
MAD-DR: Map Compression for Visual
Localization with Matchness Aware Descriptor

Dimension Reduction

Qiang Wang

EasyAR Mega, wq@sightp.com

Abstract. 3D-structure based methods remain the top-performing so-
lution for long-term visual localization tasks. However, the dimension of
existing local descriptors is usually high and the map takes huge storage
space, especially for large-scale scenes. We propose an asymmetric frame-
work which learns to reduce the dimension of local descriptors and match
them jointly. We can compress existing local descriptor to 1/256 of orig-
inal size while maintaining high matching performance. Experiments on
public visual localization datasets show that our pipeline obtains better
results than existing map compression methods and non-structure based
alternatives.

1 Introduction

Given one image, visual localization or image-based localization aims to recover
the position and orientation of the camera relative to known scene [56, 63, 67].
The task is of great importance for applications such as augmented reality [37,
54], robotics and autonomous driving, for which centimeter-level localization
accuracy is usually desired.
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Fig. 1: Localization performance on Aachen Day-Night dataset with proposed pipeline.
We beat previous best-performing map compression method SceneSqueezer [72] and
non-structure based NeuMap [64] by significant margin (left). We reduce the dimension
of SuperPoint [21] descriptor from 256 to 4/8/16/32, while maintaining > 80% accuracy
for both day and night queries, measured under (0.25m, 2◦) [56] (right).
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State-of-the art methods for visual localization are mostly hierarchical and
structure-based [54, 56, 67]. During the offline mapping stage, the poses for
database images are obtained via structure from motion (SFM) [59] or simul-
taneous localization and mapping (SLAM) systems [42, 45]. Local features are
matched, triangulated and bundle adjustment-ed to obtain 3D structure of the
scene. The appearance information (global and local features) as well as geo-
metric information (e.g . 2D/3D position) for the local features are saved offline.
During the localization stage, the local features extracted from query image are
matched to the top-N most similar database images to obtain 2D-3D correspon-
dences. The match results as well as 3D positions are fed to perspective-n-point
(PnP) and RANSAC algorithms to obtain the 6-DOF pose of the query image.

One of the core problems with structure-based localization methods is large
amount of storage requirement. It is mainly caused by the need to store thou-
sands of local descriptors per database image, the dimension of which is usually
high, e.g . 128 for SIFT [35] and 256 for SuperPoint [21]). Many methods have
been proposed to reduce the map size, either by selecting a subset of local fea-
tures [16, 17, 39, 72, 73] or local descriptor compression [15, 22]. The issue with
existing map compression methods is that they are designed without jointly tun-
ing the matching model. They rely on heuristic nearest neighbor matching [15,19]
or use pre-trained matching models [33, 53] without retraining the weights [72].
We observe that transformer-based image matching models are powerful enough
to perform cross-time, cross-season even cross-modality matching tasks. This
motivates us to push the limit of local descriptor compression by jointly training
image matching pipeline to handle such heavily compressed features. It enables
high accuracy visual localization method with extreme compact map, as shown
in Figure 1. The contributions of this paper can be summarized as below.

1. We show the importance of jointly training local descriptor dimension re-
duction and image matching model for scene compression of structure-based
visual localization methods. We compress SuperPoint descriptor to 1/256 of
original size with minor impact on matching performance.

2. With the compressed descriptor, we provide a simple yet strong baseline
which obtains > 80% accuracy under (0.25m,2◦) with map size of 4.1MB for
Aachen Day-Night dataset.

3. Detailed experiments and ablation studies show our method offers better ac-
curacy/memory trade-off and generalization ability than existing map com-
pression methods and non-structure based alternatives.

2 Related Work

2.1 Visual localization

Visual localization which aims to recover the 6-DOF pose of query image with
regard to given scene has been well studied over the past decade. Traditional
methods are structure-based which rely on explicit matching hand-crafted local
features such as SIFT [55] and binary features [37]. Hierarchical structure-based
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methods [26,52,57] have become the de-facto standards for long-term localization
tasks known for high scalability and exceptional accuracy. They first obtain most
similar database images via image retrieval with global features [4, 9, 10, 46, 48].
Local feature matching [21, 23, 35, 49, 53, 68] is then performed between query
image and retrieved database images to obtain 2D-3D correspondences for pose
estimation.

Since the advent of deep learning era, various end-to-end methods have been
proposed to tackle the visual localization task. Some methods formulate the task
as absolute pose regression [28] or relative pose regression [6] problem without
2D-3D matching. Other methods [11, 12, 64] train scene coordinate regression
models which directly predict 3D coordinates for pixels in query image. End-to-
end methods claimed to require less storage [13, 71] and have shown promising
results for small-size to medium-size scenes [28]. But the scalability to large
scenes and accuracy under challenging cases still fall behind of structure-based
methods on several benchmarks [54,56,58,63,67].

2.2 Local feature matching

Detector based methods such as SIFT [35] have been long standing golden stan-
dard for local feature detection and matching. Many follow-up works [3,8,30,50]
focus on improving the speed of matching by using binary features instead.
Being fast and compact, they are ideal for resource limited platforms like mo-
bile devices and robotics. But the matching performance of binary feature is
worse than SIFT, which exhibits strong results for well-illuminated, texture-
rich image pairs [56]. Many methods have been proposed to learn local fea-
tures to replace hand-crafted ones, usually with convolution neural network.
Some works [21, 23, 68] learn local detector and descriptors jointly while oth-
ers [25,36,65,66] focus on descriptors only. Trained with extensive data augmen-
tation, learnt features show better matching performance for challenging cases
with strong lighting changes [67] and few view overlap.

On the other hand, detector-free methods [18,62] have been proposed which
show impressive matching results for low-texture scenes where detector-based
methods struggle with low keypoint repeatability. But they are usually slower,
take more storage and show no clear advantage for visual localization task [33].

