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Adaptive Wavelet Packet Basis Selection
for Zerotree Image Coding

Nasir M. RajpootMember, IEEERoland G. Wilson, Francois G. MeyeMember, IEEEand Ronald R. Coifman

Abstract—mage coding methods based on adaptive wavelet based methods, however, have a problem at low bit rates: while
transform and those employing zerotree quantization have been they perform well on images containing smooth regions and
shown to be successful in recent years. In this paper, we presentedgesl they perform poorly on images with oscillatory patterns,

a general zerotree structure for an arbitrary wavelet packet . . o
geometry in an image coding framework. A fast basis selection such as theBarbara image (Fig. 18). The quantization of

algorithm which uses a Markov chain based cost estimate of en- many low energy coefficients belonging to the high frequency
coding the image using this structure is developed. As a result, our subbands causes artificial smooth regioaméaring in the

adaptive wavelet zerotree image coder has a relatively low compu- areas of the image that contain rapid variations of intensity.
tational complexity, performs comparably o the state-of-the-art  \\iyelet packets were invented [4] to pinpoint signal compo-
image coders, and is capable of progressively encoding images. . . .
nents present locally in the frequency domain. The nondyadic
Index Terms—Basis selection, image coding, wavelet transform, patyre of a wavelet packet (WP) transform allows us to find an
zerotree quantization. orthogonal basis adapted to the contents of given image and to
the purpose of representation. However, there has not been as
|. INTRODUCTION much research activity in wavelet packet image coding as in the
HE development of image coding systems which ceff€a of wavel_etimage coding, due to its being computationally
produce visually pleasing results at low bit rates hd80re expensive than the wavelet transform.
been an active branch of image processing for more than thred" this paper, we explore the possibility of wedding the adap-
decades now. The study of the human visual system (HVS) Hi§ wavelet packet transform with zerotree quantization. To the
played an important role in this work, largely because spatf@st of our knowledge, the only wavelet packet image coding
frequency subband decomposition appears to be a key fea@j@orithms found in the literature that employ zerotree quanti-
of the HVS [3]. Early subband image coding methods, such &8tion. partially or fully, are [30] and [2]. The rearrangement
[1], [28], were motivated by this observation. The developme@tdorithm of Cho and Ra [2] puts together the coefficients of
of wavelets by Strémberg [23] in 1981 and the work by Malld@ur split subbands to merge them back into a single subband,
and Meyer [12], [13] in 1987 led to a surge of research S if no split was made. This rearrangement is iterated until a
wavelet transform based image coding, partly due to the fakgvelet-like subband decomposition is obtained. The SPIHT
that the wavelet transform closely matches the feature of theder is then applied to this wavelet-like decomposition. How-
HVS mentioned above[13]. ever, this algorithm faces the following consistency problem:
Wavelet basedzerotreeimage coding methods [21], [22] @fter the rerearrangement, four child coefficients of a coeffi-
exploit the similarities across wavelet subbands by groupiffnt in a lower frequency subband do not necessarily belong to
coefficients belonging to subbands of different resolutions af¢e same spatial location. The issue of wavelet packet zerotrees
encoding the group as a single codeword. The zerotree codiigs ls0 addressed partially in the space-frequency quantization
schemes are quite efficient in terms of both computational cofFQ) @lgorithm of Xionget al.[30], which employs a rate-dis-
plexity and compression performance. Moreover, embedd@ition (R-D) optimization framework to select the best basis
(progressive) transmission (reconstruction), which is requiréfd to assign an optimal quantizer to each of the wavelet packet
in many applications, using zerotrees with successive appréxbands. In their work, however, the subband decomposition

imation quantization (SAQ), is quite straightforward. Wavele¥@s restricted to avoid thparenting conflict a problem ex-
plained in Section IlI-B, a constraint which may result in the
. . , selection of a suboptimal basis. Moreover, the compuational
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purpose of representation, i.e., encoding by zerotree quantikéeyer [4] proved that if{wf(t — 2/n)},ez is an orthonormal
tion? The validity of the first of these questions arises from thgasis of W7, whereW? = V;, Wi = W; and¢§ = ¢;,
fact that there is less self-similarity among the quelet pa}ck@} = 9, then{zﬁfﬁl(t — 2itly), fll)?f{l(t — 2t ) ez is
subbands than among the wavelet subbands. We first provides@d an orthonormal basis WJP, where
answer to 2), assuming that zerotree quantization can be applied

to the wavelet packet decomposition of an image. A generalized 2p I , i

zerotree structure termed trempatible zerotreestructure, YLt =D Al (t— 2n) 1)
which provides a quantization framework for encoding the n=To0

wavelet packet coefficients, is presented. The answer to 1) 2p+1 = » y

becomes clear from the successful testing of this structure and VAT (0 = D glnlv(t—2'n), @

n=—oo

the coding results. In addressing 3), we suggest a fast way of

estimating the cost of compatible zerotree quantization. Trgﬁdwf — (Wffl@wﬁfl)- The discrete wavelet packet trans-

cost estimation function enables us to present an efficient bagjgy (DWPT) of a one-dimensional (1D) discrete signabf
selection algorithm resulting inzerotree friendlybasis. length NV can be computed as follows [4],

