
Poking a Hole in the Wall: E�icient Censorship-Resistant
Internet Communications by Parasitizing on WebRTC

Diogo Barradas, Nuno Santos, Luís Rodrigues, Vítor Nunes
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{diogo.barradas,nuno.m.santos,ler,vitor.sobrinho.nunes}@tecnico.ulisboa.pt

ABSTRACT
Many censorship circumvention tools rely on trusted proxies that
allow users within censored regions to access blocked Internet con-
tent by tunneling it through a covert channel (e.g,. piggybacking on
Skype video calls). However, building tools that can simultaneously
(i) provide good bandwidth capacity for accommodating the typical
activities of Internet users, and (ii) be secure against tra�c analysis
attacks has remained an open problem and a stumbling block to
the practical adoption of such tools for censorship evasion.

We present Protozoa, a censorship-resistant tunneling tool fea-
turing both high-performing covert channels and strong tra�c
analysis resistance. To create a covert channel, a user only needs to
make a video call with a trusted party located outside the censored
region using a popular WebRTC streaming service, e.g., Whereby.
Protozoa can then covertly tunnel all IP tra�c from unmodi�ed
user applications (e.g., Firefox) through the WebRTC video stream.
This is achieved by hooking into the WebRTC stack and replacing
the encoded video frame data with IP packet payload, while ensur-
ing that the payload of the WebRTC stream remains encrypted, and
the stream’s statistical properties remain in all identical to those
of any common video call. This technique allows for sustaining
enough throughput to enable common-use Internet applications,
e.g., web browsing or bulk data transfer, and avoid detection by
state-of-the-art tra�c analysis attacks. We show that Protozoa is
able to evade state-level censorship in China, Russia, and India.

CCS CONCEPTS
• Security and privacy! Network security; • Social and pro-
fessional topics! Technology and censorship.

KEYWORDS
Censorship circumvention; Tra�c analysis; WebRTC

ACM Reference Format:
Diogo Barradas, Nuno Santos, Luís Rodrigues, Vítor Nunes. 2020. Poking
a Hole in the Wall: E�cient Censorship-Resistant Internet Communica-
tions by Parasitizing on WebRTC. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’20), Novem-
ber 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372297.3417874

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417874

1 INTRODUCTION
State-level censors are known to apply techniques to prevent free ac-
cess to information on the Internet. In fact, many countries have de-
ployed a vast censorship apparatus to exercise control over available
content, namely China [41], Russia [60], Iran [1], Bangladesh [52],
India [82], Thailand [26], or Syria [11]. For instance, amidst the re-
cent Coronavirus outbreak, the chinese government has shut down
news websites [31] and instructed chinese social media platforms
to censor references and keywords related to the infection [10, 64],
in an attempt to handle the sharing of negative coverage within and
outside the country. This control can be enforced through various
techniques, such as keyword-based �lters [80, 81], image �lters [43],
social platform monitoring [32, 42], and even the entire blocking
of Internet destinations [57] or selected protocols [18].

To evade censorship, many circumvention tools have been pro-
posed for enabling users to freely access/share information on the
Internet [39, 69]. Typically, such tools rely on covert channels to
allow for the stealthy transmission of sensitive data through an
apparently innocuous carrier medium [39, 84], for instance a multi-
media streaming carrier application like Skype. The key idea is to
encode the covert data in such a way that an adversary capable of
inspecting the full packet exchange cannot distinguish between a le-
gitimate transmission and one that subliminally carries covert data.
This general approach, which we call multimedia covert streaming,
can typically be achieved in two ways: i) by entirely mimicking the
carrier’s network-level protocols [51] (media protocol mimicking),
or ii) by embedding the covert data into the video (or audio sig-
nal) feed of the carrier application in the course of a regular video
call [3, 36, 44, 46, 50] (raw media tunneling).

Given that all the carrier’s tra�c is encrypted, one way for an
adversary to counter potential covert channels is to blatantly block
all tra�c generated by the carrier application. This method, how-
ever, can bring harmful side-e�ects even for a state-level adversary.
In fact, considering how instrumental many media streaming appli-
cations are for the tissue of economic and social interactions within
censored regions, the costs of shutting down popular applications
can be overwhelming and erode even further the state’s reputa-
tion in the eyes of its international peers. Leveraging on essential
streaming applications can then serve as a strong deterrent for the
enforcement of blocking policies, and constitutes the key insight
that favors the e�ectiveness of multimedia covert streaming [21].

Nevertheless, an adversary can employ a second class of tech-
niques based on tra�c analysis. Essentially, it involves probing into
the censored network region, inspecting the tra�c generated by a
presumable carrier application, and looking for discrepancies in the
tra�c (e.g., abnormal patterns) that might signal the presence of
covert channels. Hence, it follows that an e�ective tool for multime-
dia covert streaming must be able to resist these kinds of attacks by



exhibiting tra�c patterns that will ideally be indistinguishable from
legitimate tra�c. In other words, when picking from two sampled
�ows – one legitimate �ow and one crafted �ow containing covert
data – the adversary must not be able to distinguish them but by
random guessing, i.e., with 50% chance of success.

Unfortunately, the existing tooling support for multimedia covert
streaming is quite bleak. Several studies revealed that the presence
of modulated covert tra�c can be detected solely based on the
analysis of tra�c features such as packet sizes and packet inter-
arrival times [4, 27]. In fact, machine learning (ML)-based tra�c
analysis techniques can e�ectively detect small changes in the
packet frequency distributions caused by the embedding of covert
data inside carrier video streams, namely deviations in the packet
sizes and inter-packet arrival times when compared with legitimate
tra�c. Most existing tools fail this test and are prone to be detected
with high accuracy rates [4]. While some tools like DeltaShaper [3]
can tolerate detection to some degree, they do so at the expense of
reducing the amount of covert data embedded into the cover video
stream, severely limiting the covert channel bandwidth capacity
that can be attained. For instance, in DeltaShaper, the maximum
achievable throughput is only 7 Kbps, which is clearly insu�cient
for sustaining the tra�c generated by common Internet users, e.g.,
interactive web browsing, media streaming, or bulk data transfers.

This paper presents Protozoa, a new multimedia covert stream-
ing tool that provides good performance for the covert transmission
of arbitrary IP tra�c while featuring strong resistance to detection
when subjected to ML-based tra�c analysis by a state-level adver-
sary. In particular, Protozoa allows an Internet user (client) located
in a censored region to access blocked content by leveraging the
help of a trusted user in the free region who will act as a proxy on
the client’s behalf. Protozoa enables then to create a bidirectional
covert tunnel between both endpoints. Henceforth, the client can
start browsing the web freely: the local IP tra�c will be transpar-
ently redirected through the covert tunnel to its �nal destination
host in the free region, e.g., YouTube. This local application is not
restricted to a browser: Protozoa can tunnel IP tra�c from arbitrary
unmodi�ed applications, e.g., email or BitTorrent clients.

Protozoa advances the state-of-the-art by incorporating two
new ideas in its design. First, to enable the transmission of covert
tra�c, it uses web streaming applications based on WebRTC which
are very popular and widely disseminated. Concretely, to create a
covert tunnel, all that two users – client and proxy – need to do is
to establish a video call using a WebRTC-enabled web streaming
website, such as Whereby (https://whereby.com). Protozoa uses the
video call’s associated WebRTC media stream to tunnel covert IP
tra�c between both endpoints. Second, to encode the covert signal
into the carrier stream, Protozoa introduces a technique named
encoded media tunneling, which allows for boosting the capacity of
covert channels while o�ering strong resistance to tra�c analysis
attacks. It consists of embedding the covert data into encoded video
frames, i.e., right after the lossy compression has been applied by
the video codec. This mechanism is implemented by modifying the
WebRTC stack of Protozoa’s Chromium browser component.

We extensively evaluated our Protozoa prototype both through
a set of microbenchmarks resorting to media sessions established
over Whereby, and by testing it in various realistic usage scenarios
and workloads. Our results showed that, under normal network

¬Channel¬Bandwidth

D
et

ec
tio

n 
R

at
e

CRYeUWCaVW¬
> 99.9%FUeeWaYe

¬¬> 99.9%

50%

Media PURWRcRl Mimicking RaZ Media TXnneling

60%

100%

FaceW
¬¬> 99.9%

Sk\SeMRUSh 
> 99.9%

CenVRUSSRRfeU 
> 99.9%80%

70%

�0%

EncRded Media TXnneling

PURWR]Ra 
55% - 65%

1 .ESV 10 .ESV 100 .ESV 1 0ESV

better

DelWaShaSeU
85% - 95%

10 0ESV

RaQdRP
GXeVV

PeUIecW
GXeVV

Figure 1: Design space of multimedia covert streaming tools
along two dimensions: covert channel capacity (X-axis), and
tra�c analysis resistance (Y-axis). Darker shades indicate in-
creasing chances of detection, i.e., tools are more insecure.
Protozoa outperforms the existing systems in both dimen-
sions. A detailed analysis of this plot is found in Section 9.1.

conditions, Protozoa can deliver covert channel bandwidth capaci-
ties in the order of 1.4Mbps and channel e�ciency of 98.8%, while
providing strong resistance to tra�c analysis using state-of-the-art
ML-based techniques [4]. As illustrated in Figure 1, these results
represent a signi�cant departure over existing media covert stream-
ing techniques, dramatically improving the detection rate of the
best performing tool, i.e., Facet, from >99.0% to 55%-65%, i.e., from
nearly perfect guess to very close to random guess, while simul-
taneously improving covert channel bandwidth by 3⇥. Additional
experiments show that Protozoa can withstand a number of active
network perturbations without jeopardizing its resistance against
tra�c analysis or breaking the covert channel connection.