Context aggregation methods [53, 62] which employ transformer architec-
ture [69] turn out to boost image matching performance greatly. They perform
well for challenging scenarios such as day-night matching and cross-seasonal
matching where traditional methods usually fail. The pioneering SuperGlue [53]
model resembles the transformer [69] architecture and re-formulate it within
graph neural network framework for end-to-end training. Thanks to the repre-
sentation power of attention-based reasoning, such formalization has been proven
to be effective for several image matching applications including homography es-
timation, relative pose estimation and 3D reconstruction [51].

Sarlin et al . [52] integrated such method within hierarchical pipeline for visual
localization task. Their system named hloc delivered strong results across several
public benchmarks. However, it takes huge storage due to the need of storing



4 Qiang Wang

thousands of high dimension local descriptors per database image [15, 71, 72].
For applications such as city-scale visual positioning systems, the size of 3D
map especially local descriptor needs to be compressed heavily [24,38].

2.3 Map compression

Many works have been proposed to reduce the map size of structure-based meth-
ods either by map sparsification [39, 73], descriptor compression [19] or hybrid
approach [15,72]. Map sparsification [16,17, 31] methods select the most salient
features while removing least informative ones. Descriptor compression methods
reduce the size of each local descriptor while trying to maintain matching per-
formance. Cheng et al . [19] represented the SIFT descriptors of each 3D point
as an integer mean descriptor per visual word, which is further converted into
binary signature using hamming embedding. Lynen et al . [37] performed binary
features projection and product quantization for real time localization. Hybrid
methods [15] kept a small set of points with full information and larger set
of points with compressed information. Their motivation is that keeping more
points in the map is important for accurate pose estimation.

Recently, Yang et al . [72] employed multi-stage pipeline to compress the scene
for learning-based feature and matching pipeline. They perform frame selection,
point selection and feature quantization to compress local descriptors [21]. The
compressed descriptors are passed into de-quantization network which is used
as input to pre-trained SuperGlue [53] model for matching. By using multi-layer
perceptron (MLP) and differentiable soft quantization, they compress Super-
Point descriptor to 2048-bit (compression ratio 1/8). Dong et al . [22] proposed
a siamese training method which uses MLP to perform descriptor dimension-
ality reduction. The authors projected several features [7, 35, 40, 41] to dimen-
sion of 64/34/24/16 while minimizing descriptor reconstruction loss and patch
similarity loss. The matching performance dropped significantly for night scene
when matched at low dimension(< 64) [22]. We infer partial of the reason for
such degradation is L2-distance ambiguity for low-dimensional descriptor. Some
works [70, 75] went to the extreme by storing no visual descriptors but only 3D
coordinates in the map. Though the idea is interesting, they only report results
on relatively less challenging datasets [28, 60] which makes their performance
under difficult scenarios questionable.

The key motivation for this paper is that end-to-end attention based con-
text aggregation matching pipeline [53] greatly boosted performance of exist-
ing local feature [21, 35] that previously use nearest neighbor criteria or ra-
tio test [21, 35, 68], especially for challenging scenes [56, 63]. We show such
pipeline can perform well when matching local descriptors reconstructed from
low-dimension embedding if properly trained [51]. Though nearest neighbor or
ratio test starts to fail [22] when decreasing descriptor embedding dimension,
aggregating context utilizing attention [69] and positional encoding will make
up the performance gap when jointly trained with such data. As shown in the
experiment section, such joint learning is important since directly applying pre-
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Fig. 2: Framework of our pipeline that jointly trains bottleneck encoder-decoder mod-
ule for descriptor compression and image matching. Given a pair of images (A,B), the
descriptors from image B pass through encoder-decoder to obtain reconstructed ones,
which are trained to match with correspondences from image A.

trained weights [72] with reconstructed descriptors will yield sub-optimal results,
assuming due to domain gap introduced by descriptor compression.

3 Matching Aware Descriptor Dimension Reduction

The objective of this paper is to reduce the storage of 3D scene representation
for structure-based visual localization pipelines [26,52]. Each database image in
the map is associated with one global feature (with dimension DG) as well as
locations and descriptors for local features (number of local features as NL, the
dimension of the descriptor as DL ). Since DL×NL ≫ DG, local descriptors bring
significant storage issue for large scene. We solve this problem by reducing DL

to much smaller embedding DLR (for example SuperPoint [21] with DL = 256,
DLR = 4) while keeping high localization performance. We propose to train
the encoder-decoder based dimension reduction module within attention based
image matching pipeline [53].

In this section, we first briefly review attention-based context aggregation
pipeline for image matching. Then we detail the asymmetric framework of jointly
learning descriptor compression and image matching. The design of encoder-
decoder module and training loss are introduced. Finally, the full pipeline for
visual localization with proposed method is shown.

3.1 Preliminaries: attention based context aggregation pipeline for
image matching

We follow the design of SuperGlue [53] framework for matching original and
compressed descriptors. Given a pair of images A,B to match, local feature
detector generates a set of salient features with descriptors and 2D positions
(diI , pI), in which I ∈ {A,B}, pI ∈ R2, diI ∈ RDL .

The normalized 2D positions pI are fed into position encoding module to
obtain high dimension representation to inject keypoint position information into
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the network. The positional embedding is summed with the original descriptor
to obtain initial representation

f0
I = PE(pI) + diI , I ∈ {A,B} (1)

in which PE(pI) denotes position encoding module, f0
I acts as the input to multi-

layer message-passing graph neural network to obtain updated representations.
In each layer of GNN, multi-layer perceptron updates the representation of each
image with message mϵ−→i aggregated either from itself or from other image to
be matched

fn+1
i = fn

i + MLP [fn
i ||mϵ−→i] (2)

where |.| denotes concatenation. The message passing process is carried out via
alternating computing self-attention and cross-attention layers. The message is
computed by softmax attention as in the transformer [69] framework

mϵ−→i =
∑

j:(i,j)∈ϵ

Softmax(qTi kj)vj (3)

where qi, kj , vj are projected query, key and value. The attentional GNN module
aggregates the neighboring geometric information as well as local patch appear-
ance information for holistic matching [53].

