with successive
approximation quantization (SAQ), is quite straightforward.

In order to explore the possibility of wedding the wavelet
packets with zerotrees, let us suppose first that the best basis
has been selected and zerotree quantization is to be used to en-
code the wavelet packet transform coefficients. The issue is how
to organize spatial orientation trees so as to exploit the self-sim-
ilarities, if any, among the subbands. The wavelet packet sub-
bands do not, apparently, yield parent-offspring relationships
such as those present in the wavelet subbands. Let us try to ex-
tend the concept of zerotrees from the fixed wavelet scenario
to the general wavelet packet case. Consider a square image
of width belonging to the space or . A
2-level wavelet decomposition of this image can also be shown
by a quadtree of depth 2, as in Fig. 1, each of whose interme-
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Fig. 3. WP tree for a simple 2-level WP decomposition.

Fig. 4. WP tree for a 3-level WP decomposition.

diate nodes is associated with a corresponding subband and the
root node represents the original image. The node , for
instance, corresponds to the subspace and the subband

, and so on. Each coefficient of is associated
with four coefficients belonging to at corresponding
spatial locations. In other words, it can be said that is the
parent node of in the sense of zerotrees. A frequency split
of all subbands in this decomposition, shown in Fig. 2, may be
used in favor of this argument.

Now consider the 2-level wavelet packet decomposition and
its corresponding tree shown in Fig. 3. Each coefficient of

can be spatially associated with four coefficients in ,
, , and . In other words, the node , which was

the parent node of in a wavelet tree, is the parent of all
four children of (the node with similar orientation, or
same superscripts, at previous level). Consider now another
3-level wavelet packet decomposition and the corresponding
tree shown in Fig. 4. This is just like a wavelet decomposition,
except that the nodes and have been further split.
The orientations of all children of are the same as those
of all of the children of . Therefore, each coefficient of

, for instance, can be associated with four coefficients of
at a similar spatial location, due to their compatibility of

orientation. This compatibility can be generalized to formulate
a set of rules, presented in Section III-C, to construct the
zerotree structure for an arbitrary wavelet packet geometry.

A. Compatible Zerotrees

Due to the dyadic nature of wavelet subbands, the organiza-
tion of parent-child relationships is quite straightforward. If we
look closely at the nature of the wavelet packet decomposition,
we find that the subbands in a wavelet packet decomposition can
be classified into three main categories, similar to three families
of subbands in a wavelet decomposition. We call them primary
compatible zerotreesto denote the trees of subbands having sim-
ilar global orientation. The adjectivecompatibleoriginates from
the fact that these trees are generated taking into account both
scale and orientation compatibility, as will be obvious from the
rules for their construction. Let, , , and denote the fami-
lies of subbands corresponding to the wavelet subbands (or their
further decompositions) containing horizontal , vertical

, and diagonal edges, respectively. The compatible
zerotrees associated with the three families,, , and of a
3-level wavelet decomposition are shown in Fig. 5. It is to be
noted that the compatible zerotrees differ from the zerotrees of
[22] in the sense that the nodes of a compatible zerotree rep-
resent a full subband as opposed to an ordinary zerotree whose
nodes represent one or more transform coefficients of a subband.

In the next section, we present a solution to the problem which
occurs when a child node in the compatible zerotree is at a
coarser resolution than the parent node, followed by a set of
rules required to construct compatible zerotrees.
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Fig. 5. Compatible zerotrees for the subband familiesH,V , andD of a 3-level
wavelet decomposition.

Fig. 6. Parenting conflict in a WP decomposition (a) WP subband
decomposition with no parenting conflict (b) WP subband decomposition with
parenting conflict arising from the split of one of the child nodes of the vertical
high frequency subbandLH .