This paper is organized as follows. The next section gives a
brief review of both fixed and adaptive wavelet transforms. The  ws,, 4, = ng,zl Wnda—1k (=0,1,... JN274 -1
idea of zerotrees is extended from wavelet zerotrees to com- k
patible zerotrees for wavelet packets in Section lIll, and rulesw2n+1_d_l _ Z hi—ot wna1s [=0,1,... N27¢ 1
for generating the compatible zerotrees are presented. In Sec- o P’ o
tion IV, the hypothesis that the significance of child coefficients wo 01 =T 1=0,1,...,N—-1 (3)
in a compatible zerotree can be predicted by knowing the signifi-
cance of the parent coefficient is described and tested. A Markeotwered = 1,2,...,J —1; J =log, N, w,, 4, IS the transform

chain based cost function that allows us to efficiently select tisoefficient corresponding to the wavelet packet function which
best basis is given in Section V. The coding algorithm and expéas relative support siz&, frequencyn2=? and is located at
imental results are presented in Section VI. The paper conclud®s In other words, n andl can be regarded respectively as
with a summary and discussion of results. the scale, frequency and position indices of the corresponding
wavelet packet function. The coefficients,,} and{g,} cor-
respond to the lowpass and highpass filters respectively for a
two-channel filter bank and the transform is invertible if appro-
A. Introduction priate dual filterg h,, }, {g. } are used on the synthesis side. The

The introduction of multiresolution image representatiofdWPT can be regarded as a decomposition which removes the
has been one of the most important developments in image a§@ostraint of only decomposing the lowpass filtered signal, so
ysis and coding over the last two decades [1], [11], [20], [241]t1at all subbands can be further decomposed. This results in a
[26], [27]. The idea of analyzing a signal locally at differenfombinatorial explosion of possible bases from which to select
scales has resulted in a multidisciplinary boom in research 8uitable basis. Since this library of available bases provides an
wavelets, attracting researchers from many different branct@rcomplete description, a fast optimization algorithm is re-
of science [7], [9], [13], [16]. The principle behind wavelets i§luired to select a basis from this library.
that shifts and dilations of a prototype functiof), also known .
as themother wavelet functigrare chosen as basis functiond: Number of Possible Bases
to represent a signal, while the scaling functifiin) is used to  Following the notation of [14], aavelet packet trefor a 1D
approximate the function at different scales. In the case of thiginal is a tree which (1) has the original signal as its root node
wavelet transform of a signal of length V, the approximation A3 and (2) each of the two sibling nodes elsewhere in the tree
spaceV; of the signal at a resolutio2™ is decomposed into represent two subbandg™ and /\3’”rl resulting from the de-

a lower resolution spack;.; and a detail spac#;,,. This composition (or split) of their parentnodg_, . There can be?

is done by dividing the orthogonal basf®;(t — 2/n)},.cz nodes at a deptli of the wavelet packet tree in the case of a 1D
of V; into two bases{¢;1(t — 27+'n)},cz of V;4; and signal. This makes a total @f ! — 1 nodes in a wavelet packet
{j41(t=27"1n) } ez Of W1, wherep; (1) = 277/2¢(277t)  tree of maximum deptl/. The binary nature of this wavelet
andq;(t) = 279/%)(277t), using lowpass and highpass filterpacket tree suggests that the number of possible Héses a

Il. ADAPTIVE WAVELET TRANSFORM

h[n] andg[n], respectively, in a two-channel filter bank. depthd satisfies the following relation
A more general form of the wavelet basis, known as the )
wavelet packet basjd], [5], adaptively segments the frequency Na=Nj_,+1 (4)

axis. Frequency intervals of varying widths are ad.aptlvely.s\(lav—ith N, = 1 and is bounded as follows [14]
lected to extract the frequency content present in the given

signal. In order to approximate the sigrfabelonging to an ap- 927 < Ny < 972" (5)
proximation spacé’; = WJO at a resolutior2~7 using wavelet N N

packets, the spacWJQ is decomposed into two orthogonalThe DWPT of a two-dimensional (2-D) image can be obtained
spacesi/V]QJrl ande1 1- Each of these spaces can be further déy employing two separable 1D wavelet packets in each direc-

composed into two orthogonal spaces. In general, Coifman amh. The 4-ary nature of the wavelet packet tree now suggests
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that the number of possible bas@g;, satisfies the following Y
equation
Ng=Ng,+1 (6)

with Ny = 1 and is bounded as follows [17]

28 < Ny < 284, @

0.0 0.1 1.0 1.1
This huge collection of wavelet packet bases must be searched *; A, A,

to find an appropriate basis for a given image, resulting in a 5
sparse representation adapted to the image contents with respléct: Wavelet packet (WP) tree for a 2-level wavelet decomposition.

to certain criterion, as discussed below.