Finally, the matching scores between the images are computed based on the
pairwise similarity of enhanced representations.

Sij = ⟨fA
i , fB

j ⟩,∀i, j ∈ (A,B) (4)

where ⟨, ⟩ denotes inner product.
The problem can be viewed as optimal transport problem between distribu-

tions, which was initially solved by Sinkhorn algorithm [20,53] and later by more
efficient dual-softmax assignment [33,44,62]. The final matches can be obtained
by retaining most confident matches from the assignment matrix.

3.2 Joint training of descriptor compression and image matching

The framework of joint training descriptor dimension compression and image
matching pipeline is shown in Figure 2. We adopt an asymmetric design to
embed descriptor dimension reduction module into image matching pipeline. To
be specific, after running local feature detector on both images to obtain 2D
location and descriptor (diI , pI), I ∈ A,B, we keep descriptors corresponding to
image A unchanged (diA), while passing the descriptors corresponding to the
other image (diB) into encoder-decoder dimension reduction module to obtain
reconstructed descriptors

d
i

B = Decoder(Encoder(diB)) (5)

The position encoding module takes uncompressed 2D feature position and
project them to positional embedding PE(pA),PE(pB). We feed (diA,PE(pA))
and (d

i

B ,PE(pA)) to attentional GNN module for further matching.
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Fig. 3: Structure of our encoder-decoder module. Given original local feature (take
SuperPoint as example), we gradually reduce the dimension to LDR then reconstruct
the descriptor with MLP layers. ReLU and batch normalization are omitted.

The choice of asymmetric design is deliberate for several reasons. On one
hand, the branch which retains the original descriptors diA serves as anchor for
matching. Performing symmetric dimension reduction and reconstruction for
both images may lead to descriptor space co-shift using extreme low-dimension
compression. On the other hand, for the task of visual localization, we can keep
local descriptors for query image as distinctive as possible by performing no
compression since it can be computed on-the-fly. As shown in the experiments
section, such asymmetric design does achieve better performance than symmetric
counterpart.

We choose to re-project the descriptor to original dimension to act as input
of attentional graph neural network. We did not perform matching with lower
dimension to share the same network capacity with the baseline. The encoder-
decoder module is lightweight compared to attention GNN module. It brings
negligible computation overhead to both model training and inference. Instead
of storing original descriptor with dimension DL in the map, we save the encoded
embedding with reduced dimension DLR.

3.3 Encoder-decoder for descriptor compression

In the encoder-decoder module, we first use encoder composed by a stack of
MLP layers to gradually decrease descriptor dimension to the lowest embedding
dimension (e.g . 4/8/16) similar to Dong et al . [22]. Several MLP layers are
then progressively applied to increase the dimension back to original dimension,
denoted as decoder as shown in Figure 3. Additional normalization is applied to
make reconstructed descriptors to be of unit length. All MLP layers are followed
by ReLU [43] and batch normalization [27].

di+1 = BN(ReLU(MLP(di))) (6)

3.4 Training losses

We minimize the negative log likelihood (NLL) loss following the SuperGlue
framework [53]
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Lmatch = −
∑

(i,j)∈M

log Pi,j −
∑
i∈I

log Pi,N+1 −
∑
j∈J

log PM+1,j (7)

where M denotes ground truth matches, IJ denote unmatched keypoints.
We additional enforce encoder-decoder module to reconstruct original de-

scriptor as closely as possible. Local descriptor reconstruction loss is added,
which is defined as average reconstruction error of all descriptors within the
image

Lreconstruct =
1

NL

NL∑
k=1

||dkB − dkB ||2 (8)

where NL denotes number of local features in this image.
The total loss is defined as weighted sum of matching loss and descriptor

reconstruction loss.

Ltotal = Lmatch + λLreconstruct (9)

where λ is tunable parameter to balance the two loss terms. The role of recon-
struction loss is discussed in the experiments section.

3.5 Full pipeline for map compression

We run the MLP layers corresponding to encoder to independently project each
local descriptor to lowest embedding dimension. We further utilize post-training
quantization of local descriptor from full-precision (FP32) to 4-bit. The com-
pressed descriptor size is only 16-bit(DLR=4) or 32-bit(DLR=8) .

Instead of performing co-visibility based keypoint selection [16,72], we retain
top-K (e.g . 256,512) keypoints with highest score for each image. This makes our
method work for non-SfM data (InLoc [63]/Niantic Map-free dataset [5]) while
previous compression methods [72] hardly can. We optionally filter SfM results
by removing 3D points with max_reproj_error>2, min_tri_angle<1 [59].

Compared to moderate feature quantization (2048-bit) in previous works [72],
we show that extreme compression of the descriptors (16/32/64-bit) is a better
choice. Our method generalizes well for SuperPoint, DISK [68], ALIKED [74]
and SIFT as shown in experiments and supplementary.

4 Experiments

Training details. We train our joint descriptor dimension reduction and image
matching pipeline on MegaDepth dataset [32]. We use single model for evaluation
across all datasets, both indoor [63] and outdoor [28, 56] ones. The training
settings for experiments with SuperPoint are shown below. For other features,
we use glue-factory [1] and follow default settings.