B. Parenting Conflict

As mentioned earlier, the high frequency subbands in a
wavelet packet decomposition can be further decomposed in
order to adapt the basis to the image contents. In a pre-decom-
posed tree of one of these families of subbands (, , and

), if a child node is decomposed into only four subbands at
the next coarser resolution, the parent-offspring relations are
easy to establish, as shown in Fig. 6(a). However, if any of
these four child nodes is decomposed any further, as shown in
Fig. 6(b), the resulting subbands , , , and would be
at a coarser resolution than the parent node (subband).
This results in the association of each coefficient of such a
child node to multiple parent coefficients, in the parent node,
giving rise to aparenting conflict. In other words, there are
four candidate coefficients in claiming the parenthood
of each of the four corresponding coefficients belonging to
the child nodes . One possible solution is to
merge the four children so as to resolve the conflict [30]. This
suboptimal approach constrains the basis selection process,
resulting in a loss of freedom in adapting the wavelet packet
basis to the contents of a given image. In order to resolve the
parenting conflict, we suggest the following solution. Due to
their orientation and scale compatibility with the subband ,
these child nodes can be moved up in the
tree so that they are linked directly to , the root node of
the primary compatible zerotree associated with the family
of subbands. This should allow us to generate the compatible
zerotree structure without restricting the basis selection.

Fig. 7. A sample intermediate compatible zerotree (a) Sample geometry of
a 3-level WP decomposition, and (b) the parent-offspring relationships for
compatible zerotree originating fromT .

C. Rules for Generating the Compatible Zerotrees

In this section, we present a set of rules to construct the overall
compatible zerotree structure for an arbitrary wavelet packet
basis. The only assumption made is that the lowest frequency
subband of the selected basis is always at the coarsest reso-
lution. This is a reasonable assumption, based upon the fact
that a significant amount of the signal energy is concentrated
in the lowest frequency subband, which is most likely not to be
merged by any of the tree pruning algorithms. In the description
of these rules, “node is followed by node ” refers to the sit-
uation where node is at a higher level (or coarser resolution of
pre-decomposed high frequency subbands, as in a wavelet de-
composition) than the node in the hierarchy of subbands in a
given family tree.

Rules
(a) If a node at a coarser resolution is followed only by a

node at the next finer resolution (as in a wavelet trans-
form), the node is declared as a parent of.

(b) If a node is followed by four nodes , , , and
(at the same resolution), thenis declared to be the

parent of all these four nodes.
(c) If four subbands , , , and at a coarser resolution

are followed by four subbands , , , and at the
next finer resolution, then node is declared to be the
parent of node (for ,2,3,4).

(d) If a node is at a finer resolution than four of its
children, say , , , and , then is disregarded
as being the parent of all these nodes and all of them
are moved in the tree under a node at the same or
a coarser resolution.

Consider the sample segmentation shown in Fig. 7(a). Let
denote the node representing the lowest frequency subband, sit-
uated in the top-left corner of a conventional subband decompo-
sition. Then represents the root node of an overall compat-
ible zerotree with , , and —which represent the coarsest
resolution high frequency subbands—being its immediate chil-
dren, as shown in Fig. 7(a). These child nodes are themselves
roots of three compatible zerotrees corresponding to the fami-
lies, , , and respectively. These compatible zerotrees are
separately generated, only once for a given wavelet packet basis,
in a recursive manner, using the rules described above. The con-
struction of compatible zerotrees proceeds in two steps. In the
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Fig. 8. The overall compatible zerotree structure comprising of the three
primary compatible zerotreesT , T , andT ; each node represents a whole
WP subband, and the node radius corresponds to the support of basis functions
at that transform level.

Fig. 9. The overall compatible zerotree structure, after re-organization to
resolve the parenting conflicts; the edge labels depict the rules used to generate
the links between parent and the child nodes.

first step, the primary compatible zerotrees corresponding to the
subband families, , , and , and are constructed using rules
a, b, andc. In the second step, the overall tree is reorganized
using ruled, in order to resolve any parenting conflicts. Let us
consider the segmentation shown in Fig. 7(a) to explain these
rules. The primary compatible zerotrees, , and are gen-
erated, as shown in Fig. 8, in the first step. The overall tree is
re-organized (as shown in Fig. 9) using ruled in order to re-
solve the parenting conflict under node. This rule first identi-
fies nodes with the parenting conflicts and when such nodes are
found, the whole bunch (consisting of , , , and ) is
plucked from its current position in the tree. The algorithm then
climbs up the tree to look for an appropriate node, a compatible
ancestor at the nearest scale and having the nearest orientation,
and glues the bunch under this newly found compatible parent.
The parent-offspring dependences for the primary compatible
zerotree are shown in Fig. 7(b).