+7

C. Basis Selection AR S| S LH, INAAA - | SPAAA
It is clear from (7) that the number of possible basgsfor

a wavelet packet tree of depthgrows exponentially ad in- FHAN S LH, A

creases. A brute force approach that tries each possible basis ©,

to find out the most suitable one is, therefore, not practical. HL, |HL| L, |HL| HL,

Coifman and Wickerhauser [6] applied Bellman’s optimality
principle (OP) to develop a fast algorithm which prunes the

full wavelet packet treeinto the best wavelet packet tree for Bl Bld

a given signal based on a particular cost function. According to

the OP, an optimal subtree starting from a nogeat a depth AR LH; ot
d must include optimal subtrees starting from its child nodes T

A2n and A7t at depthd + 1. In other words, the optimal - ° +

subtrees of all the children nodes of a node should be known

before deciding whether the children should be kept or mergegl. 2. spiit of the 2-D spatial frequency plane due to a 2-level wavelet
LetC(w) denote the cost of a subband nodeomputed from decomposition.

wavelet packet coefficientsry, € \; for simplicity, we de-

noteC(w,) by C(X). Starting from the terminal nodes of a full . W AVELET PACKET ZEROTREES

wavelet packet tree of depth the algorithm decides for each

set of sibling nodes whether to keep them or their parent nodeZ€rotree quantization is an effective way of exploiting the
An_ forall0 < n < 27~ (see Figs. 1-4 for the conventionSelf-similarities among high frequency subbands at various res-

used to denote these nodes in the case of images), dependin@/8#ons. The main thrust of this quantization strategy is in the
which of the following two is smaller€(A2") + C(A2"*+1) or prgdmuqn o_f the significance of correspondmg wavelet cqef—
C(A_,). Assuming that is anadditivecost functios a series ficients in higher frequency subbands at the finer resolutions
of such decisions at depth- 1 to keep the children nodesilit) by explomng the parent-o_ff_sprmg relat|c_)nsh|p. This predlct|0_n
or to keep the parent nodmérgg gives an optimal subtree forworks well, in terms of_ efﬂmently encogllr!g the wavelet coeffi-
each node at depth — 1. Proceeding in a similar fashion in ac/ents, due to the stausncal characterlstlc_s of s_ubbands at var-
bottom-up direction, the full wavelet packet tree can be pruné&¥'s resolutions and is related.to _the sgale-mvanance of edgesin
and the best basis with respectdaan be obtained when we high frequency subbands of similar orientation. Moreover, em-
reach the root nodag of the tree. The time complexity of this P@dded (progressive) transmission and reconstruction, which is
basis selection algorithm for a 1D signali$N log, N), where required in some applications, using zerotrees with successive

N denotes length of the signal. The extension of this algorithfPProximation quantization (SAQ), is quite straightforward.
to images is straightforward. In order to explore the possibility of wedding the wavelet

packets with zerotrees, let us suppose first that the best basis
has been selected and zerotree quantization is to be used to en-
2A full wavelet packet treés a wavelet packet tree whose each node exce?tOde the_ Wavele_t pagket tra,meorm coefficients. The ISSue|Is h,OW
the leaf nodes has children, wheres = 2* andv denotes the number of tO Organize spatial orientation trees so as to exploit the self-sim-
dimensions of the signal. ilarities, if any, among the subbands. The wavelet packet sub-
3A cost functionC(w ) of a vectorw , is calledadditiveif it satisfies the phands do not apparently, yield parent-offspring relationships
following relation: ' L
such as those present in the wavelet subbands. Let us try to ex-
1Pl tend the concept of zerotrees from the fixed wavelet scenario
C(wx) =C(A) =) C(war), to the general wavelet packet case. Consider a square image
ket of width N = 2~ belonging to the spackz: or W,"". A
where| P| denotes the number of partitions and,., k = 1,2.....|P|, are 2-1€vel wavelet decomposition of this image can also be shown
nonoverlapping and completely covering partitionsaof. by a quadtree of depth 2, as in Fig. 1, each of whose interme-
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split high-frequency
subband

/

(b)

Fig. 3. WP tree for a simple 2-level WP decomposition.

(a) (b)

Fig. 4. WP tree for a 3-level WP decomposition.

diate nodes is associated with a corresponding subband and&hé€Compatible Zerotrees
root node\(’’ represents the original image. The node, for
instance, corresponds to the SubSpHé%Jrl and the subband  Due to the dyadic nature of wavelet subbands, the organiza-
LHy, and so on. Each coefficient dﬁ (LH,) is associated tion of parent-child relationships is quite straightforward. If we
with four coefficients belonging mo ! (LH,) atcorresponding look closely at the nature of the wavelet packet decomposition,
spatial locations. In other words, it can be said Lk&t is the we find thatthe subbands in a wavelet packet decomposition can
parent node oi\‘l]’1 in the sense of zerotrees. A frequency splibe classified into three main categories, similar to three families
of all subbands in this decomposition, shown in Fig. 2, may lué subbands in a wavelet decomposition. We call them primary
used in favor of this argument. compatible zerotreds denote the trees of subbands having sim-
Now consider the 2-level wavelet packet decomposition aridr global orientation. The adjectiempatibleoriginates from

its corresponding tree shown in Fig. 3. Each coefficient difie fact that these trees are generated taking into account both

% % can be spatially associated with four coefficients\j’, scale and orientation compatibility, as will be obvious from the