We extracted at most 1024 features and pad with random points for batching
purpose. Our model is trained on single machine with 8 GPU card using PyTorch
framework. We use Adam [29] optimizer with initial learning rate of 5.0e-05. We
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set the learning rate schedule to exponential decay of 0.999999. We use batch size
of 8 per GPU, making total batch size of 64. We find larger batch size slightly
increases training performance thus we perform gradient accumulation [33, 34].
We train for 400K steps since we find additional training steps bring little benefit.
We set λ of the training loss to be 1.0 unless specified.
Localization datasets. Localization experiments are performed on various
public datasets including the Cambridge Landmark dataset [28], Aachen Day-
Night [56] and InLoc dataset [63]. Cambridge dataset is a medium-scale outdoor
dataset recorded with video sequences. Aachen Day-Night dataset is a large-
scale, outdoor dataset with 4,479 database images. It’s captured with consumer
cameras and reconstructed with structure from motion methods [59]. It is in-
tended to benchmark visual localization methods across different times across
the whole day. InLoc dataset focuses on indoor scenarios which is challenging
with poor texture and high similarity.
Localization experiments details. We follow the hloc [52] framework to
validate the impact of dimension reduction on visual localization tasks. For
Cambridge Landmark dataset and Aachen Day-Night dataset, we triangulate
the 3D maps using given poses. We use officially released feature (SuperPoint/
ALIKED/ DISK) and SuperGlue weights during the mapping process. We com-
press the local descriptors of resulting map with our trained encoder and store
the low dimension embedding descriptors after quantization.

During the localization stage, we first use global feature to retrieve top-N
database images, where N is fixed across all settings. The compressed local de-
scriptors are retrieved and passed though the decoder to obtain reconstructed
descriptors. The descriptors from the query image and the reconstructed descrip-
tors are fed into our jointly-trained matcher to obtain 2D-2D matches. The final
pose is obtained by PnP and RANSAC with all 2D-3D correspondences.

We use EigenPlace [10] with dimension 256 (DG=256) as global feature,
which offers similar accuracy as NetVLAD [4] on Cambridge and Aachen dataset
while being much more compact. We quantify EigenPlace features similar to Sce-
neSqueezer [72] to 8-bit. Different from original hloc, we extract fewer keypoints
for database image but more for query images. We find such simple setting
minimizes the map size while achieving similar localization performance. We
optionally filter keypoint observation with large re-projection error [59]. We re-
port results of our pipeline with DLR=4 and quantized to 4-bit unless specified,
reducing the descriptor size to 1/256 of original feature (D=256,FP16).

4.1 Quantitative comparison

Evaluation Metrics. For Cambridge Landmark dataset, we report median
translation error (in meters) and orientation error (in degrees) on four scenes,
following previous work [28, 72, 75]. For Aachen and InLoc dataset with hid-
den ground truth, we submit our results to the visual localization benchmark
server [56] and report the percentage of successfully localized images under three
different thresholds: (0.25m, 2°), (0.5m, 5°) and (5m, 10°).



10 Qiang Wang

Methods Shop Facade Old Hospital King’s College Church
Size Tran.Err Rot.Err Size Tran.Err Rot.Err Size Tran.Err Rot.Err Size Tran.Err Rot.Err

(MB) (m) (◦) (MB) (m) (◦) (MB) (m) (◦) (MB) (m) (◦)

SP+SG [52] 373 0.04 0.20 1436 0.15 0.31 1687 0.11 0.21 1957 0.07 0.22
AS [55] 38.7 0.04 0.21 140 0.20 0.36 275 0.13 0.22 359 0.08 0.25

PoseNet [28] 50 1.46 8.08 50 2.31 5.38 50 1.92 5.40 50 2.65 8.48
DSAC++ [11] 207 0.06 0.30 207 0.20 0.30 207 0.18 0.30 207 0.13 0.40
NeuMap [64] 0.3 0.06 0.25 0.2 0.19 0.36 0.3 0.17 0.53 0.4 0.17 0.53

QP+RootSIFT [39] 0.41 0.72 1.4 1.1 0.9 2.17 2.2 1.53 1.09 3.3 0.56 0.89
hybrid [15] 0.16 0.19 0.54 0.62 0.75 1.01 1.01 0.81 0.59 1.34 0.5 0.49

KC [31] 0.85 0.51 0.87 6 1.35 1.06 3.1 1.48 1.23 18 0.46 0.69
KCP [16] 1.30 0.44 0.8 8.2 1.19 1 5.9 0.99 0.86 24 0.4 0.61

SceneSqueezer [72] 0.13 0.11 0.38 0.53 0.37 0.53 0.3 0.27 0.38 0.95 0.15 0.37

BPnPNet [14] - 7.53 107 - 24.8 163 - 26.7 107 - 11.1 49.7
GoMatch [75] - 0.48 4.77 - 2.83 8.14 - 0.25 0.64 - 3.35 9.94

DGC-GNN [70] - 0.15 1.57 - 0.75 2.83 - 0.18 0.47 - 1.06 4.03

Our SP+SG(256) 0.12 0.05 0.25 0.40 0.17 0.31 0.43 0.15 0.24 0.94 0.08 0.23
Our SP+SG(128) 0.07 0.06 0.29 0.25 0.26 0.45 0.42 0.17 0.25 0.64 0.10 0.30

Table 1: Comparison with existing methods on Cambridge Landmark dataset [28]. We
extract maximum 256 or 128 features per database image. We obtain higher accuracy
with compact map compared to existing methods.

Cambridge Landmark datasets. The results on Cambridge Landmark datasets
are shown in Table 1. We compare with structure-based methods, end-to-end
methods, previous map compression methods and descriptor free methods.