In the case of zerotrees for wavelet subbands, where each
parent subband node is followed by exactly one child subband
of similar orientation at the next finer resolution and thus each
coefficient of the parent node is associated with four coefficients
of the child node at some spatial location, an intermediate node
in a compatible zerotree, in general, can have more than one
child node. In a compatible zerotree, the parent-offspring re-
lationships are established by looking at the scale of subband
nodes in the tree. What determines the parent-offspring rela-
tionships between their coefficients is the difference in scale of
the parent and child nodes. For instance, if both parent and the
child nodes are at the same scale, each coefficient of the parent
node will have exactly one offspring coefficient at same spatial
location in the child node, whereas if the parent node is at the
immediate coarser resolution than the child node, then each co-
efficient of the parent node is associated with four coefficients
at the same spatial location in the child node.

IV. COMPATIBLE ZEROTREEHYPOTHESIS

Given an arbitrarily segmented wavelet packet basis, com-
patible zerotrees are constructed using the algorithm described
above. In order to be able to make predictions for wavelet
packet coefficients in finer resolution subbands, thecompatible
zerotree hypothesisis defined as follows.If a wavelet packet
coefficient of a node from the compatible zerotree is insignif-
icant, it is more likely that the wavelet packet coefficients at
similar spatial locations in all the descendant nodes of the same
compatible zerotree will be insignificant as well. Compatible
zerotrees provide us a convenient way of making predictions
about the insignificance of corresponding coefficients in the
child nodes, given the significance of a coefficient belonging
to the parent node.

The success of the compatible zerotree hypothesis for wavelet
packets, as defined above, can be tested by employing two em-
pirical approaches. First, the amplitude of transform coefficients
is plotted for all the subbands organized both in the ordinary in-
creasing frequency order and in the compatible zerotrees. Con-
sider the plots of wavelet coefficient amplitude against the co-
efficient indices for a 5-level wavelet decomposition of the 512

512Barbara image, as shown in Fig. 11. The amplitude axis
in both plots was restricted to1000 to facilitate the display
of smaller coefficients. While the subbands were arranged in an
increasing frequency order for the plot in Fig. 11(a), the plot
in Fig. 11(b) refers to the subbands as organized in the com-
patible zerotrees. Similar plots of wavelet packet coefficients’
amplitudes against the coefficient indices for the same image
using the basis geometry4 shown in Fig. 10(a) are provided in
Fig. 12. In all plots corresponding to the subbands organized
in the compatible zerotrees, three families of primary compat-
ible zerotrees , , and are clearly visible, showing that
the new arrangement is successful in isolating the coefficients
of similar orientation in a hierarchy to be used for prediction in
a top-down fashion. Zoomed plots of these families, as shown in
Fig. 13, exhibit more sub-families organized within these com-
patible zerotrees.

An alternate approach to test the success of compatible
zerotree hypothesis is to compute the conditional probability

of the significance of a child coefficient given the
significance of its parent coefficient for a specific threshold
value. We plotted both joint and the conditional histograms
to verify how successfully the prediction for insignificance
of a coefficient in a child subband can be made given the
significance of its parent coefficient. The joint and conditional
histograms for some parent subbands and their immediate
children using the subband decomposition of Fig. 10(a) for
Barbara are shown in Fig. 14 and Fig. 15. These histograms
were obtained by accumulating the joint and conditional sig-
nificance probability counts after a uniform scalar quantization
of the subbands, where the values onand axes represent the
quantization index. In these histograms, a value for probability
count is represented by a gray level, with white representing
high probability count and black representing low probability

4The corresponding compatible zerotrees are shown in the Fig. 10(b) with a
numbering generated in a recursive manner.
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Fig. 10. A sample WP geometry and corresponding compatible zerotrees (a) WP decomposition used for illustration of the compatible zerotree hypothesis for
WP’s, and (b) Compatible trees for the decomposition in (a); Nodes are labeled in a recursive fashion, as shown in part (b).