', A3°, andX}!. In other words, the nodi}’, which was rules for their construction. Let{, V', andD denote the fami-

the parent node oj\d{ %in a wavelet tree, is the parent of alllies of subbands corresponding to the wavelet subbands (or their
four children of/\1 (the node with similar orientation, or further decompositions) containing horizontdlH), vertical
same superscripts, at previous level). Consider now anotliéfl.), and diagonal H H) edges, respectively. The compatible
3-level wavelet packet decomposition and the correspondingrotrees associated with the three familigs,)V, andD of a
tree shown in Fig. 4. This is just like a wavelet decompositioB;level wavelet decomposition are shown in Fig. 5. It is to be
except that the node/t;1 ! and )\1 ! have been further split. noted that the compatible zerotrees differ from the zerotrees of
The orientations of all children oil are the same as thos€22] in the sense that the nodes of a compatible zerotree rep-
of all of the children of)\ Therefore, each coefficient of resent a full subband as opposed to an ordinary zerotree whose
)\g 3 for instance, can be associated with four coefficients abdes represent one or more transform coefficients of a subband.
)\2’3 at a similar spatial location, due to their compatibility of Inthe nextsection, we presenta solution to the problem which
orientation. This compatibility can be generalized to formulateccurs when a child node in the compatible zerotree is at a
a set of rules, presented in Section IlI-C, to construct tlmarser resolution than the parent node, followed by a set of
zerotree structure for an arbitrary wavelet packet geometry. rules required to construct compatible zerotrees.
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Fig.5. Compatible zerotrees for the subband famitied’, andD of a 3-level @ ®)

wavelet decomposition.
Fig. 7. A sample intermediate compatible zerotree (a) Sample geometry of
a 3-level WP decomposition, and (b) the parent-offspring relationships for
compatible zerotree originating froff, .

IL,; LL_,
1, L, C. Rules for Generating the Compatible Zerotrees
o, wn, In this section, we present a set of rules to construct the overall
A compatible zerotree structure for an arbitrary wavelet packet
Gl6 basis. The only assumption made is that the lowest frequency
RIER 6lq subband of the selected basis is always at the coarsest reso-
L i, lution. This is a reasonable assumption, based upon the fact
% Y that a significant amount of the signal energy is concentrated
in the lowest frequency subband, which is most likely not to be
@ ® merged by any of the tree pruning algorithms. In the description

of these rules, “nod« is followed by node’” refers to the sit-

Fig. 6. Parenting conflict in a WP decomposition (a) WP subband_,. h d& i higher | | uti f
decomposition with no parenting conflict (b) WP subband decomposition WiH'\at'on where no is ata higher level (or coarser resolution o

parenting conflict arising from the split of one of the child nodes of the verticgire-decomposed high frequency subbands, as in a wavelet de-

high frequency subbanfiH, . composition) than the nodé in the hierarchy of subbands in a
given family tree.
B. Parenting Conflict Rules

. _ _ (&) IfanodeP at a coarser resolution is followed only by a
As mentioned earlier, the high frequency subbands in &  nodeC at the next finer resolution (as in a wavelet trans-
wavelet packet decomposition can be further decomposed in form), the nodeP is declared as a parent 6f
order to adapt the basis to the image contents. In a pre-deco%) If a nodeP is followed by four node€’;, Cs, Cs, and
posed tree of one of these families of subbaris ¥, and C., (at the same resolution), théhis declared to be the
D), if a child node is decomposed into only four subbands at parent of all these four nodes.

the next coarser resolution, the parent—offspring rela_tions are(C) Iffour subband®,, P,, Ps, andP; at a coarser resolution
easy to establish, as shown in Fig. 6(a). However, if any of are followed by four subbands;, Cy, Cs, andC, at the
these four child nodes is decomposed any further, as shown in next finer resolution. then node is declared to be the

Fig. 6(b), the resulting subbandg, C5, C3, andC, would be parent of node”; (for i = 1,2,3,4)
at a coarser resolution than the parent node (subbAiht}). ! o .

. . . - (d) If a node P is at a finer resolution than four of its
This results in the association of each coefficient of such a children, sayCy, Cy, Cs, andCy, thenP is disregarded
child node to multiple parent coefficients, in the parent node, - L =2 3 L 9

as being the parent of all these nodes and all of them

giving rise to aparenting conflict In other words, there are are moved in the tree under a node at the same or
four candidate coefficients id.H, claiming the parenthood .
a coarser resolution.

of each of the four corresponding coefficients belonging to ) o
the child node<”; (i = 1,...,4). One possible solution is to Consider the sample segmentation shown in Fig. 7(a).Let

merge the four children so as to resolve the conflict [30]. Thi{€note the node representing the lowest frequency subband, sit-
suboptimal approach constrains the basis selection procégied in the top-left corner of a conventional subband decompo-
resulting in a loss of freedom in adapting the wavelet pack@fion. Thenk represents the root node of an overall compat-
basis to the contents of a given image. In order to resolve tife zerotree withly, 7>, andT3—which represent the coarsest
parenting conflict, we suggest the following solution. Due téesolution high frequency subbands—being its immediate chil-
their orientation and scale compatibility with the subbdrids, ~dren, as shown in Fig. 7(a). These child nodes are themselves
these child node€¢’; (i = 1,...,4) can be moved up in the roots of three compatible zerotrees corresponding to the fami-
tree so that they are linked directly foH3, the root node of lies,H, V, andD respectively. These compatible zerotrees are
the primary compatible zerotree associated with the faily separately generated, only once for a given wavelet packet basis,
of subbands. This should allow us to generate the compatilslea recursive manner, using the rules described above. The con-
zerotree structure without restricting the basis selection. struction of compatible zerotrees proceeds in two steps. In the
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R IV. COMPATIBLE ZEROTREEHYPOTHESIS