To assess the portability of Protozoa, we also tested our system
on alternative WebRTC services: appr.tc and coderpad.io. Our re-
sults showed that it can consistently achieve similar throughput
and tra�c analysis resistance properties when used over di�erent
applications, which makes it useful in scenarios where speci�c
applications are blocked (e.g., appr.tc is blocked in China). Lastly,
we tested Protozoa in the wild by deploying Protozoa in three re-
gions that are known to enforce Internet censorship through several
means: the Great Firewall of China (GFW) apparatus in China, and
ISP censorship in Russia and India. We performed several exper-
iments from servers deployed in each of these regions. First, we
accessed blacklisted content without using Protozoa, and checked
that it was indeed inaccessible. Then, using Protozoa, we were able
to access this content, showing that our system can successfully
breach through existing censorship mechanisms deployed in these
regions, and provide free access to blocked Internet content.

2 THREAT MODEL
The general system model of a multimedia covert streaming (MCS)
tool is illustrated in Figure 2. It represents two users, one acting
as client (Alice), and a second acting as proxy (Bob). The client is
located in a censored region controlled by a state-level adversary,
and the proxy is based in a free Internet region. The adversary is
able to observe, store, interfere with, and analyze all the network
�ows within its jurisdiction, and block the generalized access to
remote Internet services, such as CNN, Facebook, or Twitter, by
the residents in the censored region. The censorship policies can be
based on the IP address or the domain name of the target destination,



MCS
Tool

Carrier
ApplicaWion

Carrier SWream

ClienW
ApplicaWion

Alice's CompXter Bob's CompXter

CoYerW Channel

Text

CeQVRUed RegiRQ FUee RegiRQ

OSeQ
IQWeUQeW

Text

Carrier
ApplicaWion MCS

Tool

CRYeUW
TUafÀc

ClienW Pro[\

Figure 2: System model of a multimedia covert streaming
tool for censorship-resistant Internet communications.
the protocol used in the communication (e.g., BitTorrent or Tor), or
blacklisted content (e.g., through keyword and image �ltering).

An MCS tool aims at enabling the client to overcome the com-
munication restrictions enforced by the adversary by leveraging (i)
the cooperation of a proxy located in the free region operated by a
trusted Internet user (Bob), and (ii) a carrier application consisting
of an encrypted video-streaming service (e.g., Skype) whose tra�c
the adversary authorizes to cross the boundaries of the censored
region. Both users – client and proxy – must run the MCS software
on their local computers to create a covert tunnel through the media
stream managed by the carrier application. This tunnel will allow
the client to contact remote hosts on the open Internet.

To defeat an MCS tool, the adversary can use deep packet in-
spection for pinpointing tra�c indicators that lead to the detection
of a covert channel. To increase its chances for successful detection,
it may apply statistical tra�c analysis techniques over collected
network traces [4]. The adversary may also launch indiscriminate
active network attacks aimed at perturbing the correct behavior
of covert channels lurking under seemingly legitimate �ows while
ensuring that legitimate �ows maintain a reasonable quality.

However, the adversary will seek only to rapidly disrupt and tear
down those �ows which are suspected of carrying covert channels,
and it will refrain from blocking the carrier application altogether if
such an application is reckoned to provide an important service to
the population. The adversary is also deemed to be computationally
bounded, and unable to decrypt encrypted tra�c generated by the
carrier application. The adversary’s control is also limited to the
network: it has no access to the persistent or volatile state of clients,
proxies, or carrier application provider, and enjoys no privileges
over the software that can be executed by each party.

3 PARASITIZING ONWEBRTC STREAMS
In designing Protozoa, we elected WebRTC media streams as the
carrier medium for deploying practical, e�cient, and secure covert
channels. WebRTC [47] is a W3C standardization initiative for
protocols and APIs for enabling secure real-time communication
between web browsers. All major browsers have built-in WebRTC
implementations enabling the generalized use of this technology.

WebRTC creates new opportunities for building MCS services
that can simultaneously be widely available and easy to use. By act-
ing at this layer, any WebRTC-powered application can be transpar-
ently used for covert data transmission.WebRTC has been currently
adopted by numerous services that integrate real-time communica-
tion capabilities1. This integration has been greatly facilitated by
1There are many di�erent WebRTC-based web streaming applications, such as social
applications like Whereby or Facebook Messenger, the gaming-focused chat Discord,

the simplicity of the JavaScript WebRTC API [28]. The generalized
usage of web conferencing for professional dealings, in particular,
will make it very deterring for a state-level adversary to block all
WebRTC tra�c due to the extensive collateral damage to the coun-
try’s own sustainability [21]. This profusion of WebRTC services
also gives Protozoa users a great deal of �exibility and options to
choose fromwhen it comes to picking the carrier medium for covert
transmission. Creating covert sessions is in itself a user-friendly
operation since establishing a Protozoa connection is in no way
di�erent from making a video call on a web streaming application
(including the process of joining a chatroom URL).

Given that a widely-used WebRTC stack is openly available (in
the Chromium web browser), we have full access to the WebRTC
video streaming pipelines which allows us to develop a new e�cient
and secure covert data encoding technique named encoded media
tunneling. In existing raw media tunneling tools, the covert data is
encoded as pixels of the carrier video frames. Unfortunately, given
that the raw input signal undergoes lossy compression by the video
codec of the carrier application, a signi�cant amount of redundancy
must be included to enable the covert data recovery by the receiver
which degrades the utilization e�ciency of the covert channel.
Moreover, using up all possible pixel area of the carrier frames
for encoding covert data reduces the video codec’s compression
e�ciency, which increases the network packet sizes and deforms
the packet size frequency distribution when compared to that of
legitimate �ows. Because this discrepancy can be detected by an
adversary, the covert channel tools must be parsimonious at using
up the video stream’s pixel area thereby throttling even further the
bandwidth capacity of the covert channel. Encoded media tunneling
overcomes these limitations and allows for boosting the capacity of
covert channels while o�ering strong resistance to tra�c analysis
attacks. Next, we describe our technique as we present Protozoa.

4 PROTOZOA
This section presents Protozoa, a system that provides covert chan-
nels over WebRTC media sessions2. Next, we present its architec-
ture and then describe its most relevant technical details.

4.1 Architecture
Figure 3 depicts the architecture of Protozoa. It follows the sys-
tem model of a general multimedia covert streaming (MCS) tool
presented in Figure 2. In Protozoa, the carrier application consists
of a web application that uses the WebRTC framework for pro-
viding a point-to-point live streaming service between its users,
e.g., Whereby. Typically, such an application consists of a backend
that handles the signaling and session establishment of video calls
between participants, and client-side JavaScript & HTML code that
initiates video calls and manages the video transmission via the
WebRTC API provided by the browser. The resulting media stream
will be used by Protozoa as the carrier for a covert channel.

The MCS tool (see Figure 2) is materialized by the Protozoa
software bundle which targets the Linux platform, and it is set up
di�erently to work as client or proxy by two participating parties.

professional video conferencing services like Amazon Chime and Slack, remote coding
interview software like Coderpad, or even health monitoring through Vidyo.
2“Protozoa” alludes to parasitic biological organisms which feed on other organisms.



CeQVRUed RegiRQ FUee RegiRQ

cnncom

COieQW

ClienW NeWZoUk NameVSace
IP: 10.10.10.10

IP SackeWV IP SackeWV

PUoWo]oa
MeVVageV

PUoWo]oa
MeVVageV

USVWUeam 
Hook

SOCKS Pro[\

PUo[\ NeWZoUk NameVSace
IP: 20.20.20.20

PUR[\

BUoZVing WindoZ

WebRTC

DoZnVWUeam 
Hook

BUoZVing WindoZ

WebRTC
ASSOLcaWLRQ-deÀQed

VLJQaOOLQJ

rherebtcomºchatroomIDrherebtcomºchatroomID

PUoWo]oa MeVVageV

SIPÔservers

PUoWo]oa GaWeZa\ PUoWo]oa GaWeZa\

ClienW ApplicaWion

DecodeU
DoZnVWUeam¬

Hook

EncodeU

USVWUeam¬
Hook EncodeU

DecodeU
1.

2.
3.

4.

5.

�.

�.�.

10.

IP SackeWV
6.

WebRTC PedLa VWUeaP
(SRTP SacNeWV)

AOice BRb

Figure 3: Architecture of Protozoa: The components of our system are highlighted in a darker shade.

The client will be able to execute unmodi�ed IP applications whose
tra�c can seamlessly be routed through theWebRTC covert channel
by the proxy to destination hosts anywhere in the free Internet
region. Figure 3 shows Alice (client) executing a local application
for accessing cnn.com using Bob’s computer as proxy.

The Protozoa software bundle comprises four main components:
gateway server, encoder service, decoder service, and SOCKS proxy
server. Both client and proxy run the gateway server and the en-
coder and decoder services. The proxy also runs the SOCKS proxy
server. Both endpoints leverage network namespaces for transpar-
ent interception and manipulation of IP packets. All these compo-
nents cooperate in forwarding covert IP tra�c by implementing
three cross-cutting functional layers. Next, we explain how these
layers operate by introducing them in a bottom-up fashion.
1. WebRTC layer: This layer is responsible for the setup and man-
agement of a point-to-point WebRTC covert channel between two
parties, and it is implemented by the gateway servers running on
each communication endpoint. The covert channel is piggybacked
on a WebRTC media stream instantiated by a carrier web stream-
ing application. This channel supports full-duplex bidirectional
communication and exchanges Protozoa messages de�ned in a spe-
ci�c format. These messages can contain arbitrary IP payload. The
gateway server is built out of a modi�ed Chromium browser, and
instrumented with the placement of two hooks – upstream and
downstream – in the WebRTC stack. We leverage Chromium’s func-
tionality to provide a web browsing UI and runtime environment
which will allow for the execution of the client-side WebRTC ap-
plication code. The hooks intercept the WebRTC streams so as to
replace the payload of the WebRTC video frames with covert Pro-
tozoa messages. The gateway server opens two pipes for receiving
upstream and downstream messages from the codec layer.
2. Codec layer: This layer performs two complementary encoding
and decoding operations. The former is responsible for encoding
streams of IP packets generated by local networked applications.
Packets are read from a libnetfilter queue [56], and encapsulated
into Protozoa messages, which are forwarded to the local gateway
server and then delivered to the remote endpoint. Decoding per-
forms the reverse operation, i.e., reads incoming Protozoa messages
from the local gateway server, extracts the enclosed IP packets, and
writes them to a raw socket to be routed to their �nal destination.
These operations are coordinated by the encoder and decoder at
both endpoints to sustain simultaneously two IP packet �ows, i.e.,
upstream and downstream. Internally, these components maintain

packet and message queues, and implement packet fragmentation
and reassembly so as to e�ciently use the covert channel capacity.
3. SOCKS layer: This layer enables the exchange of IP packets
between the networked applications running on the client, and a
remote Internet host through a SOCKS v5 proxy server running on
the proxy. This is achieved by the use of Linux’s network names-
paces and con�guration of iptables. Namespaces are implemented
by the Linux kernel and allow for the creation of virtual network
interfaces. In our context, we use namespaces for creating a virtual
network environment for the client application and a second one
for the SOCKS proxy server. Each environment features a virtual
network interface that is exposed to the local processes with a spe-
ci�c IP address, e.g., 10.10.10.10, or 20.20.20.20, respectively (see
Figure 3). Protozoa then con�gures the local iptables so as to route
all (upstream) IP packets with destination address 20.20.20.20 to
the namespace of the proxy, and all (downstream) IP packets with
destination address 10.10.10.10 to the namespace of the client. Thus,
by con�guring a client application to use the IP address 20.20.20.20
as SOCKS proxy, all its IP connections will be transparently de-
livered to the SOCKS server proxy, which in turn will deliver the
packets to its remote destination. So, for instance, the web request
to cnn.com depicted in Figure 3 can be performed by running the
curl command on a Linux terminal as follows:

$ ip netns exec PROTOZOA_ENV_CLIENT

curl -x socks5h://20.20.20.20:1080 https://cnn.com

This means that, in order to use Protozoa’s covert tunnels, the
user must con�gure the client application to use a SOCKS proxy. For
client applications that do not natively support the use of SOCKS
proxy servers, the user can use an additional tool, proxychains [62],
which provides the client application with SOCKS proxy support.

4.2 Execution Work�ow
This section describes the execution work�ow involved in a com-
plete communication using Protozoa covert tunnels. Using the ex-
ample depicted in Figure 3, we describe the full message exchange
sequence that takes place in order for Alice to fetch a web page
from cnn.com through a WebRTC covert tunnel facilitated by Bob,
who is an individual volunteer trusted by Alice. This tunnel is cre-
ated through a WebRTC video call between Alice and Bob using
Whereby in the course of a Protozoa covert session, which is di-
vided into two stages: covert session establishment, and covert data
transmission. Figure 4 represents the messages exchanged.



1. Covert session establishment: The covert tunnel is set up
between client and proxy, requiring both participants to agree on
a common rendezvous point for a WebRTC media connection. In
our example, Alice and Bob use the web browsing interface of their
Protozoa gateway to join a common video chatroom. They begin by
bootstrapping the Protozoa software: Alice in client mode (A1), and
Bob in proxy mode (B1). Then, Alice accesses whereby.com, creates
a password-protected chatroom, and obtains the chatroom URL
(A2). Similarly to using alternative MCS tools [3, 46], Alice uses an
out-of-band channel, e.g., email, social network web site, or mobile
app (e.g., Whatsapp) to share the chatroom URL and password with
Bob (A3 and B2). Both users can now join the chatroom (A4 and B3)
and initiate a video call by feeding a carrier video stream from their
local cameras or (optionally) from a prerecorded video; this video
will be replaced by covert payload. As the WebRTC video stream is
initiated, Protozoa hooks into it, and sets up the covert tunnel.
2. Covert data transmission: Once the covert tunnel is ready,
Alice can access remote Internet services. For instance, to access
cnn.com, Alice can simply run the curl command listed in the sec-
tion above to issue an HTTP GET request to cnn.com. The IP tra�c
generated from this request will be transparently tunneled through
the covert channel. Protozoa will continuously stream video until
the termination of the covert session, even when there is no covert
tra�c to be transmitted; in this case, dummy payload (cha�) is sent.

4.3 Network-level Security of Covert Sessions
At covert data transmission, standard WebRTC ensures that all
exchanged packets are integrity-protected and the message payload
containing sensitive video data is encrypted. Thus, an adversary
cannot read its content, ormodify it without detection. Nevertheless,
wemust ensure that the covert session has been securely established.
In particular, an adversary may attempt a man-in-the-middle or
an impersonation attack during the session negotiation phase (see
Figure 4) enabling it to decrypt the message payload and inspect
the covert data. To prevent these attacks, Protozoa leverages the
security mechanisms implemented by WebRTC and by the carrier
WebRTC web streaming application, namely the following ones:
a) HTTPS: Client and proxy run client-side code of the WebRTC
web application which connects to its backend servers through
HTTPS. This means that all messages involving interactions with
the backend (i.e., A2, A4, B3) will be exchanged over TLS-enabled
secure channels. In particular, this prevents an adversary from
obtaining the URL that would allow it to join the chatroom, or to
mount a MITM by advertising di�erent URLs to client and proxy.
b) SIP / DTLS-SRTP: To establish a media session, WebRTC lever-
ages the Session Initiation Protocol (SIP) to signal one endpoint’s
intention (e.g., the client’s) to connect to its corresponding peer
(e.g., the proxy). This protocol involves the communication between
each endpoint (client/proxy) and a SIP server run by the WebRTC
application provider (see Figure 3). This server is used to exchange
media session parameters between endpoints, and it is combined
with the DTLS-SRTP protocol [48, 83] to perform an initial key
exchange so as to o�er protection against man-in-the-middle at-
tacks. The WebRTC application provider also runs a STUN server
which helps the endpoints located behind a NAT to determine their
respective public (NAT’ed) IP addresses, and share them with their

COieQW PUR[\ OSeQ IQWeUQeWWebRTC VeUYice

A2. RegiVWeU 
chaWURRP URL

A4. AcceVV chaWURRP URL

B3. AcceVV 
chaWURRP URL

A3. ShaUe chaWURRP URL

B2. LeaUQ chaWURRP URL

Media SeVViRn

Media SeVViRn

A5. GET hWWSV://ZZZ.cQQ.cRP

GET hWWSV://cQQ.cRP

200 OK

200 OK

SigQaOOiQg SigQaOOiQg

PURWR]Ra CRYeUW ChaQQeO

PURWR]Ra CRYeUW ChaQQeO

A1. SWaUW PURWR]Ra cOieQW ¬B1. SWaUW PURWR]Ra SUR[\

CeQVRUed RegiRQ FUee RegiRQ

C
oY

er
W S

eV
Vi

on
 E

VW
ab

liV
hm

en
W

C
oY

er
W D

aW
a 

Tr
an

Vm
iV

Vi
on

AOice BRb

Figure 4: Covert session: gear symbol denotes user actions.

peers. To ensure that the media sessions between endpoints are not
hijacked and pointed to di�erent IP locations, the connection at-
tempts to the IP addresses of target endpoints are secured by aMAC,
which is computed using the key exchanged in the signaling chan-
nel [63]. Once a WebRTC session has been established, WebRTC
leverages the Secure Real-time Transport Protocol (SRTP) [5, 83] for
encrypting and authenticating the content of the media in transit.

4.4 Encoded Media Tunneling
Protozoa uses the video streams generated by client and proxy as
a medium for carrying covert IP packet data in both directions.
To this end, we employ a new approach named encoded media
tunneling. Similar to existing raw media tunneling techniques [3,
46], our method replaces carrier video information with a covert
message. However, instead of replacing the pixels of the raw input
video, it replaces the bits of the encoded video signal, i.e., after the
input video has been compressed by the WebRTC video codec. This
technique helps increase not only the capacity of the channel but
also its resistance to tra�c analysis. In our system, it is implemented
by instrumenting the WebRTC stack of the Protozoa gateway.
Upstream and downstream hooks: Figure 5 illustrates the Web-
RTC stack as it is implemented in the Protozoa gateway. It is based
on the WebRTC stack bundled into the Chromium browser. The
WebRTC stack contains a built-in codec (VP8), which processes the
video signal of local web applications that use the WebRTC API. To
access the video frames generated by the WebRTC application and
implement encoded media tunneling, the WebRTC stack includes
two hooks that can intercept the processing of the media stream
in di�erent directions, i.e., upstream or downstream. The upstream
hook intercepts outgoing frame data, i.e., from a local camera device
to the network. It is placed after the raw video signal has been pro-
cessed by the video engine, and right before the frame data is passed



WebRTC

WebRTC API (C++)

Session managemenW/signalling

Web API (JaYaScripW)

WebRTC ApplicaWion (e.g.,¬wherebtcom)

TransporWVideo EngineVoice Engine

Video Codec

Jitter BXffer

Image Enhance

Proto]oa Hooks

SRTP

MXltiple[ing

STUN
TURN
ICE

AXdio Codec

Jitter BXffer

Echo Cancelling

Noise RedXction

Figure 5: WebRTC software stack and Protozoa’s hooks.

over to the transport layer where SRTP packets are created, and sent
to the network. The downstream hook intercepts incoming frame
data, i.e., from the network to the local screen. It is placed right
after the transport layer has �nished reconstructing an encoded
frame sent in multiple network packets, and right before handing
it over to the video engine to be decoded and rendered on screen.
We strategically placed hooks in the WebRTC stack in order to
manipulate a special data structure, named encoded frame bitstream
partitions (EFBP), where we can embed Protozoa messages.
Using EFBP as a covert data mule: To help understand how the
covert data is embedded into the carrier frame data, Figure 6 depicts
the format of the SRTP packets, which is the means through which
video data is exchanged. The bulk of SRTP packet space is reserved
for the transmission of media payload in the �eld named encoded
frame bitstream (EFB). This �eld contains the bits of an encoded
(compressed) video frame as it is generated by VP8, the default
WebRTC codec. An encoded frame contains a small (3-10 bytes)
uncompressed header, and two partitions which carry compressed
bitstreams containing actual carrier video data. We call EFBP the
contiguous space occupied by these partitions. The EFBP has �ve
extremely interesting properties for our problem domain:

(1) The EFBP consists of a blob of bits that contains the actual
video data of the carrier stream. Since this information is
irrelevant for us, we can e�ectively use this �eld for carrying
covert data by overwriting it with covert data.