Fig. 11. Plot of wavelet coefficients’ amplitude vs. coefficient indices for 5-level wavelet decomposition ofBarbara The subbands were arranged in (a) an
increasing frequency order, and (b) a compatible zerotree order.

Fig. 12. Plot of WP coefficients’ amplitude vs. coefficient indices for WP decomposition shown in Fig. 10(a) ofBarbara the subbands were organized in (a) an
increasing frequency order, and (b) a compatible zerotree order.

count. The concentration of these histograms in the low signifi-
cance range of child coefficients throughout the range of parent

coefficients is encouraging evidence for the organization of
these subbands in a compatible zerotree order.
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Fig. 13. Zoomed sections of Fig. 12(b) the familiesT , T , andT showing
more sub-families within these compatible zerotrees.

(a)

(b)

Fig. 14. Joint and conditional histograms for subbands numbered 3 and 4 (a)
subband 3 and its immediate children;binsize = 80, and (b) subband 4 and its
immediate children;binsize = 50.

V. MARKOV CHAIN BASED COST ESTIMATION

Coifman and Wickerhauser [6] suggested using anentropy-
based cost function in order to select the best basis resulting in
compaction of the overall energy. This cost function, however,
does not take into account the quantization strategy employed
by the coder. Moreover, using this cost function does not nec-
essarily yield a meaningful basis [15]. In order to ensure that
the selected basis iszerotree friendly, we propose using a cost
function that can estimate the entropy of quantized coefficients
belonging to the compatible zerotrees.

If the compatible zerotree hypothesis is true, the insignifi-
cance of child coefficients in a subband is related to the insignif-
icance of their parent coefficient. This would suggest that the
subbands (nodes) belonging to each family of the compatible

(a)

(b)

Fig. 15. Joint and conditional histograms for subbands numbered 26 and 43
(a) subband 26 and its immediate children;binsize = 100, and (b) subband 43
and its immediate children;binsize = 80.

zerotrees can be modeled as a nonhomogeneous Markov chain
(MC) with time replaced by node depth in the tree, i.e., the root
compatible zerotree. Let denote a random variable corre-
sponding to the significance of coefficients of all nodes at depth

of the compatible zerotree that are the children of coefficients
belonging to the corresponding parent node at tree depth.
The sample spacefor these random variables
(where denotes depth of the tree or the number of transform
levels) is , where a value of 0 denotes that the co-
efficient is insignificant with respect to a threshold, a value of
1 denotes its magnitude being larger than the threshold, and a
value of denotes that the coefficient will be encoded as a ze-
rotree symbol.

The performance of zerotree encoding depends largely upon
the values of mutual information , where

, for a given basis. The larger the sum of these values, the
more efficient the encoding is. Given a basisfor an image,
this value determines howfriendly the basis would be to the
zerotree quantization method. The cost of encoding
the coefficients of a -level wavelet packet basis can be
written as

(8)

where is the threshold value used at theth itera-
tion, , denotes the number of iterations of
encoding, and and denote the costs of encoding the sig-
nificance map (ie, information about significance of each of the
coefficients with respect to the threshold) and the refinement
information (required to successively update magnitude of the
coefficient) respectively. It was our observation that the symbol
used to encode the refinement information using zerotree quan-
tization was nearly random. This led to the conclusion that it
would suffice to approximate by estimating only the
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Fig. 16. Cost of encoding the significance map vs. threshold value: (a) Lena and (b) Barbara.

Fig. 17. Best basis selection algorithm for zerotree quantization.