Given an arbitrarily segmented wavelet packet basis, com-
T v T patible zerotrees are constructed using the algorithm described
above. In order to be able to make predictions for wavelet
packet coefficients in finer resolution subbands,dbmpatible
zerotree hypothesis defined as followslf a wavelet packet
coefficient of a node from the compatible zerotree is insignif-
Fig. 8. The overall compatible zerotree structure comprising of the thrggant, it is more likely that the wavelet packet coefficients at

primary compatible zerotre€s,, T, and75; each node represents a whole_. . - : :
WP subband, and the node radius corresponds to the support of basis funct E@'Iar spatlal locations in all the descendant nodes of the same

at that transform level. compatible zerotree will be insignificant as welompatible
zerotrees provide us a convenient way of making predictions
about the insignificance of corresponding coefficients in the

Bunch of nodes moved child nodes, given the significance of a coefficient belonging
up in the tree

to the parent node.

The success of the compatible zerotree hypothesis for wavelet
packets, as defined above, can be tested by employing two em-
pirical approaches. First, the amplitude of transform coefficients
is plotted for all the subbands organized both in the ordinary in-
ca o T i b ) Ut . i creasing frequency order and in the compatible zerotrees. Con-
. e cueral compalble zerouce siuclue, ot iecrgenizaton Sher the plots of wavelet coefficient amplitude against the co-
the links between parent and the child nodes. efficient indices for a 5-level wavelet decomposition of the 512
x 512Barbaraimage, as shown in Fig. 11. The amplitude axis

first step, the primary compatible zerotrees corresponding to tReP0th plots was restricted 1000 to facilitate the display

subband familiest, V', andD, and are constructed using ruIe?f smaller coefficients. While the subbands were arranged in an
a, b, andc. In the second step, the overall tree is reorganizdreasing frequency order for the plot in Fig. 11(a), the plot
using ruled, in order to resolve any parenting conflicts. Let ud1 F19- 11(b) refers to the subbands as organized in the com-

consider the segmentation shown in Fig. 7(a) to explain the;g%tible zerotrees. Similar plots of wavelet packet coefficients’
rules. The primary compatible zerotreBs Ty, andT} are gen- amplitudes against the coefficient indices for the same image

erated, as shown in Fig. 8, in the first step. The overall treelf§'ng the basis geometr)shown_ln Fig. 10(a) are provided |.n
re-organized (as shown in Fig. 9) using raén order to re- Flg. 12. In aII.pIots corresponding to t.h.e subbgnds organized
solve the parenting conflict under nogfe This rule first identi- " the compatible zerotrees, three famlllgg of primary compat-
fies nodes with the parenting conflicts and when such nodes e zerotreed}, Ty, adag are clearly.V|S|bI.e, showing t,h‘?“
found, the whole bunch (consisting 6%, Cs, Cs, andCy) is the new arn_’;mgemen_t is sgccessful in isolating the co_eff_|c:|e_nts
plucked from its current position in the tree. The algorithm the®f Similar orientation in a hierarchy to be used for prediction in
climbs up the tree to look for an appropriate node, a compatib"}éOp'down f_a_shlon. Zoomed PI_OtS of the_se fam_|I|e_s, as shown in
ancestor at the nearest scale and having the nearest oriental |E91_ 13, exhibit more sub-families organized within these com-
and glues the bunch under this newly found compatible pareﬂ?t'ble zerotrees.

The parent-offspring dependences for the primary compatibleAn alternate approach to test the success of compatible

zerotreeT, are shown in Fig. 7(b). zerotree hypothesis is to compute the conditional probability

In the case of zerotrees for wavelet subbands, where ed¢fjl¥) Of the significance of a child coefficient given the
sgmﬂcance of its parent coefficient for a specific threshold

parent subband node is followed by exactly one child subban ue. We plotted both joint and the conditional histograms

va
0 verify how successfully the prediction for insignificance

of similar orientation at the next finer resolution and thus ea?[h
coefficient of the parent node is associated with fourcoefﬂmeno? a coefficient in a child subband can be made given the
nificance of its parent coefficient. The joint and conditional

of the child node at some spatial location, an intermediate nog
Bl tograms for some parent subbands and their immediate

in a compatible zerotree, in general, can have more than

child node. In a compatible zerotree, the parent-offspring "€hildren using the subband decomposition of Fig. 10(a) for

lationships are established by looking at the scale of SUbba@Qrbaraare shown in Fig. 14 and Fig. 15. These histograms

nodes in the tree. What determines the parent-offspring refgs e optained by accumulating the joint and conditional sig-

tionships between their coefficients is the difference in scale Qficance probability counts after a uniform scalar quantization
thg parent and child nodes. For instance, if bqth parent and f}&he subbands, where the valuesioandy axes represent the

child nodes are at the same scale, each coefficient of the pargmntization index. In these histograms, a value for probability
node will have exactly one offspring coefficient at same spatighnt is represented by a gray level, with white representing

location in the child node, whereas if the parent node is at thgyh probability count and black representing low probability
immediate coarser resolution than the child node, then each co-

efficient of the pgrent ”Oqe '_S‘ assoc"'f‘ted with four Coemc'ems“The corresponding compatible zerotrees are shown in the Fig. 10(b) with a
at the same spatial location in the child node. numbering generated in a recursive manner.
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Fig. 10. A sample WP geometry and corresponding compatible zerotrees (a) WP decomposition used for illustration of the compatible zerotisddrypothes
WP’s, and (b) Compatible trees for the decomposition in (a); Nodes are labeled in a recursive fashion, as shown in part (b).
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Fig. 11. Plot of wavelet coefficients’ amplitude vs. coefficient indices for 5-level wavelet decompositi®arbéra The subbands were arranged in (a) an

increasing frequency order, and (b) a compatible zerotree order.