Structure-based methods (SuperPoint+SuperGlue,SP+SG [52,53] and active
search,AS [55]) obtain the highest accuracy while the accuracy of descriptor-
free methods (BPnPnet [14], GoMatch [75], DGC-GNN [70]) is not as good.
Our pipeline introduces minor performance drop compared to original SP+SG
baseline while reducing the map size by > 99%. We obtain higher accuracy
( half translation error) compared with previous S.O.T.A compression method
SceneSqueezer [72] using smaller map size on most scenes. They use a com-
plex multi-stage pipeline (co-visible frames clustering and pruning, differentiable
point selection, feature quantization) while our method is simpler and easier to
implement. The only exception is King’s College Scene, we obtain higher accu-
racy with slightly larger map (0.4MB vs. 0.3MB). Among end-to-end methods,
NeuMap [64] performs better than PoseNet [28], DSAC++ [11] with similar map
size (< 1MB) and accuracy compared to structure-based methods. Considering
the map size and accuracy of leading methods on Cambridge dataset are al-
most saturated, we suggest all future work should move on to more challenging
datasets.

Aachen Day-Night datasets. We show the results of our methods on Aachen
Day-Night dataset in Table 2. We extract 512/256 keypoints for each database
image while for query image we extract at most 2048 keypoints. Our method
using embedding dimension of 4 performs on a par with original hloc pipeline,
indicating existing local descriptors with dimension=128 or 256 are highly re-
dundant when matched with context aggregation methods. For example, our
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Methods Size Aachen Day Aachen Night
(MB) 0.25,2/0.5,5/5,10 0.25,2/0.5,5/5,10

F
M

SP+SG [53] 6336 88.2/ 94.8/ 97.9 85.7/ 92.9/ 99.0
SceneSqueezer [72] 31 75.5/ 89.7/ 96.2 50.0/ 67.3/ 78.6

Cascaded [19] 140 76.7/ 88.6/ 95.8 33.7/ 48.0/ 62.2
QP+R.SIFT [39] 31 62.6/ 76.3/ 84.7 16.3/ 18.4/ 24.5

DISK+MNN(PQ, M=64, b=4) 21.8 84.1/ 93.8 /97.3 80.6/ 89.8/ 96.9
DISK+MNN(PQ, M=32, b=4) 13.9 80.0/ 91.0 /96.1 70.4/ 81.6/ 91.8

E
2E NeuMap [64](10m,10) 170 76.2/ 88.5/ 95.5 37.8/ 62.2/ 87.8

ESAC [12] 1315 42.6/ 59.6/ 75.5 6.1/ 10.2/ 18.4

P
ro

po
se

d Our SP+SG(512) 5.2 84.6/ 92.4/ 96.7 82.7/ 90.8/ 98.0
Our SP+SG(256) 3.0 80.0/ 89.2/ 95.4 69.4/ 81.6/ 92.9

Our SP+SG(512,filtering) 4.1 84.5/ 92.6/ 97.0 80.6/ 90.8/ 98.0
Our SP+SG(256,filtering) 2.4 79.0/ 88.0/ 94.8 65.3/ 80.6/ 92.9

Table 2: Localization results and map size on Aachen Day-Night dataset. We extract at
most 512/256 keypoints per database image and optionally filter 3D points. Our method
offers better accuracy with compact size than previous map compression methods and
recent end-to-end methods.

pipeline obtains 84.5%/80.6% localization rate under (0.25 meter, 2◦) for day
and night queries with map size only 4.1MB, beating all previous works.

SceneSqueezer [72] uses SuperPoint and SuperGlue similar to us, but they
use official weights without re-training. Our performance drop is much smaller
than their pipeline. With 13.2%(4.1 vs. 31) map size, we localize 80.6% night
queries compared to them with 50% under (0.25m,2◦). We even obtain higher
accuracy (65.3%) than them with only 7.7% memory needed(2.4MBvs. 31MB).

Feature matching methods with SIFT features (Cascaded [19] and QP+R.SIFT
[39]) are out-performed by learnt features with 33.7% and 16.3% localized. Our
pipeline also achieves better results than end-to-end methods (NeuMap [64] and
ESAC [11]) which localize 48.0% and 6.1% queries each.

Surprisingly, a carefully tuned baseline method which matches DISK feature
via mutual nearest neighboring and compresses with product quantization beats
previous state-of-the-art SceneSqueezer [72] in both memory and accuracy. That
shows the necessity of proper baseline methods in the community. Our method
beats such DISK+MNN+PQ baseline with only 18.8%(4.1/21.8) memory size
at similar accuracy. Refer to the supplementary material for detailed discussion.
InLoc datasets. We show the results of our methods on InLoc [63] dataset
in Table 3. Our method with dimension 4 localizes 48.0%/45.8% queries under
threshold (0.25m,2◦), only minor drop (1.5%,5.3%) compared to uncompressed
baseline. Dong et al . [22] also applies MLP to SIFT [35] and HardNet [40] de-
scriptors for dimension reduction. Their performance drops drastically when us-
ing descriptor dimension < 64. We attribute the high performance of our pipeline
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Methods Dim InLoc duc1 InLoc duc2

SP+SG (No compression) 256 49.5/69.7/81.3 51.1/75.6/82.4
DISK+NN (No compression) 128 34.3/56.6/67.7 30.5/40.5/57.3

SIFT+SV+NN [22] 64 33.3/46.0/57.6 26.0/39.7/45.8
SIFT+SV+NN [22] 16 24.2/36.9/43.9 15.3/26.7/30.5

HardNet+SS+NN [22] 64 40.9/56.6/71.2 32.1/45.8/51.9
HardNet+SS+NN [22] 16 22.7/32.8/41.9 12.2/19.8/22.9

Our SP+SG 4 48.0/67.7/79.3 45.8/69.5/76.3
Table 3: Localization results of our methods on the InLoc dataset. Our method out-
performs Dong et al . [22] (SS:self-supervised, SV:supervised) by a large margin.

to both advanced image matching pipeline and joint training process as shown in
the ablation studies. Note the DISK+MNN baseline which works well for Aachen
Day-Night dataset performs not good (>15% worse than our under 0.25m,2◦)
on InLoc dataset, which indicates DISK may be overfitted on outdoor/building
scenes. Previous methods [39, 72] seldom report results on InLoc dataset. Con-
sidering the performance gap of DISK+MNN on Aachen Day-Night and InLoc
datasets, results on various datasets are important for fair comparison of differ-
ent methods.