TABLE I
CZQ COMPRESSIONRESULTS FOR512� 512LENA IMAGE

first term in above expression. The cost can be estimated
by computing the entropy of a discrete random variable whose

TABLE II
CZQ COMPRESSIONRESULTS FOR512� 512GOLDHILL IMAGE

value is drawn from the set of codewords used to encode the
significance map. These codewords include two symbols (0 and
1) to represent whether a coefficient is significant or not, and a
zerotree symbol whose probability can be computed as follows.

Let denote , the probability of a coeffi-
cient belonging to subband nodes at tree depthbeing insignifi-
cant, and denote the probability of all child coefficients
at depth to be insignificant given that all of their corresponding
parent coefficients at the previous depthare insignificant. Let

denote the joint probability of all the coefficients origi-
nating from nodes at tree depthand all their child coefficients
being insignificant. In other words, it denotes the probability of
a zerotree of length , which consists of coeffi-
cients in a wavelet zerotree. According to the multidimensional
probability mass function (pmf) theorem of Markov chains [25],

is given by

(9)
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TABLE III
CZQ COMPRESSIONRESULTS FOR512� 512BARBARAIMAGE

TABLE IV
CZQ COMPRESSIONRESULTS FOR512� 512FINGERPRINTSIMAGE

or

(10)

The cost can now be computed as follows:

(11)

The above equation provides us a way of estimating the cost of
using a particular basis for encoding wavelet packet transformed
images with compatible zerotree quantization. The most cost
effective (best) basis for this particular quantizer can be obtained

(a)

(b)

Fig. 18. Two original 512� 512 test images (a)Barbaraand (b)Fingerprints.

by minimizing (8). Fig. 16 shows the graph of the cost of en-
coding the significance map (both estimated and real) in terms
of the number of codewords per pixel plotted against various
threshold values for bothLena andBarbara images. It is as-
sumed that given a coefficient and all its child coefficients are in-
significant, it is very likely that its siblings and all their children
are insignificant too. The probability can, therefore,
be approximated by the probability of all four child coefficients
at depth being insignificant given that their parent coefficient
at depth is insignificant. From these graphs, it is clear
that this estimation works better for theLenaimage than for the
Barbaraimage, due to the latter’s being of a relatively complex
nature. The MC based computation of the cost of encoding the



1470 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 12, DECEMBER 2003

Fig. 19. Selected 2-D WP bases used for encoding (a)Lena, (b) Goldhill, (c) Barbara, and (d)Fingerprints.

(a) (b) (c) (d)

Fig. 20. Visual quality of coding results Portion ofBarbara (table cloth) encoded at 0.25 bpp (a) CZQ-WP and (b) SPIHT; Portion ofFingerprints(central
spiral) encoded at 0.25 bpp (c) CZQ-WP and (d) SPIHT.

significance map proves to be a good estimate, particularly at
large threshold values which correspond to low bit rates.

VI. CODING ALGORITHM AND RESULTS

A. Basis Selection Algorithm

As discussed earlier in the previous section, the use of a
bottom-up search method, along with a cost function that
takes into account the quantization strategy, ensures selection
of the best basis for compressing a given image using that
particular quantization method. Based on the cost estimate
described in the previous section, a bottom-up basis selection
algorithm can be used to select what can be termed as azerotree
friendly wavelet packet basis. Let the given imagebe of size

. Let denote a node in the wavelet packet tree
corresponding to a subband at depthand , ,

, and be the four child nodes at depth
corresponding to the decomposition of . There are up to
subband nodes at each depthassosicated with and

. The algorithm for selection of the best basis using
the new paradigm and the cost estimate for is given in
Fig. 17. This algorithm takes time to select the
best wavelet packet basis for compatible zerotree quantization.
However, when comparing it to the Coifman-Wickerhauser
algorithm for basis selection, it should be noted that the cost

is calculated by taking into account all the current
terminal nodes instead of only the nodes in question (ie, the
parent node at depth and its four child nodes at depth

). This is due to the nature of quantization method we

are considering and does not necessarily need to be the case if
another quantization method is used.