Coefficient Amplitude
Coeficlent Amplitude

1 1 1

-1000
0§ 1 16 2 25 °
Coefficient Index

(a)

vin®

5 2 25

1 1
Coefficient Ind s

(b)

Fig. 12. Plot of WP coefficients’ amplitude vs. coefficient indices for WP decomposition shown in Fig. 1&ajtdrathe subbands were organized in (a) an

increasing frequency order, and (b) a compatible zerotree order.

count. The concentration of these histograms in the low signifieefficients is encouraging evidence for the organization of
cance range of child coefficients throughout the range of pareéhese subbands in a compatible zerotree order.
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Amplitude
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Fig. 13. Zoomed sections of Fig. 12(b) the familiés 7>, andT; showing

p(x.y) p(x]y)

p(xly)

Coefficient Index x10°

more sub-families within these compatible zerotrees. (b)

(x.y) (x1y) Fig. 15. Joint and conditional histograms for subbands numbered 26 and 43
pLey plxly (a) subband 26 and its immediate childrbitsize = 100, and (b) subband 43
and its immediate childreriinsize = 80.

zerotrees can be modeled as a nonhomogeneous Markov chain
(MC) with time replaced by node depth in the tree, i.e., the root
compatible zerotree. LeX; denote a random variable corre-
sponding to the significance of coefficients of all nodes at depth
j of the compatible zerotree that are the children of coefficients
belonging to the corresponding parent node at tree deptih.
The sample spacgfor these random variable§,, X5, ..., X;
(where.J denotes depth of the tree or the number of transform
levels) isS = {0, 1, (}, where a value of 0 denotes that the co-
efficient is insignificant with respect to a threshold, a value of
1 denotes its magnitude being larger than the threshold, and a
value of { denotes that the coefficient will be encoded as a ze-
rotree symbol.

The performance of zerotree encoding depends largely upon
the values of mutual informatiof(X;, X,11), where0 < j <
J, for a given basis. The larger the sum of these values, the
(b) more efficient the encoding is. Given a basidor an image,

Fig. 14. Joint and conditional histograms for subbands numbered 3 and 41fais value determines hofsiendly the basis3 would be to the
subband 3 and its immediate childrérinsize = 80, and (b) subband 4 and its zerotree quantization method. The c6%t(w, B) of encoding

immediate childrenbinsize = 50.

the coefficientsw of a J-level wavelet packet basi8 can be

written as
V. MARKOV CHAIN BASED COSTESTIMATION
N1—1
Coifman and Wickerhauser [6] suggested usingeatiopy C.o(w,B) = Z [Com (W, T}) + Cre(w,T})] (8)
based cost function in order to select the best basis resulting in / =0 / ’

compaction of the overall energy. This cost function, however,

does not take into account the quantization strategy employedereT; = T, /2! is the threshold value used at thh itera-

by the coder. Moreover, using this cost function does not ne®n, Ty = max(|w|), IV; denotes the number of iterations of
essarily yield a meaningful basis [15]. In order to ensure thanhcoding, and’s,,, andC,.. denote the costs of encoding the sig-
the selected basis &erotree friendlywe propose using a costnificance map (ie, information about significance of each of the
function that can estimate the entropy of quantized coefficiertsefficients with respect to the threshdlgd and the refinement
belonging to the compatible zerotrees. information (required to successively update magnitude of the

If the compatible zerotree hypothesis is true, the insignifeoefficient) respectively. It was our observation that the symbol

cance of child coefficients in a subband is related to the insignifsed to encode the refinement information using zerotree quan-
icance of their parent coefficient. This would suggest that thization was nearly random. This led to the conclusion that it
subbands (nodes) belonging to each family of the compatibl®uld suffice to approximat€’.,(w, B) by estimating only the
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Fig. 16. Cost of encoding the significance map vs. threshold value: (a) Lena and (b) Barbara.

1. Compute the J-level full wavelet packet tree decomposition.

2. Initialize j«—J — 1.

3. For all 0<p<?27, 0<g<27, do the following:

a) Compute C(f, B)*?) and C(f, BY)) using equations (10) and (11).

b) If C(f, B2Y) > C(f, B2,

keep the four child subbands at depth j + 1,

otherwise

merge them to get AJ*9.

4. Decrement j by 1.

5. If j < 0, then stop, otherwise go to step 3.

Fig. 17.

TABLE |

Best basis selection algorithm for zerotree quantization.