Methods Aachen Night InLoc duc1 InLoc duc2
0.25,2/0.5,5/5,10 0.25,2/0.5,5/5,10 0.25,2/0.5,5/5,10

Our full 82.7/89.8/99.0 46.5/66.7/79.3 48.1/68.7/76.3

No re-training 71.4/82.7/92.9 42.9/59.1/71.7 45.0/65.6/74.0
No recons loss 83.7/89.8/99.0 40.9/56.1/69.2 42.0/62.6/77.9

Asym query+db 83.7/90.8/99.0 44.9/62.6/75.3 39.7/61.1/68.7
Sym db only 72.4/83.7/93.9 30.8/46.0/57.6 29.0/49.6/56.5

Sym query+db 81.6/89.8/99.0 37.4/56.6/67.7 32.8/55.7/64.9
Table 4: Using pre-trained SuperGlue weights [53] without re-training obtains poor
results for Aachen night queries. Training without reconstruction loss yield slightly
worse result on InLoc dataset. Symmetric trained pipeline or applying asymmetrically
trained encoder-decoder module to both database and query yield worse results. Re-
ported with SuperPoint, DLR = 8.
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Method Feature Size(↓) Aachen Night(↑ ) InLoc duc1(↑ ) InLoc duc2(↑ )

DISK+MNN+PQ 128-bit 70.4/81.6/91.8 34.3/52.0/63.6 22.9/34.4/42.0
Our DISK+SG 32-bit 84.7/90.8/100. 40.9/59.1/71.2 36.6/62.6/74.8

SIFT+MNN+PQ 128-bit 38.8/45.9/55.1 20.2/26.3/32.8 14.5/22.9/26.0
SIFT+PQ+SG 64-bit 19.4/23.5/27.6 19.7/24.2/25.8 6.9/12.2/18.3
Our SIFT+SG 32-bit 44.9/51.0/67.3 30.3/44.4/55.6 22.1/37.4/45.8

Table 5: Additional localization results with SIFT and DISK.

4.2 Ablation studies

The importance of joint training. We show the importance of retraining
model weights by feeding our reconstructed descriptors into pre-trained network,
as done in previous work [72]. The results are shown in Table 4. The significant
performance drop of on Aachen night queries (from 82.7% to 71.4%) indicates
pre-trained image matching pipeline performs poor without knowing the descrip-
tor compression and needs re-training. Descriptor dimension reduction module
trained within our pipeline also performs better than SceneSqueezer [72] (71.4%
vs. 50%) when using the same pre-trained SuperGlue weights.
Symmetric vs. asymmetric design. We train a symmetric variant and show
the results in Table 4. The symmetric pipeline is inferior to our asymmetric
pipeline especially on InLoc dataset with about 10% gap, which justifies our
design of asymmetric pipeline.

We additionally feed both database image and query image through encode-
decoder module with asymmetrically trained pipeline. Interesting, the results
outperform symmetric trained model. Considering the performance drop with
compressed query descriptor is not much, for current visual positioning systems
which perform server-side computation [2,47], it is feasible to send low dimension
descriptor embedding of query images to the localization server only, minimizing
data transmission and partially addressing privacy concerns [61].
Generalization to other feature We apply our pipeline to DISK [68] and
SIFT, both of which are compressed to 32-bit. The results for visual localization
tasks are shown in Table 5. For DISK, we compare with the baseline compression
of product quantization (PQ). We can obtain better localization results with 1/4
memory. For SIFT, our method beats PQ-based methods, either with mutual
nearest neighbor (MNN) or off-the-shelf pre-trained SuperGlue model.
Understanding the training process. We monitor the descriptor reconstruc-
tion loss when training with different embedding dimension. The reconstruction
loss increases as we decrease the embedding dimension, as shown in Figure 4.
When using low embedding dimension such as 4, it is impossible to reconstruct
the original descriptor as information loss increases due to bottleneck design,
but the matching performance (measured with AUC10, matching score and pre-
cision) is similar to uncompressed baseline. This validates our idea that though
the descriptor information is heavily compressed, attention-based image match-
ing pipeline works well when trained with such data.
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Fig. 4: Comparison of training process with varying DLR (16/8/4). We monitor the
AUC10, matching score, precision and descriptor reconstruction loss during the training
process. Our pipeline performs well when decreasing bottleneck dimension though the
reconstruction loss increases. Training without reconstruction loss (Lreconstruct) shows
similar results, indicating matching loss can work as the only supervision signal.

We investigate the role of descriptor reconstruction loss by training with
matching loss alone, as shown in Table 4. The performance is comparable to our
full pipeline on Aachen Day-Night dataset and slightly worse on InLoc dataset.
We monitor the reconstruction loss during training though it is not used during
back-propagation in Figure 4. The model trained with only matching loss implic-
itly learn to recover original descriptor though the supervision is weaker com-
pared to our full pipeline. This indicates the reconstruction loss is not important
even optional with our framework. This is distinct from previous works [22, 72]
which rely heavily on descriptor reconstruction loss. Our pipeline is matchness
driven while descriptor reconstruction can be implicitly inferred during training.

5 Conclusion

We propose a novel framework to perform local descriptor compression by jointly
training within image matching pipeline for visual localization. Each local de-
scriptor can be represented with 1/256 original size with minor impact on the
image matching performance. Our pipeline offers a significant reduction in stor-
age requirements for structure-based visual localization methods while retaining
high localization accuracy on several public datasets.