(2) The EFBP, once it is generated by VP8, is no longer modi-
�ed by the WebRTC downstream pipeline. This means that
the covert data bits placed in this �eld are not going to be
corrupted, e.g., due to compression or other destructive op-
erations, before being sent to the network.

(3) The EFBP will be used as payload of the SRTP packet, and
contains no relevant metadata that in�uences the transport
layer logic, hence, modifying this �eld will not disturb the
normal functioning of packet transfer over the network.

(4) The EFBP, prior to being assembled into SRTP packets, will
be encrypted, and protected with authentication markers.
This means that covert data placed inside the EFBP will be
encrypted and integrity-protected for free.

(5) The EFBP will be encrypted resorting to a stream cipher
that preserves the plaintext size, therefore, embedded covert
messages do not change the size of encrypted EFBPs.

For all these reasons, we use the EFBP as a free storage space for
transmitting covert data in the form of Protozoa messages.

V=2 P X CC M PT seqXence nXmber
WimesWamp

s\nchroni]aWion soXrce (SSRC) idenWiÀer

conWribXWing soXrce (CSRC) idenWiÀers ...

RTP e[Wension (opWional)

RTP pad coXnWRTP padding
SRTP MKI (opWional)

aXWhenWicaWion Wag (recommended)

Encoded FUame BiWVWUeam ...

En
cU

\p
We

d 
po

UWi
on

AX
Wh

en
Wic

aW
ed

 p
oU

Wio
n

0 �1 2 3

PackeW LengWh PackeW ID PackeW Frag.
NXmber LasW Frag Flag

IP PackeW DaWa

Uncompressed
Header

SegmenW 1 ... SegmenW n TerminaWor

ParWiWion IIParWiWion I

ProWo]oa Message

EFBP Field

SRTP PackeW

EncRded FUame BiWVWUeam

Figure 6: Format of SRTP packets: Protozoa replaces the
EFBP payload containing carrier video bits with covert data.

Protozoa message transmission: To embed covert IP packets in-
side an EFBP, Protozoa uses the message format depicted in Figure 6.
A single message consists of multiple segments followed by a Ter-
minator (i.e., a zero-length segment) which delimits the EFBP area
occupied by covert data. Each segment carries an entire IP packet
or a packet fragment. IP packet fragmentation may be required at
the sender’s endpoint shall the next available IP packet be larger
than the available EFBP space on the frame; this process will help
to use the covert channel in its maximal capacity. As a result, a
covert IP packet can be transmitted in a single segment or span
across multiple segments. Each segment has a small header that
allows the receiving endpoint to reassemble IP packet fragments.

Message transmission works as follows. For every new frame
generated by the video engine, there is an opportunity for sending
a new message, which causes the upstream hook to be executed
and given access to the encoded frame. The hook accesses the EFBP
data structure, checks its size, and tells the encoder service how
much free space exists in the frame for sending covert data. The
hook waits for the encoder to assemble a new message containing
locally queued IP packets. Then, the hook copies it into the EFBP
and returns, letting theWebRTC pipeline to proceed with its normal
execution until the resulting SRTP packets are transmitted. At the
receiving endpoint, the reverse operation is performed. Whenever
an encoded frame is reassembled, the downstream hook is executed
and extracts the Protozoa message from the EFBP �eld. This mes-
sage is sent to the local decoder service, which reassembles the
ingress IP packets and forwards them to their rightful destination.

4.5 Prevent Video Decoding Malfunction
While it is possible to fully replace the content of the EFBP �eld,
the undisciplined corruption of a frame bitstream can prevent the
video decoder in the WebRTC downstream pipeline from correctly
decoding video frame data at the receiver’s endpoint. In fact, we
empirically veri�ed that in such situations, WebRTC triggers con-
gestion control mechanisms in the downstream pipeline for ensur-
ing the reception of video. In particular, it advertises a Picture Loss
Indication (PLI) in the accompanying RTCP control channel [61],



aimed at requesting the retransmission of a key frame upon being
unable to decode the corrupted frame data. In particular, VP8 pro-
duces two di�erent types of encoded frames. Key frames can be
decoded without any reference to previous frames and provide seek-
ing points within a video stream. Delta frames are encoded with
reference to the prior key frame and ensuing frames. By advertising
PLIs and sending key frames upon detecting corrupted frames, the
resulting tra�c patterns produced by WebRTC applications would
make Protozoa vulnerable to tra�c analysis.

To overcome this problem, the downstream hook feeds the Web-
RTC video decoder with a pre-recorded sequence of valid encoded
frames instead of the corrupted frames received over the network.
Since the encoded frames may either be key frames or delta frames,
the downstream hook uses the uncompressed header information
kept intact after covert data embedding (see Figure 6) to decide
which type of frame and corresponding resolution (e.g., 640x480)
should be provided to the native WebRTC video decoder. Then, it
restores the corrupted bitstream with a bitstream of a valid frame.
This allows us to establish a covert channel where the size of egress
frames on the upstream pipeline is maintained, and to deliver the
decoder valid data so that it does not trigger congestion control.

4.6 Implementation and Optimizations
We developed a Protozoa prototype [2] by writing approximately
3,000 lines of C++ code. This includes the instrumentation of the
native WebRTC codebase of the Chromium browser v79.0.3945.117,
a stable release from January 2020. Protozoa requires the proper
establishment of a WebRTC video session for embedding data into
encoded frames sent over the wire. To this end, WebRTC must be
able to access a video feed that can be directly obtained from the
physical camera device available in the system. Alternatively, it
is possible to set up a camera emulator by using the v4l2loopback

kernel module [70] and feed recorded video with the help of the
ffmpeg video library [20]. In Section 6, we leverage the latter method
for evaluating Protozoa in light of di�erent video pro�les.
Fine-tuning of IP packet queues: We performed an important
optimization related to the size of the packet queues maintained
internally by Protozoa’s encoding service. Speci�cally, we refer
to the queue that holds intercepted IP packets generated in the
upstream pipeline network namespace. A typical rule-of-thumb for
managing packet queues suggests the parameterization of a bu�er
size according to the following formula: Bu�er Size � RTT * Chan-
nel Bandwidth [49]. According to our experimental results, we con-
servatively assume that each packet in the queue has a size equal
to the MTU. Additionally, we empirically verify that the round-
trip-time experienced by our system is ⇡200ms when connected in
a LAN network, i.e., when the latency between WebRTC hosts is
sub-millisecond. Con�guring our packet queue with the above pa-
rameters yields a queue size of 24 packets for the 200ms round-trip-
time experienced by Protozoa and a bandwidth of approximately
1.4Mbps achieved when sending video at 640x480 resolution.

5 EVALUATION METHODOLOGY
This section describes our evaluation methodology for assessing
the quality and performance of our Protozoa prototype.

VM1

(COLHQW)

VM3

(PUR[\)

VM4

(OSHQ IQWHUQHW)

WHERTC VHUYLFH

VM2

(CHQVRU MLGGOHER[)

Media Media Web
Traffic

SignallingSignalling

Figure 7: Laboratory setup.

5.1 Evaluation Goals and Approach
The goal of our experiments is twofold: i) evaluate the performance
of Protozoa’s covert channel in face of di�erent network conditions,
and ii) assess the ability of our system to resist against detection
from an adversary able to perform statistical tra�c analysis attacks.

To measure the performance of the covert IP �ows tunneled by
Protozoa covert WebRTC session, we leverage iPerf. This enables
us to stress the covert channel capacity.

When testing our system’s ability to resist tra�c analysis at-
tacks, we aim to reproduce the ideal conditions for the adversary.
Essentially, the attacker’s aim is to analyze the statistical properties
of WebRTC’s media (SRTP) and control (RTCP) packet �ows so
as to identify Protozoa tra�c among legitimate WebRTC media
sessions. To this end, we apply a state-of-the-art tra�c classi�er [4],
which leverages two di�erent sets of features: i) quantized packet
size distributions, and ii) summary statistics computed from packet
size and inter-arrival time distributions. Then, we collect a balanced
dataset composed of legitimate and ProtozoaWebRTC packet traces,
and measure the AUC achieved by the above classi�er when per-
forming binary classi�cation using 10-fold cross-validation. Note
that, in the wild, class imbalance is expected to be skewed towards
the abundance of legitimate streams and would likely make the
adversary’s task harder than in a controlled lab environment [12].
To ensure that the collected traces re�ect realistic convert tra�c
transmissions, we keep the channel busy by injecting arti�cial cha�
into the covert tunnel (using iPerf) while collecting these traces.

5.2 Experimental Testbed and Datasets
Our laboratory testbed, illustrated in Figure 7, is composed of four
64-bit Ubuntu 18.04.5 LTS virtual machines (VMs) provisioned with
two virtual 2,3 GHz Intel Core i5 CPU cores and 16GB of RAM.
VM1 and VM3 execute an instance of our prototype, operating as a
Protozoa client and proxy, respectively. VM2 acts as the gateway
and router for the two Protozoa VMs, and mimics the operation of
a censor middlebox by collecting packet traces required for con-
ducting statistical tra�c analysis. Finally, VM4 is used to pose as
a server in the open Internet which receives requests from the
Protozoa proxy in VM3 acting on behalf of the client in VM1.

To conduct our experiments, we collected a total of 2000 YouTube
video samples from four di�erent categories (500 videos each) la-
beled by hand. These categories focus di�erent video pro�les as-
sumed to be common in WebRTC services, and which we identify
as Chat, Coding, Gaming, and Sports. For generating packet traces
pertaining to legitimate and Protozoa media sessions, we split each
of the four datasets (one for each video pro�le) in half. Then, we
establish 250 legitimate WebRTC connections and 250 Protozoa
connections while mirroring the video transmitted on each side of



the connection. This allows us to avoid the contamination of the
training data by mixing the same video samples in both legitimate
and Protozoa connections. Video is set to be transmitted at 30fps
and at a 640x480 resolution over the whereby.com WebRTC service,
unless stated otherwise. Packet traces are collected for a duration of
30 seconds, a time interval shown in prior work to be su�cient for
accurate detection of MCS streams using state-of-the-art statistical
tra�c analysis [4]. As described in Section 6, we validate that the
use of longer traces did not signi�cantly a�ect our results.