CZQ COMPRESSIONRESULTS FOR512 x 512LENAIMAGE

Bit rate | Compression PSNR (dB)

(bpp) ratio (:1) SPIHT | CZQ-WV | CZQ-WP
1.0 8 40.41 40.06 40.10
0.8 10 39.32 38.74 38.85
0.7 11.43 38.73 38.35 38.47
0.6 13.33 38.01 37.96 38.08
0.5 16 37.21 37.50 37.55
0.4 20 36.23 35.86 36.02
0.3 26.67 34.94 34.89 35.06
0.25 32 34.11 34.49 34.56
0.2 40 33.15 32.89 32.90
0.1 80 30.23 29.90 29.95
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TABLE 1l
CZQ COMPRESSIONRESULTS FOR512 X 512 GOLDHILL IMAGE
Bit rate | Compression PSNR (dB)

(bpp) ratio (:1) SPIHT | CZQ-WYV | CZQ-WP
1.0 8 36.55 34.84 35.01
0.8 10 35.91 34.16 34.30
0.7 11.43 34.63 33.81 33.91
0.6 13.33 33.93 32.63 32.83
0.5 16 33.13 31.69 31.94
0.4 20 32.18 31.02 31.25
0.3 26.67 31.15 30.36 30.54
0.25 32 30.56 29.75 29.88
0.2 40 29.85 28.81 28.98
0.1 80 27.93 27.35 27.48

value is drawn from the set of codewords used to encode the
significance map. These codewords include two symbols (0 and
1) to represent whether a coefficient is significant or not, and a
zerotree symbol whose probability can be computed as follows.
Let P (0) denotePr(X; = 0), the probability of a coeffi-
cient belonging to subband nodes at tree dégiking insignifi-
cant, and?; ;(0|0) denote the probability of all child coefficients
at depthy to be insignificant given that all of their corresponding
parent coefficients at the previous deptire insignificant. Let
P,.(¢) denote the joint probability of all the coefficients origi-
nating from nodes at tree depttand all their child coefficients
being insignificant. In other words, it denotes the probability of
a zerotree of lengti—k, which consists of4’ —*+! —1) coeffi-
cients in a wavelet zerotree. According to the multidimensional
probability mass function (pmf) theorem of Markov chains [25],
P;(¢) is given by

first term in above expression. The cd@dt,, can be estimated  Pi(¢) = Pr(0)Pr+1,£(0]0) Prt2,5+1(0]0) - - - Py 7_1(0]0)
by computing the entropy of a discrete random variable whose (9)
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TABLE Il
CZQ COMPRESSIONRESULTS FOR512 x 512 BARBARAIMAGE
Bit rate | Compression PSNR (dB)
(bpp) ratio (:1) SPIHT | CZQ-WV | CZQ-WP
1.0 8 36.41 35.14 36.15
0.8 10 34.66 32.64 33.91
0.7 11.43 33.75 32.04 33.21
0.6 13.33 32.53 31.50 32.56
0.5 16 31.40 30.28 31.60
0.4 20 30.10 28.41 29.85
0.3 26.67 28.56 27.50 28.77
0.25 32 27.58 27.12 28.12
0.2 40 26.65 25.25 26.64
0.1 80 24.26 23.64 24.27
TABLE IV
CZQ COMPRESSIONRESULTS FOR512 X 512 FINGERPRINTIMAGE
Bit rate | Compression PSNR (dB)
(bpp) ratio (:1) | SPIHT | CZQ-WV | CZQ-WP
1.0 8 36.02 35.24 35.82
0.8 10 34.29 32.71 33.38
0.7 11.43 33.38 31.84 32.45
0.6 13.33 32.37 31.12 31.74
0.5 16 31.27 30.65 31.15
0.4 20 29.92 28.39 29.09
0.3 26.67 28.25 27.00 27.64
0.25 32 27.12 26.53 27.07
0.2 40 26.01 25.08 25.64 b)
0.1 80 23.23 22.84 23.24 Fig. 18. Two original 512« 512 testimages (®arbaraand (b)Fingerprints
or by minimizing (8). Fig. 16 shows the graph of the cost of en-
I coding the significance map (both gstimated and r(_aal) in terms
P = RO [ B0 a0y S e e of codenords per el ot againstvrous
=k sumed that given a coefficient and all its child coefficients are in-
The costC,, can now be computed as follows: significant, it is very likely that its siblings and all their children
7 are insignificant too. The probabilit); ;_, (0|0) can, therefore,
Com=—3_ Y Pi(s)log Pi(s). (11) be approximated by the probability of all four child coefficients
k=1s€S at depthy being insignificant given that their parent coefficient

The above equation provides us a way of estimating the costatfdepth; — 1 is insignificant. From these graphs, it is clear
using a particular basis for encoding wavelet packet transformbat this estimation works better for thenaimage than for the
images with compatible zerotree quantization. The most cdrbaraimage, due to the latter’s being of a relatively complex
effective pes) basis for this particular quantizer can be obtainegiature. The MC based computation of the cost of encoding the
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(a) (%) (0) (d)

Fig. 19. Selected 2-D WP bases used for encodingi€ap (b) Goldhill, (c) Barbara and (d)Fingerprints

(d)

Fig. 20. Visual quality of coding results Portion Barbara (table cloth) encoded at 0.25 bpp (a) C2QP and (b) SPIHT; Portion oFingerprints(central
spiral) encoded at 0.25 bpp (c) C2Q“P and (d) SPIHT.

significance map proves to be a good estimate, particularlyate considering and does not necessarily need to be the case if
large threshold values which correspond to low bit rates.  another quantization method is used.