Map Compression via Matchness Aware Descriptor Dimension Reduction 15

References

1. GlueFactory. https://github.com/cvg/glue-factory (Retrieved Jul 15,2024)
2. Niantic Lightship. https://lightship.dev/products/vps (Retrieved Jul 15,2024)
3. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: CVPR

(2012)
4. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN ar-

chitecture for weakly supervised place recognition. In: CVPR (2016)
5. Arnold, E., Wynn, J., Vicente, S., Garcia-Hernando, G., Monszpart, A., Prisacariu,

V., Turmukhambetov, D., Brachmann, E.: Map-free visual relocalization: Metric
pose relative to a single image. In: ECCV. Springer (2022)

6. Balntas, V., Li, S., Prisacariu, V.: RelocNet: Continuous metric learning relocali-
sation using neural nets. In: ECCV (2018)

7. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors
with triplets and shallow convolutional neural networks. In: Proc. BMVC. (2016)

8. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
ECCV. Springer (2006)

9. Berton, G., Masone, C., Caputo, B.: Rethinking visual geo-localization for large-
scale applications. In: CVPR (2022)

10. Berton, G., Trivigno, G., Caputo, B., Masone, C.: Eigenplaces: Training viewpoint
robust models for visual place recognition. In: CVPR (2023)

11. Brachmann, E., Rother, C.: Learning less is more-6d camera localization via 3d
surface regression. In: CVPR (2018)

12. Brachmann, E., Rother, C.: Expert sample consensus applied to camera re-
localization. In: ICCV (2019)

13. Brachmann, E., Rother, C.: Visual camera re-localization from RGB and RGB-D
images using DSAC. IEEE PAMI 44(9), 5847–5865 (2021)

14. Campbell, D., Liu, L., Gould, S.: Solving the blind perspective-n-point problem
end-to-end with robust differentiable geometric optimization. In: ECCV (2020)

15. Camposeco, F., Cohen, A., Pollefeys, M., Sattler, T.: Hybrid scene compression for
visual localization. In: CVPR (2019)

16. Cao, S., Snavely, N.: Minimal scene descriptions from structure from motion mod-
els. In: CVPR (2014)

17. Chang, M.F., Zhao, Y., Shah, R., Engel, J.J., Kaess, M., Lucey, S.: Long-term
visual map sparsification with heterogeneous GNN. In: CVPR (2022)

18. Chen, H., Luo, Z., Zhou, L., Tian, Y., Zhen, M., Fang, T., Mckinnon, D., Tsin, Y.,
Quan, L.: ASpanFormer: detector-free image matching with adaptive span trans-
former. In: ECCV (2022)

19. Cheng, W., Lin, W., Chen, K., Zhang, X.: Cascaded parallel filtering for memory-
efficient image-based localization. In: ICCV (2019)

20. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport.
NIPS (2013)

21. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: Self-supervised interest
point detection and description. In: CVPR Workshop (2018)

22. Dong, H., Chen, X., Dusmanu, M., Larsson, V., Pollefeys, M., Stachniss, C.:
Learning-based dimensionality reduction for computing compact and effective local
feature descriptors. In: ICRA (2023)

23. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-net: A trainable cnn for joint description and detection of local features. In:
CVPR (2019)

https://github.com/cvg/glue-factory
https://lightship.dev/products/vps


16 Qiang Wang

24. Dymczyk, M., Lynen, S., Bosse, M., Siegwart, R.: Keep it brief: Scalable creation
of compressed localization maps. In: Proc. IROS (2015)

25. He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In:
CVPR (2018)

26. Humenberger, M., Cabon, Y., Guerin, N., Morat, J., Leroy, V., Revaud, J., Re-
role, P., Pion, N., de Souza, C., Csurka, G.: Robust image retrieval-based visual
localization using kapture. arXiv:2007.13867 (2020)

27. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

28. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: A convolutional network for real-
time 6-dof camera relocalization. In: ICCV (2015)

29. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

30. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable
keypoints. In: ICCV (2011)

31. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized fea-
ture matching. In: ECCV (2010)

32. Li, Z., Snavely, N.: MegaDepth: Learning single-view depth prediction from internet
photos. In: CVPR (2018)

33. Lindenberger, P., Sarlin, P.E., Pollefeys, M.: LightGlue: local feature matching at
light speed. ICCV (2023)

34. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized bert pretraining
approach. arXiv:1907.11692 (2019)

35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60,
91–110 (2004)

36. Luo, Z., Shen, T., Zhou, L., Zhu, S., Zhang, R., Yao, Y., Fang, T., Quan, L.:
GeoDesc: Learning local descriptors by integrating geometry constraints. In: ECCV
(2018)

37. Lynen, S., Sattler, T., Bosse, M., Hesch, J.A., Pollefeys, M., Siegwart, R.: Get out
of my lab: Large-scale, real-time visual-inertial localization. In: Robotics: Science
and Systems (2015)

38. Lynen, S., Zeisl, B., Aiger, D., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.,
Sattler, T.: Large-scale, real-time visual–inertial localization revisited. The Inter-
national Journal of Robotics Research 39(9), 1061–1084 (2020)

39. Mera-Trujillo, M., Smith, B., Fragoso, V.: Efficient scene compression for visual-
based localization. In: 3DV (2020)

40. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your
neighbor’s margins: Local descriptor learning loss. NIPS (2017)

41. Mukundan, A., Tolias, G., Bursuc, A., Jégou, H., Chum, O.: Understanding and
improving kernel local descriptors. IJCV 127(11-12) (2019)

42. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics 33(5),
1255–1262 (2017)

43. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807–814 (2010)

44. Pautrat, R., Suárez, I., Yu, Y., Pollefeys, M., Larsson, V.: GlueStick: robust image
matching by sticking points and lines together. ICCV (2023)