5.3 Metrics
We adopt a set of metrics for evaluating Protozoa’s covert channel
performance and resistance against statistical tra�c analysis:
Performance metrics: In order to be able to compare Protozoa to
existing work, we leverage throughput as the metric of performance
of the covert channel. Additionally, we are interested in measuring
Protozoa’s covert channel e�ciency, which provides the ratio be-
tween the total amount of data transmitted in the covert channel
and the total available space in encoded video frame bitstreams.
Security metrics: Akin to earlier studies on the resistance of MCS
systems to tra�c analysis attacks, we use the following metrics
to evaluate Protozoa’s tra�c analysis resistance capability: true
positive rate (TPR), false positive rate (FPR), and the area under the
ROC curve (AUC). The TPR measures the fraction of Protozoa �ows
that are correctly identi�ed as such, while the FPR measures the
proportion of legitimate �ows erroneously classi�ed as Protozoa
�ows. An adversary aims at obtaining a high TPR and a low FPR
when performing covert tra�c classi�cation. The Receiver Operat-
ing Characteristic (ROC) curve plots the TPR against the FPR for the
di�erent possible cutout points for classi�ers possessing adjustable
internal thresholds. The AUC [19] summarizes this trade-o�. Note
that an AUC of 0.5 is equivalent to random guessing.

In the following sections, we evaluate our prototype by resort-
ing to a set of microbenchmarks and by conducting a number of
experiments when deploying Protozoa in real-world scenarios.

6 EVALUATION USING MICROBENCHMARKS
In this section, we evaluate Protozoa using a series of microbench-
marks. We test our system on a baseline scenario and then study
the e�ects of varying the network and carrier conditions.

6.1 Baseline Deployment
Protozoa can be evaluated in multiple scenarios that depend on
many factors (e.g., carrier video, carrier WebRTC application, or
network conditions). Since validating all these dimensions is a
hard endeavor, we �rst present an analysis of Protozoa based on
a baseline deployment scenario which gathers a set of conditions
expected to be found in a real-world deployment of Protozoa.

Our baseline deployment encompasses the following con�gu-
ration. First, we select Whereby, a popular WebRTC application,
as the carrier application for the Protozoa covert channel. Second,
we select the videos comprising the Chat dataset as carrier media.
Third, we assume that the round-trip-time (RTT) between Protozoa
endpoints (VM1 - VM3) is in the order of 50ms, a typical value for
connections established within the same continent [58, 72]. Lastly,

b)

Figure 8: Baseline tra�c analysis and performance results.

Duration (s) 10 20 30 40 50 60

AUC 0.56 0.60 0.59 0.58 0.58 0.61

Table 1: Classi�er’s AUC for varying trace durations.

we assume a 15ms RTT from the Protozoa proxy to an open Internet
service (VM3 - VM4). This value is reasonable even when accessing
foreign services due to the proliferation of CDN edge servers which
may be regionally co-located with a Protozoa proxy [58, 71].

6.2 Baseline Performance Results
We now evaluate Protozoa’s resistance against tra�c analysis and
assess the throughput and e�ciency of the covert channel in the
baseline deployment settings presented in the previous section.
Tra�c analysis resistance: Figure 8a) depicts the ROC curve of
the classi�er when attempting to identify Protozoa connections re-
sorting to two sets of features: quantized packet size distributions,
and summary statistics. Firstly, we see that summary statistics
provide a better overall detection rate, enabling the classi�er to
obtain an AUC of 0.59 (for the remainder of our evaluation, we will
limit ourselves to present the results corresponding to the use of
summary statistics). Secondly, the ROC curve shows that a censor
would incur in a large FPR when blocking Protozoa �ows resorting
to the state-of-the-art classi�er. Essentially, the FPR represents the
collateral damage that results from setting the TPR to a speci�c
cuto� value. As an example, if we assume that the censor would
like to block 80% of all Protozoa �ows (TPR = 0.8), it would erro-
neously �ag approximately 60% of all legitimate �ows as covert
channels (FPR = 0.6). Although the cuto� FPR value is determined
in a discretionary fashion by each censor (i.e., di�erent censors can
possibly withstand di�erent TPR/FPR tradeo�s), the �gure shows
that distinguishing between Protozoa streams and legitimate media
streams is close to random guessing.

To assess the robustness of Protozoa for packet traces of di�erent
durations, we repeated the same set of experiments using trace
lengths up to 60 seconds as depicted in Table 1. These results suggest
that the size of the traces has no meaningful impact on the AUC,
given that the measured AUCs exhibit small �uctuations between
0.56 and 0.61. Thus, in the interest of scaling up our experiments,
we conducted our remaining evaluation resorting to 30s traces.
Performance: Figure 8b) depicts a boxplot showing the through-
put achieved by Protozoa’s covert channels. We can observe that,
under the baseline deployment conditions, Protozoa achieves an
average throughput of 1422 Kbps, while the 90th percentile sits at
1510 Kbps, and the 75th percentile at 1480Kbps. This amounts to a
throughput increase of 3⇥ when compared to Facet, and a 3-fold
order of magnitude increase when compared to DeltaShaper.



Figure 9: Throughput of Protozoa’s covert channel when established over di�erent network conditions.

Figure 10: ROC AUC obtained by the classi�er when detecting Protozoa �ows under di�erent network conditions.

Additionally, we analyzed the e�ciency of Protozoa’s covert
channel by measuring the ratio between the data embedded in each
outgoing frame and the size of the frame. When using iPerf to stress
the upstream covert channel link, we observed that Protozoa used
98.8% of the available frame space to transmit covert data. This
suggests that our packet encoding scheme can use the majority of
the encoded frame bitstream to transfer covert data.

Lastly, regarding resource consumption, the client and proxy
VMs peaked at a 21.6% usage of their total CPU and at 596MB
of memory usage. These numbers suggest that Protozoa can be
executed on various commodity hardware platforms.

In the next sections, we evaluate our system beyond our baseline
setup across multiple other network deployment scenarios.

6.3 Varying Network Conditions
Assessing the security of our prototype in face of di�erent network
conditions is paramount i) to understand whether Protozoa can
remain undetectable in practical deployment scenarios, and ii) to
ascertain whether our system can withstand active network pertur-
bations introduced by a network adversary, aimed at disclosing the
operation of the system or at breaking the covert channel connec-
tion. To manipulate network conditions, we leveraged the tra�c
control facility Linux NetEm [30] and varied the network conditions
in the following dimensions: i) latency, ii) bandwidth, and iii) packet
loss. A recent study [37] reported that WebRTC connections can
withstand a limited range of network perturbations before being
torn down due to QoS constraints. We bound the network pertur-
bations to inject in the network according to the ranges suggested
by this study. Next, we detail the results of our experiments.
Latency variation of the covert channel: We delay packets so
as to achieve a round-trip-time (RTT) of 15ms, 50ms, and 100ms
between Protozoa endpoints (VM1 - VM3). These values emulate re-
gional, intra-continental, and inter-continental RTTs [58, 72], while
being kept within the bounds of 300ms, recommended for estab-
lishing real-time multimedia sessions with acceptable quality [67].

Our results are as follows. Figure 9 a) illustrates the breakdown of
throughput achieved by our prototype as the RTT between Protozoa
endpoints increases. It shows that the latency introduced between
endpoints does not impact the throughput obtained by Protozoa. In
particular, the throughput remains at an average of about 1420Kbps
in the three con�gurations tested. Figure 10 a) presents the ROC
curves obtained by the classi�er when attempting to detect Protozoa
in a network with di�erent RTT con�gurations. We see that the
classi�er obtains a maximum AUC of 0.59. Thus, irrespective of
the latency introduced between endpoints, the adversary does not
obtain an advantage at distinguishing Protozoa �ows.
Bandwidth variation of the covert channel:We symmetrically
limit the bandwidth of the link to 1500Kbps, 750Kbps, and 250Kbps,
beyond the unrestricted bandwidth conditions assumed in our base-
line case. In these conditions, WebRTC streams use approximately
80% of the available bandwidth, agreeing with other studies [37].

Figure 9 b) shows that the achievable throughput tends to de-
crease as bandwidth is more scarce. For instance, while Proto-
zoa’s throughput averages 975Kbps when bandwidth is capped
at 1500Kbps, it drops to 460Kbps at 750Kbps, and attains an average
91Kbps when bandwidth is only 250Kbps. This e�ect is expected
since the constrained amount of bandwidth leads to the decrease of
frame rates and forces the downgrade of video resolution and en-
coded frame size, thus reducing the available space for embedding
covert data. For instance, a 250Kbps bandwidth cap only allows a
WebRTC stream to obtain ⇡25 FPS at a low 480x270 resolution [37].

As for resistance to tra�c analysis, the AUC in Figure 10 b)
reveals that the bandwidth variation does not provide su�cient
information for the classi�er to accurately distinguish between
legitimate and Protozoa connections, peaking at 0.65 AUC when
the bandwidth is limited to 1500Kbps.
Packet loss rate variation of the covert channel: We assess
the properties of Protozoa when the media channel is subjected
to packet losses. Following the experiments of Jansen et al. [37],
we drop 2%, 5%, and 10% of the packets pertaining to WebRTC



Figure 11: Throughput and tra�c analysis resistance ob-
tained while varying the RTT between VM3 and VM4.

connections. Each of these loss rates causes WebRTC’s congestion
control to increase sending rate (2%), slowly increase sending rate
(5%), and converging data rate to values leading to the tear-down
of the video stream (10%). Typical recommendations for real-time
media tra�c sit at no more than 1% packet loss [67].

Figure 9 c) shows that while Protozoa’s throughput is negatively
a�ected by increasing packet loss rates, our prototype is still able
to sustain an average throughput of 1130Kbps for packet loss rates
of 2% and of 360Kbps for a loss rate of 5%. While a 10% packet loss
substantially decreases the throughput to 160Kbps, we note that
Protozoa’s covert channel connections remained active and did not
break for the duration of the experiment.