Given a basis, the compatible zerotrees can be organized
. R ) ) using the rules given in [18]. Once the compatible zerotrees

As discussed earlier in the previous section, the use 0f,8,e heen generated, based upon knowledge of the best basis,
bottom-up search method, along with a cost function thg{e coding is performed by successively encoding the signifi-
takes into account the quantization strategy, ensures selecligice information about the coefficients, as they appear in the
of the best basis for compressing a given image using thajphands in an increasing frequency order, and the refinement
particular quantization method. Based on the cost estim@igsrmation until the bit budget has expired or the encoded
described in the previous section, a bottom-up basis selectigfiream terminates, whichever happens earlier. This makes
algorithm can be used to select what can be termedes#ee e decoder capable of generating an approximation to the
friendly wavelet packet basis. Let t_he given imagbe of size original image at any given bit rate or quality, as long as the
N x N. Let A" denote a node in the wavelet packet treginimum required bits are available for doing so.
corresponding to a subband at degtland A2;:77, A274 124, Experiments were conducted on four standard 8-bit greyscale
A2t andAZE 127+ e the four child nodes at depfh- 1 images of resolution 512 512—Lena, Goldhill, Barbaraand
corresponding to the decomposition)c?ﬁq. There are uptd’  Fingerprints—using both a wavelet basis and a zerotree friendly
subband nodes at each deptissosicated with < p < 27 and wavelet packet basis selected by the algorithm mentioned above.
0 < ¢ < 27. The algorithm for selection of the best basis usingor all the experiments, the factorized 9-7 biorthogonal filters
the new paradigm and the cost estimatedf, 55) is given in [15] were used for efficiently computing the wavelet packet
Fig. 17. This algorithm take® (N log, N) time to select the transform. Results for the performance of both variants of the
best wavelet packet basis for compatible zerotree quantizatioampatible zerotree quantization (CZQ) coder—first using the
However, when comparing it to the Coifman-Wickerhausevavelet basis CZQA4V and other using the zerotree friendly
algorithm for basis selection, it should be noted that the cosavelet packet basis CZ®Q#*P—rfor all the testimages are pre-
C(f,B) is calculated by taking into account all the currensented in Tables I-IV. The measure used to describe the perfor-
terminal nodes instead of only the nodes in question (ie, theance of each coder is the peak-signal-to-noise-ratio (PSNR)
parent node\* at depth; and its four child nodes at depthdefined ad0log,,[255%/M SE], where MSE denotes the mean
j + 1). This Is due to the nature of quantization method wequared error, versus the bit-rate given in terms of bits per pixel

A. Basis Selection Algorithm
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(bpp). Although it is well known that PSNR is not a representa- [5]
tive measure of the performance from a perceptual viewpoint
[10], it is still widely used for comparing the coding perfor- [g]
mances in quantitative terms. Like SPIHT and many otherimage
coding algorithms, our algorithm also requires the full image (7,
and its wavelet packet transform to be held in memory.

While being capable of progressively reconstructing the (8]
encoded image and being relatively faster than other wavelet

packet coders (such as [15] and [30]), the CBPcoder  [9]
performs comparably well. The coding gains achieved by it
on top of CZQWYV (nearly 0.1 dB forLeng 0.1-0.25 dB [10]

for Goldhill, 0.6-1.5 dB forBarbara and 0.4-0.7 dB for
Fingerprinty empirically demonstrate success of the com-[11]
patible zerotree hypothesis. We note that the superior codinﬁZ]
performance of SPIHT as compared to CZQVis due to the

fact that CZQWYV is just a variation of the EZW algorithm and
does not employ the set partitioning rules of SPIHT. A closet!®!
look, however, at the reconstructed images by OAQ* and  [14]
SPIHT at 0.25 bpp reveals that C2Q% yields better visual 15
quality than SPIHT. Note, for instance, the quality of a portion
(table cloth) of the reconstructdglarbaraimage encoded by
CZQ-WP and SPIHT, and the quality of a portion (central
spiral) of the reconstructe#fingerprints image encoded by
CZQ-WP and SPIHT as shown in Fig. 20 (the original images
are shown in Fig. 18). Fig. 19 shows the geometries of the 2-[ig]
wavelet packet bases selected for all test images. As expected,
the basis selected fdrenaclosely resembles a wavelet basis,
due to its being a smooth image.

[16]
[17]

(19]

VII. CONCLUSIONS [20]
We have presented a general zerotree structure for adapti{féu
wavelet transform that allows us to efficiently encode the
transform coefficients and to progressively encode the imagé??]
The best basis was selected using a cost function that estimaies)
the cost of zerotree quantization, in order to ensure that the
resulting basis will be adapted to the image contents and the
purpose of representation. Although experimental results sho@4]
that the performance of our wavelet packet zerotree CZ®-
coder, in terms of both PSNR and visual quality, is significantly
better than its wavelet counterpart CAQV, it is only margin-  [26]
ally comparable to other wavelet packet coders such as [15f7
[30]. A possible explanation for this is the relative simplicity
of our coder as compared to [30] and its inability to exploit[g9
intra-subband redundancies, as is the case in [15]. However,
our coder maintains the better visual quality performance oi 0
wavelet packet image coders for complex textured images, su ?1
as Barbara and Fingerprints over the wavelet based SPIHT
image coder at low bit rates.
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