45. Qin, T., Li, P., Shen, S.: VINS-Mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on Robotics 34(4), 1004–1020 (2018)



Map Compression via Matchness Aware Descriptor Dimension Reduction 17

46. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no
human annotation. IEEE PAMI 41(7), 1655–1668 (2018)

47. Reinhardt, T.: Using global localization to improve navigation. https://research.
google/blog/using-global-localization-to-improve-navigation/ (Retrieved
Jul 15,2024)

48. Revaud, J., Almazán, J., Rezende, R.S., Souza, C.R.d.: Learning with average
precision: Training image retrieval with a listwise loss. In: CVPR (2019)

49. Revaud, J., De Souza, C., Humenberger, M., Weinzaepfel, P.: R2D2: Reliable and
repeatable detector and descriptor. NIPS (2019)

50. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative
to sift or surf. In: ICCV (2011)

51. Sarlin, P.E.: Image matching challenge 2020 winner entry (2020), https://www.cs.
ubc.ca/research/image-matching-challenge/2020/submissions/sid-00612-
sp-k2048-nms4-refine2-r1600forcecubic-down128-masked-d.001-adapt50_
sg-t.2-it150_degensac-th1.1/

52. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust
hierarchical localization at large scale. In: CVPR (2019)

53. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: Learning
feature matching with graph neural networks. In: CVPR (2020)

54. Sarlin, P.E., Dusmanu, M., Schönberger, J.L., Speciale, P., Gruber, L., Larsson,
V., Miksik, O., Pollefeys, M.: LaMAR: Benchmarking localization and mapping
for augmented reality. In: ECCV (2022)

55. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-
to-3d matching. In: ICCV (2011)

56. Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Sa-
fari, D., Okutomi, M., Pollefeys, M., Sivic, J., et al.: Benchmarking 6DOF outdoor
visual localization in changing conditions. In: CVPR (2018)

57. Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image retrieval for image-based
localization revisited. In: Proc. BMVC. (2012)

58. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations
of CNN-based absolute camera pose regression. In: CVPR (2019)

59. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
60. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene

coordinate regression forests for camera relocalization in rgb-d images. In: CVPR
(2013)

61. Speciale, P., Schonberger, J.L., Kang, S.B., Sinha, S.N., Pollefeys, M.: Privacy
preserving image-based localization. In: CVPR (2019)

62. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: Detector-free local feature
matching with transformers. In: CVPR (2021)

63. Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T.,
Torii, A.: InLoc: Indoor visual localization with dense matching and view synthesis.
In: CVPR (2018)

64. Tang, S., Tang, S., Tagliasacchi, A., Tan, P., Furukawa, Y.: NeuMap: neural coor-
dinate mapping by auto-transdecoder for camera localization. In: CVPR (2023)

65. Tian, Y., Fan, B., Wu, F.: L2-Net: Deep learning of discriminative patch descriptor
in euclidean space. In: CVPR (2017)

66. Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: SOSNet: second order
similarity regularization for local descriptor learning. In: CVPR (2019)

67. Toft, C., Maddern, W., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Oku-
tomi, M., Pollefeys, M., Sivic, J., Pajdla, T., et al.: Long-term visual localization
revisited. IEEE PAMI 44(4), 2074–2088 (2020)

https://research.google/blog/using-global-localization-to-improve-navigation/
https://research.google/blog/using-global-localization-to-improve-navigation/
https://www.cs.ubc.ca/research/image-matching-challenge/2020/submissions/sid-00612-sp-k2048-nms4-refine2-r1600forcecubic-down128-masked-d.001-adapt50_sg-t.2-it150_degensac-th1.1/
https://www.cs.ubc.ca/research/image-matching-challenge/2020/submissions/sid-00612-sp-k2048-nms4-refine2-r1600forcecubic-down128-masked-d.001-adapt50_sg-t.2-it150_degensac-th1.1/
https://www.cs.ubc.ca/research/image-matching-challenge/2020/submissions/sid-00612-sp-k2048-nms4-refine2-r1600forcecubic-down128-masked-d.001-adapt50_sg-t.2-it150_degensac-th1.1/
https://www.cs.ubc.ca/research/image-matching-challenge/2020/submissions/sid-00612-sp-k2048-nms4-refine2-r1600forcecubic-down128-masked-d.001-adapt50_sg-t.2-it150_degensac-th1.1/


18 Qiang Wang

68. Tyszkiewicz, M., Fua, P., Trulls, E.: DISK: Learning local features with policy
gradient. NIPS (2020)

69. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NIPS (2017)

70. Wang, S., Kannala, J., Barath, D.: DGC-GNN: descriptor-free geometric-color
graph neural network for 2D-3D matching. arXiv:2306.12547 (2023)

71. Xue, F., Budvytis, I., Cipolla, R.: Pram: Place recognition anywhere model for
efficient visual localization (2024)

72. Yang, L., Shrestha, R., Li, W., Liu, S., Zhang, G., Cui, Z., Tan, P.: SceneSqueezer:
Learning to compress scene for camera relocalization. In: CVPR (2022)

73. Zhang, X., Liu, Y.H.: Efficient map sparsification based on 2D and 3D discretized
grids. In: CVPR (2023)

74. Zhao, X., Wu, X., Chen, W., Chen, P.C.Y., Xu, Q., Li, Z.: Aliked: A lighter keypoint
and descriptor extraction network via deformable transformation. IEEE Transac-
tions on Instrumentation & Measurement 72, 1–16 (2023)

75. Zhou, Q., Agostinho, S., Ošep, A., Leal-Taixé, L.: Is geometry enough for matching
in visual localization? In: ECCV (2022)


	MAD-DR: Map Compression for Visual Localization with Matchness Aware Descriptor Dimension Reduction