Lastly, the results in Figure 10 c) show that Protozoa preserves
high-levels of tra�c analysis resistance when the network link
between Protozoa endpoints is subject to variable packet loss rates.
Latency variation at the last mile:We now focus on the impact
of the RTT between Protozoa’s proxy (VM3) and open Internet
services (VM4) to the network performance. Figure 11 b) shows
the breakdown of throughput achieved by Protozoa when the RTT
between VM1 and VM2 endpoints is set to 50ms and the last leg of
the connection to the Internet service ranges from 15ms to 100ms.

Similarly to our earlier experiments when varying the latency
between Protozoa endpoints, the throughput is not compromised
when latency increases between the Protozoa proxy and the Internet
service. The average throughput of our system is rather stable, at
around 1410Kbps, for the three tested con�gurations.

6.4 Varying Carrier Conditions
We also evaluate our system varying two carrier-speci�c conditions:
Varying video pro�les: This experiment aims to test whether
di�erent video pro�les used as cover media a�ect the throughput
of our system. Such a question arises since variable bitrate video
encoders, such as the ones used in WebRTC (e.g. VP8), adjust the
amount of output data according to the complexity of encoded video
segments. To answer this question, we evaluate the performance
of the covert channel when established through the Chat, Coding,
Gaming, and Sports video pro�les in our baseline deployment.

Performance-wise, Figure 12b) depicts the throughput achieved
by Protozoa when using di�erent video pro�les as cover media.
We see that our system achieves a similar average throughput
of approximately 1400Kbps for Chat, Gaming, and Sports media
�ows, while reaching an average throughput of 530Kbps when
transmitting Coding media. These results concur to the observation
that a large portion of video frames remain static in live coding

Figure 12: Throughput and tra�c analysis resistance ob-
tained while using di�erent video pro�les.

b)

Figure 13: Throughput and tra�c analysis resistance ob-
tained while using di�erent WebRTC services.

videos. Additionally, these numbers suggest that the throughput
is consistent within each baseline, achieving a maximum standard
deviation of 157Kbps across the Chat, Gaming, and Sports baselines.

In turn, Figure 12a) shows the ROC curves for the classi�er when
attempting to distinguish Protozoa connections conducted over the
di�erent video pro�les. The classi�er achieves a similar AUC for all
pro�les (⇡0.6 AUC), suggesting that the resistance against tra�c
analysis is preserved irrespective of the video pro�le used as cover.
Varying WebRTC services: To assess whether the security and
performance properties of our system hold when media calls are es-
tablished over multipleWebRTC applications, we conducted further
experiments over two additional WebRTC services: a) coderpad.io
– a live coding interview application – and b) appr.tc – Google’s
bare-bones demo application based on the simple WebRTCWebAPI.

Figure 13a) depicts the ROC curves for the classi�er when in-
specting Protozoa streams established through coderpad.io and
appr.tc. The results show that the classi�er obtains an AUC of
0.58 for streams established over coderpad.io and an AUC of 0.60
for streams established over appr.tc. In both cases, we see that
Protozoa remains undetectable by a network eavesdropper.

As for the throughput when establishing a covert channel re-
sorting to the two alternative WebRTC applications, Figure 13b)
shows that Protozoa achieves an average throughput of 1420Kbps
for appr.tc and of 1388Kbps for coderpad.io, similar to what was
obtained with whereby.com, as presented previously in Section 6.2.

7 TESTING IN THEWILD
In this section, we test our system in multiple real-world settings.
First, we present the results of an experiment comprising the ex-
ecution of a set of typical workloads conducted by Internet users,
over Protozoa. Then, as proof of concept, we show that Protozoa is
able to evade the censorship apparatus of real-world adversaries
by using it to access censored content in China, Russia, and India.



Application Protocol Workload
A. Curl HTTP, FTP Page transfer (16 MB) in 89s
B. Transmission BitTorrent File transfer (2GB) in 3h5m
C. Mutt SMTP Send email (1KB) in 5.5ms
D. Irssi IRC Send text message (80B) in 0.44ms
E. VLC HTTP Video streaming at 20/14 fps in 240p/480p
F. Firefox HTTP Web-sur�ng session

Table 2: Real application workloads over Protozoa.

7.1 Testing with Real Application Workloads
We tested Protozoa with multiple networked applications as de-
picted in Table 2.We used the baseline setup presented in Section 6.2.
To tunnel the tra�c of applications that do not natively support a
SOCKS proxy, such as mutt, we leverage proxychains [62], a SOCKS
proxy wrapper, to redirect such tra�c through Protozoa.

First, we used Curl (A) over the covert channel to download �les
with sizes ranging from 1KB to 256MB using both the HTTP and
FTP protocols. We also veri�ed that Protozoa is able to uniformly
distribute the bandwidth of the covert channel among simultaneous
Curl connections. In order to test Protozoa’s covert channel on
a di�erent transport protocol, we con�gured the Transmission
BitTorrent client (B) to download a popular Linux distribution ISO.
We also found Protozoa to be successful when operating email
– Mutt (C) – and instant-messaging – Irssi IRC chat client (D) –
applications. Additionally, we tested the ability to stream video
content over VLC (E). Lastly, we ran Firefox (F) over Protozoa to
navigate di�erent web pages and to stream videos from YouTube,
con�rming that Protozoa enables interactive web-sur�ng tasks.

Overall, the results of our experiments show that Protozoa is
able to accommodate a number of common Internet applications,
including web-browsing, video streaming, or bulk data transfer.

7.2 Evading State-Level Adversaries
To test Protozoa’s ability to circumvent real-world censors, we ran
Protozoa in three geographical locations known to be active targets
of Internet censorship – China [6], Russia [60], and India [82].

First, we identi�ed sets of web pages that are blocked for each
country [59, 68, 85]. We selected web pages in several categories:
gambling, pornography, news/politics, drug sale, and circumven-
tion tools. For each set, we veri�ed that the web pages could not
be directly accessed (i.e., without using Protozoa) using Firefox
running on a server physically deployed in the respective country.
Then, we repeated this access after setting up Protozoa covert ses-
sions. In each server, we con�gured a Protozoa client to establish
a covert channel towards a Protozoa proxy located in LA, USA,
and used this channel to access the blocked web pages. To run
our experiments in said countries, we resorted to virtual private
servers (VPSs) in Shanghai, Moscow, and Mumbai, respectively, and
deployed the Protozoa bundle amounting to a total of 150 MB.
Blocking policies:We observed that browsing blocked websites
in Russia and India resulted in ISP blockpages, whereas in China
they would simply not load properly. A closer look at the tra�c
traces produced when trying to access blocked web pages revealed
that the GFW performs packet drops on connections aimed at black-
listed hosts. This observation is consistent with the behavior of the
GFW [6]. Browsing a blocked website from within Russia and India
showed that blocking policies implemented within datacenters are

WebRTC Application Reachability
China Russia India

appr.tc - 3 3
aws.amazon.com/chime 3 3 3
codassium.com 3 3 3
coderpad.io 3 3 3
discordapp.com - 3 3
gotomeeting.com 3 3 3
hangouts.google.com - 3 3
messenger.com - 3 3
slack.com 3 3 3
whereby.com 3 3 3

Table 3: Reachability tests on popular WebRTC services.

less restrictive from those applied on typical ISP connections, i.e.,
we could access websites which would trigger the return of ISP
blockpages when browsed over a VPN; therefore, given that our
VPSes are located inside datacenters, for ensuring a reliable Proto-
zoa testing, in Russia and India we route all VPS tra�c through a
VPN server hosted in the same country, where we obtain blockpages
when visiting forbidden websites. This di�erentiation, however, did
not occur on the VPS within China, where the pages found to be
blocked when browsing over a VPN inside the country were also
blocked when accessing from our VPS in a datacenter.
Availability of WebRTC services: Paramount to the functioning
of Protozoa is the ability to connect to a foreign WebRTC service.
Since Protozoa makes no assumption over the WebRTC application
used as a vehicle for the covert channel, it is only necessary to
�nd one unblocked application within the censored region. Table 3
shows that multiple WebRTC applications are available in the coun-
tries focused in our evaluation. Importantly, the table shows that,
despite several WebRTC applications being blocked in China, a user
still has plenty of alternative WebRTC media applications that can
be used as a carrier for Protozoa covert channels.
Reaching censored content: To reach our blocked page sets, we
leveraged whereby.com to establish Protozoa connections. We were
able to access all such blocked websites in China, Russia, and India.

7.3 Ethical Considerations
The experiments conducted in this section involve the access to
censored content from a number of vantage points within coun-
tries known to experience Internet censorship. These accesses raise
important ethical concerns since they risk triggering reprisals from
local authorities. We followed the best practices described in the
Menlo report [14] to guide three major decisions of our experimen-
tal design. First, we did not recruit volunteers for our experiments.
Instead, we rented VPSes from commercial VPS providers which
understand the legal implications of o�ering network and comput-
ing services in each country they operate. Second, albeit using the
signalling infrastructure of existingWebRTC applications, Protozoa
does not compromise in any way the integrity of such applications.
Covert tra�c is exclusively forwarded by replacing user-generated
video content. Lastly, we did not collect any sensitive user data.

8 SECURITY DISCUSSION
We now discuss some potential attacks to Protozoa and defenses:
Packet dropping: An adversary may instrumentally drop a small
number of selected packets ofWebRTCmedia streams in an attempt
to dramatically slow down the covert data transmission or disrupt



the functioning of Protozoa protocols causing, in either case, a
denial of service. In contrast to other systems [27, 34], Protozoa
is robust against these attacks since it does not rely on speci�c
packets for managing covert channels. Moreover, Section 6.3 shows
that applications that use Protozoa’s covert channels are able to
tolerate a large percentage of dropped packets without terminating.
Active probing: Active probing attacks aim at identifying Proto-
zoa proxies, e.g., by attempting to join some active chatroom and
identify the transmission of corrupted video streams which telltale
the presence of covert channels. By selecting WebRTC chatrooms
that implement member admission controls, e.g., using passwords
or contact list checks, Protozoa users can evade this attack.
Fingerprinting of cover videos: If Protozoa is set up to stream
a pre-recorded cover video, an adversary may attempt to identify
a particular user by using that video for �ngerprinting Protozoa
covert channels. This threat can be countered by: i) rotating the
pre-recorded video, ii) or feeding a live video from the local camera.
Long-term user pro�ling: An adversary may keep track of a
user’s interactions with WebRTC services so as to build a pro�le
of interactions with multimedia applications. An accurate pro�le
may enable an adversary to indirectly detect the usage of Protozoa
through connections with out-of-ordinary duration or by detecting
the placement of calls at unusual times of the day. Assessing the
feasibility of this threat is an interesting direction for future work.