B. Experimental Results and Discussion

Given a basis, the compatible zerotrees can be organized
using the rules given in [18]. Once the compatible zerotrees
have been generated, based upon knowledge of the best basis,
the coding is performed by successively encoding the signifi-
cance information about the coefficients, as they appear in the
subbands in an increasing frequency order, and the refinement
information until the bit budget has expired or the encoded
bitstream terminates, whichever happens earlier. This makes
the decoder capable of generating an approximation to the
original image at any given bit rate or quality, as long as the
minimum required bits are available for doing so.

Experiments were conducted on four standard 8-bit greyscale
images of resolution 512 512—Lena, Goldhill, Barbara, and
Fingerprints—using both a wavelet basis and a zerotree friendly
wavelet packet basis selected by the algorithm mentioned above.
For all the experiments, the factorized 9–7 biorthogonal filters
[15] were used for efficiently computing the wavelet packet
transform. Results for the performance of both variants of the
compatible zerotree quantization (CZQ) coder—first using the
wavelet basis CZQ- and other using the zerotree friendly
wavelet packet basis CZQ- —for all the test images are pre-
sented in Tables I–IV. The measure used to describe the perfor-
mance of each coder is the peak-signal-to-noise-ratio (PSNR)
defined as , where MSE denotes the mean
squared error, versus the bit-rate given in terms of bits per pixel
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(bpp). Although it is well known that PSNR is not a representa-
tive measure of the performance from a perceptual viewpoint
[10], it is still widely used for comparing the coding perfor-
mances in quantitative terms. Like SPIHT and many other image
coding algorithms, our algorithm also requires the full image
and its wavelet packet transform to be held in memory.

While being capable of progressively reconstructing the
encoded image and being relatively faster than other wavelet
packet coders (such as [15] and [30]), the CZQ-coder
performs comparably well. The coding gains achieved by it
on top of CZQ- (nearly 0.1 dB forLena, 0.1–0.25 dB
for Goldhill, 0.6–1.5 dB forBarbara, and 0.4–0.7 dB for
Fingerprints) empirically demonstrate success of the com-
patible zerotree hypothesis. We note that the superior coding
performance of SPIHT as compared to CZQ- is due to the
fact that CZQ- is just a variation of the EZW algorithm and
does not employ the set partitioning rules of SPIHT. A closer
look, however, at the reconstructed images by CZQ- and
SPIHT at 0.25 bpp reveals that CZQ- yields better visual
quality than SPIHT. Note, for instance, the quality of a portion
(table cloth) of the reconstructedBarbara image encoded by
CZQ- and SPIHT, and the quality of a portion (central
spiral) of the reconstructedFingerprints image encoded by
CZQ- and SPIHT as shown in Fig. 20 (the original images
are shown in Fig. 18). Fig. 19 shows the geometries of the 2-D
wavelet packet bases selected for all test images. As expected,
the basis selected forLenaclosely resembles a wavelet basis,
due to its being a smooth image.

VII. CONCLUSIONS

We have presented a general zerotree structure for adaptive
wavelet transform that allows us to efficiently encode the
transform coefficients and to progressively encode the image.
The best basis was selected using a cost function that estimates
the cost of zerotree quantization, in order to ensure that the
resulting basis will be adapted to the image contents and the
purpose of representation. Although experimental results show
that the performance of our wavelet packet zerotree CZQ-
coder, in terms of both PSNR and visual quality, is significantly
better than its wavelet counterpart CZQ- , it is only margin-
ally comparable to other wavelet packet coders such as [15],
[30]. A possible explanation for this is the relative simplicity
of our coder as compared to [30] and its inability to exploit
intra-subband redundancies, as is the case in [15]. However,
our coder maintains the better visual quality performance of
wavelet packet image coders for complex textured images, such
as Barbara and Fingerprints, over the wavelet based SPIHT
image coder at low bit rates.
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