9 RELATEDWORK
We now describe past approaches aimed at evading Internet cen-
sorship and locate Protozoa in the spectrum of existing techniques.

9.1 Comparison with Similar Systems
Protozoa �ts in the family of multimedia covert streaming systems.
It stands out by introducing a new technique – encoded media
tunneling. Next, we compare our system against two other branches
of this family (Figure 1 puts all these systems in perspective.)
Media protocol mimicking: Previous systems have introduced
tra�c morphing [77] techniques for the transmission of covert
data by imitating multimedia protocols. For instance, by entirely
replacing the payload of media packets by encoded data, Skype-
Morph [51] and CensorSpoofer [74] deliver a reasonable throughput
of 344Kbps [51] and 64Kbps [74], respectively. However, due to the
di�culty in mimicking the complete behavior of multimedia pro-
tocols, these systems are prone to be detected with 100% accuracy
through a combination of passive and active attacks [34]. In con-
trast, Protozoa provides not only strong resistance against tra�c
analysis, but also higher throughput (around 1.4Mbps).
Raw media tunneling: Systems like FreeWave [36], Facet [46],
DeltaShaper [3], and CovertCast [50] modulate covert data in the au-
dio/video input of multimedia applications. Some of these systems
can sustain a reasonable throughput. For instance, Facet can reach
471Kbps [46] and CovertCast 168Kbps [50]. However, these sys-
tems are vulnerable to statistical tra�c analysis techniques [4, 27]:
FreeWave, Facet, CovertCast are detected with over 99% accuracy,
while DeltaShaper between 85%-95% [4, 27]. Protozoa outperforms
these systems both performance and security wise.

9.2 Beyond Multimedia Covert Streaming
Protocol mimicking is a general technique for carrying covert data
by imitating the behavior of a carrier protocol. However, most
solutions [15, 16, 76] su�er from the same limitations as their mul-
timedia protocol siblings and are prone to network attacks [34, 73].

Protocol tunneling has been used in other contexts. SWEET [86],
CloudTransport [9], and Castle [29] tunnel covert data through
steganographically marked email, cloud storage services, and real-
time strategy games, respectively; meek [23, 66] leverages domain
fronting to hide Tor tra�c inside HTTPS connections to allowed
hosts. However, unlike Protozoa, some of these systems have not
been evaluated against state-of-the-art tra�c analysis attacks, and
others have already been shown to be vulnerable to detection [73].

There are many other related techniques. Ephemeral proxies
like Snow�ake [21, 22] (which uses WebRTC connections) redirect
tra�c through short-lived proxies provided by volunteers; however,
unlike Protozoa, the covert tra�c is �ngerprintable and the pres-
ence of secret messages can be detected through tra�c analysis.
Protocol randomization [13] transforms tra�c into random bytes
to evade protocol blacklists, but it fails in the presence of protocol
whitelisting and is vulnerable to entropy analysis [73]. Refraction
networking [7, 8, 17, 24, 25, 35, 38, 78, 79] incorporates special
tra�c redirection routers inside cooperative ISPs which need to
be carefully placed, otherwise a censor can avoid network paths
containing such routers [53, 54, 65]. In contrast, Protozoa relies on
individual trusted users located outside the censored region. Packet
manipulation strategies [6, 40, 45, 75] aim at invalidating the state
of censors’ �rewalls; Protozoa’s covert channels can breach through
such �rewalls provided that WebRTC tra�c is not blocked.

Lastly, some systems provide access to censored content cached
in CDNs [33, 87]. Protozoa provides access to any publicly avail-
able content accessible to the Protozoa proxies. MassBrowser [55]
leverages cache browsing [33, 87] and volunteer proxies to reach
censored content. However, since the connections between clients
and proxies are protected with a variant of Obfsproxy [13], they
are also a�ected by the limitations of protocol randomization.

10 CONCLUSIONS
This paper introduced Protozoa, the �rst multimedia-based censor-
ship circumvention tool which generates secure covert channels by
instrumenting the innards of the WebRTC multimedia framework.
Our evaluation shows that Protozoa tra�c cannot be distinguished
from typical WebRTC �ows by state-of-the-art tra�c analysis tech-
niques. Further, the results of our evaluation show that Protozoa
enables an increase in throughput of up to three orders ofmagnitude
when compared against similar (and less secure) tunneling tools.
Currently, Protozoa requires active user support at the proxy’s end
and demands users to �nd trusted proxies for exchanging covert
content. Devising a scalable solution for �nding trusted proxies is
an interesting direction for future work.
Acknowledgments: We thank our shepherd, Nick Feamster, and
the anonymous reviewers for their comments. This work was par-
tially supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) via the SFRH/BD/136967/2018 grant, and the
PTDC/EEI-COM/29271/2017 and UIDB/ 50021/ 2020 projects.



REFERENCES
[1] A����, S., A����, H., ��� H��������, J. A. Internet censorship in Iran : A �rst

look. In Proceedings of the 3rd USENIXWorkshop on Free and Open Communications
on the Internet (Washington, DC, USA, 2013).

[2] B�������, D. Protozoa code repository. https://github.com/dmbb/Protozoa,
2020. Accessed: 2020-08-20.

[3] B�������, D., S�����, N., ��� R��������, L. Deltashaper: Enabling unob-
servable censorship-resistant tcp tunneling over videoconferencing streams. In
Proceedings on Privacy Enhancing Technologies (Minneapolis, MN, USA, 2017),
vol. 2017(4), pp. 5–22.

[4] B�������, D., S�����, N., ��� R��������, L. E�ective detection of multimedia
protocol tunneling using machine learning. In Proceedings of the 27th USENIX
Security Symposium (Baltimore, MD, USA, 2018).

[5] B������, M., M�G���, D., N������, M., C������, E., ��� N������, K. The
secure real-time transport protocol (srtp). RFC 3711, March 2004.

[6] B���, K., H�����, G., Q����, X., ��� L����, D. Geneva: Evolving censorship
evasion strategies. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (London, UK, 2019), pp. 2199–2214.

[7] B�������, C., ��� G�������, I. Slitheen: Perfectly imitated decoy routing
through tra�c replacement. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (Vienna, Austria, 2016), pp. 1702–1714.

[8] B�������, C., ��� G�������, I. Secure asymmetry and deployability for decoy
routing systems. In Proceedings on Privacy Enhancing Technologies (Barcelona,
Spain, 2018), vol. 2018 (3), pp. 43–62.

[9] B�������, C., H���������, A., ��� S��������, V. Cloudtransport: Using cloud
storage for censorship-resistant networking. In Privacy Enhancing Technologies,
vol. 8555 of Lecture Notes in Computer Science. Springer International Publishing,
2014, pp. 1–20.

[10] C��� C����� � R������. Report says China internet �rms censored coronavirus
terms, criticism early in outbreak. https://www.reuters.com/article/us-health-
coronavirus-china-censorship/report-says-china-internet-�rms-censored-
coronavirus- terms-criticism-early- in-outbreak- idUSKBN20Q1VS, 2020.
Accessed: 2020-08-20.

[11] C�������, A., C���, T., C�����, M., D� C���������, E., F�������, A., ���
K�����, M. A. Censorship in the wild: Analyzing Internet �ltering in Syria. In
Proceedings of the 2014 Conference on Internet Measurement Conference (Vancouver,
BC, Canada, 2014), pp. 285–298.

[12] C�������, V., B�������, A., ��� K����, V. Anomaly detection: A survey. ACM
computing surveys (CSUR) 41, 3 (2009).

[13] D���������, R. Obfsproxy: the next step in the censorship arms race. https:
//blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race, 2012.
Accessed: 2020-08-20.

[14] D�������, D., ��� K��������, E. The Menlo report: Ethical principles guiding
information and communication technology research. In U.S.Department of
Homeland Security, Tech. Rep. (2012).

[15] D���, K. P., C����, S. E., R���������, T., ��� S��������, T. Protocol misidenti-
�cation made easy with format-transforming encryption. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security (Berlin,
Germany, 2013), pp. 61–72.

[16] D���, K. P., C����, S. E., ��� S��������, T. Marionette: A programmable
network-tra�c obfuscation system. In Proceedings of the 24th USENIX Conference
on Security Symposium (Washington, D.C., USA, 2015), pp. 367–382.

[17] E�����, D., J����, C., M�������, V., S������, W. T., T����, B., V�� W����,
M., ��� J������, A. Rebound: Decoy routing on asymmetric routes via error
messages. In Proceedings of the 2015 IEEE 40th Conference on Local Computer
Networks (LCN) (Clearwater Beach, FL, USA, 2015), pp. 91–99.

[18] E�����, R., F������, D., W�����, P., F�������, N., W�����, N., ��� P�����,
V. Examining how the great �rewall discovers hidden circumvention servers.
In Proceedings of the 2015 ACM Conference on Internet Measurement Conference
(Tokyo, Japan, 2015), pp. 445–458.

[19] F������, T. Roc graphs: Notes and practical considerations for researchers.
Machine Learning 31 (01 2004), 1–38.

[20] FF����. https://�mpeg.org, 2000. Accessed: 2020-08-20.
[21] F������, D. Threat modeling and circumvention of Internet censorship. PhD thesis,

EECS Department, University of California, Berkeley, 2017.
[22] F������, D., H�������, N., E���������, J., S����, E., B����, D., D���������, R.,

��� P�����, P. Evading censorship with browser-based proxies. In Proceedings of
the 12th International Conference on Privacy Enhancing Technologies (Vigo, Spain,
2012), pp. 239–258.

[23] F������, D., L��, C., H����, R., W������, P., ��� P�����, V. Blocking-resistant
communication through domain fronting. In Proceedings on Privacy Enhancing
Technologies 2015.2 (Philadelphia, PA, USA, 2015), pp. 46–64.

[24] F�����, S., D������, F., S����, W., M�D�����, A., V�����S����, B., H����,
R., K�����, A., K��������, M., R�������, D. G., S�������, S., B������, N., H���
������, A., ��� W������, E. An ISP-Scale Deployment of TapDance . In
Proceedings of the 7th USENIX Workshop on Free and Open Communications on
the Internet (Vancouver, BC, 2017).

[25] F�����, S., W������, J., T��, S. C., H��������, J. A., B������, N., ���W���
����, E. Conjure: Summoning proxies from unused address space. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom, 2019), p. 2215–2229.

[26] G������, G., A�����, A., ��� K����, T. Internet censorship in Thailand:
User practices and potential threats. In Proceedings of the 2nd IEEE European
Symposium on Security & Privacy (Paris, France, 2017).

[27] G�����, J., S��������, M., ��� H�����, N. Cover your acks: Pitfalls of covert
channel censorship circumvention. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security (Berlin, Germany, 2013),
pp. 361–372.

[28] G����� D��������� �W��RTC. Getting started with WebRTC. https://webrtc.o
rg/getting-started/overview, 2019. Accessed: 2020-08-20.

[29] H���, B., N���������, R., G���, P., ��� J������, R. Games without frontiers:
Investigating video games as a covert channel. In 2016 IEEE European Symposium
on Security and Privacy (Saarbrucken, Germany, 2016), IEEE, pp. 63–77.

[30] H��������, S. Network emulation with netem. 6th Linux and open source
conference for Australia and New Zealand - linux.conf.au (2005).

[31] H��������, J. C. As China Cracks Down on Coronavirus Coverage, Journalists
Fight Back. https://www.nytimes.com/2020/03/14/business/media/coronavirus-
china-journalists.html, 2020. Accessed: 2020-08-20.

[32] H���������������, C., L��, Z., ��� G������, E. Algorithmically bypassing
censorship on Sina Weibo with nondeterministic homophone substitutions. In
Proceedings of the 9th International Conference on Web and Social Media (Oxford,
UK, 2015), AAAI.

[33] H��������, J., ��� H���������, A. Cachebrowser: Bypassing chinese cen-
sorship without proxies using cached content. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (2015), pp. 70–83.

[34] H���������, A., B�������, C., ��� S��������, V. The parrot is dead: Ob-
serving unobservable network communications. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (San Francisco, CA, USA, 2013), pp. 65–79.

[35] H���������, A., N�����, G. T., C�����, M., ��� B������, N. Cirripede:
Circumvention infrastructure using router redirection with plausible deniability.
In Proceedings of the 18th ACM Conference on Computer and Communications
Security (Chicago, IL, USA, 2011), pp. 187–200.

[36] H���������, A., R����, T. J., B������, N., ��� S�����, A. C. I want my voice to
be heard: IP over Voice-over-IP for unobservable censorship circumvention. In
Proceedings of the 20th Annual Network & Distributed System Security Symposium
(San Diego, CA, USA, 2013).

[37] J�����, B., G������, T., G����, V., K������, F., ��� Z������, G. Performance
evaluation of webrtc-based video conferencing. ACM SIGMETRICS Performance
Evaluation Review 45, 2 (2018), 56–68.

[38] K�����, J., E�����, D., J������, A., J����, C., L����, G., M������, D., ���
S������, T. Decoy routing: Toward unblockable Internet communication. In
Proceedings of the USENIX Workshop on Free and Open Communications on the
Internet (San Francisco, CA, USA, 2011).

[39] K������, S., E����, T., S����, L., S������, C. M., M������, S. J., ��� G����
����, I. Sok: Making sense of censorship resistance systems. In Proceedings on
Privacy Enhancing Technologies (Darmstadt, Germany, 2016), vol. 2016, pp. 37–61.

[40] K������, S., J����, M., A�������, P. D., ��� P�����, V. Towards illuminating a
censorship monitor’s model to facilitate evasion. In Proceedings of the 3rd USENIX
Workshop on Free and Open Communications on the Internet (Washington, D.C.,
USA, 2013).

[41] K���, G., P��, J., ��� R������, M. E. Reverse-engineering censorship in china:
Randomized experimentation and participant observation. Science 345, 6199
(2014).

[42] K������, J., C�����N��������, M., N�, J. Q., S����, A., ��� C�������, J. R.
Every rose has its thorn: Censorship and surveillance on social video platforms
in China. In Proceedings of the 5th USENIX Workshop on Free and Open Communi-
cations on the Internet (Washington, D.C., USA, 2015).

[43] K������, J., R���, L., ��� C�����N��������, M. An analysis of automatic image
�ltering on wechat moments. In Proceedings of the 8th USENIX Workshop on Free
and Open Communications on the Internet (Baltimore, MD, USA, 2018).

[44] K����, K., H���, T., K������, D., ��� P�����, C. SkypeLine: Robust hidden data
transmission for VoIP. In Proceedings of the 2016 ASIA Computer and Communi-
cations Security (Xi’an, China, 2016).

[45] L�, F., R����������, A., K�����, A. M., N����, A. A., C�������, D., G���, P., ���
M������, A. lib• erate,(n) a library for exposing (tra�c-classi�cation) rules and
avoiding them e�ciently. In Proceedings of the Internet Measurement Conference
(London, UK, 2017), pp. 128–141.

[46] L�, S., S������, M., ��� H�����, N. Facet: Streaming over videoconferencing for
censorship circumvention. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society (Scottsdale, AZ, USA, 2014), pp. 163–172.

[47] L�����, S., ��� R�����, S. P. Real-time communications in the web: Issues,
achievements, and ongoing standardization e�orts. IEEE Internet Computing 16,
5 (2012), 68–73.

[48] M�G���, D., ��� R�������, E. Datagram transport layer security (dtls) extension
to establish keys for the secure real-time transport protocol (srtp). RFC 5764,
May 2010.



[49] M�K����, N., A����������, G., ��� K�������, I. Sizing router bu�ers (redux).
SIGCOMM Computer Communication Review 49, 5 (Nov. 2019), 69–74.

[50] M�P������, R., H���������, A., ��� S��������, V. CovertCast: Using live
streaming to evade internet censorship. In Proceedings on Privacy Enhancing
Technologies (Darmstadt, Germany, 2016), vol. 2016(3), pp. 212–225.

[51] M��������, H., L�, B., D����������, M., ��� G�������, I. Skypemorph:
Protocol obfuscation for Tor bridges. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (Raleigh, NC, USA, 2012), pp. 97–108.

[52] M������, M. B., D��, M., A����, S. I., ��� K����, N. When the Internet goes
down in Bangladesh. In Proceedings of the 20th ACM Conference on Computer-
Supported Cooperative Work and Social Computing (Portland, Oregon, USA, 2017).

[53] N���, M., ���H���������, A. Game of decoys: Optimal decoy routing through
game theory. In Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security (Vienna, Austria, 2016), pp. 1727–1738.

[54] N���, M., Z���������, H., ��� H���������, A. The waterfall of liberty: Decoy
routing circumvention that resists routing attacks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017), pp. 2037–
2052.

[55] N���, M., Z���������, H., ��� H���������, A. MassBrowser: Unblocking the
censored web for the masses, by the masses. In Proceedings of the 27C⌘ Annual
Network and Distributed System Security Symposium (San Diego, CA, USA, 2020).

[56] N�������� F��������. http://www.netfilter.org/, 1998. Accessed: 2020-08-20.
[57] N����, A. A., C��, S., W�������, Z., H����, N. P., R����������, A., C�������,

N., ��� G���, P. Iclab: A global, longitudinal internet censorship measurement
platform. In Proceedings of the 41st IEEE Symposium on Security and Privacy (San
Francisco, CA, USA, 2020).

[58] N�����, E., S��������, R. K., ��� S��, J. The akamai network: a platform for
high-performance internet applications. ACM SIGOPS Operating Systems Review
44, 3 (2010), 2–19.

[59] P���� L����� � B������� I������. Here are all the major US tech companies
blocked behind China’s ’Great Firewall’. https://www.businessinsider.com/major-
us-tech-companies-blocked-from-operating-in-china-2019-5, 2019. Accessed:
2020-08-20.

[60] R�����, R., R����, R. S., B�������, M., O����������, V., E��������, L.,
E��������, A., S�������, S., I����, M., ��� E�����, R. Decentralized control:
A case study of russia. In Proceedings of the 27C⌘ Network and Distributed Systems
Security Symposium (San Diego, CA, USA, 2020).

[61] RFC 1928 � SOCKS P������� V������ 5. https://tools.ietf .org/html/rfc1928.
Last Accessed: 2020-08-20.

[62] ����0� � G��H��. Proxychains-ng. https://github.com/rofl0r/proxychains-ng,
2011. Accessed: 2020-08-20.

[63] R��, R. R. Handbook of SDP for Multimedia Session Negotiations: SIP and WebRTC
IP Telephony. CRC Press, 2018.

[64] R���, L., K������, J., ��� C�����N��������, M. Censored Contagion: How
Information on the Coronavirus is Managed on Chinese Social Media. https:
//citizenlab.ca/2020/03/censored-contagion-how- information-on- the-
coronavirus-is-managed-on-chinese-social-media/, 2020. Accessed: 2020-08-20.

[65] S��������, M., G�����, J., T�������, C., ��� H�����, N. Routing around
decoys. In Proceedings of the ACM Conference on Computer and Communications
Security (Raleigh, North Carolina, USA, 2012), pp. 85–96.

[66] S������, S. R., ��� A��������, F. Improving meek with adversarial techniques.
In Proceedings of the 9th USENIX Workshop on Free and Open Communications on
the Internet (Santa Clara, CA, USA, 2019).

[67] S������, T., ��� H�������, C. End-to-End QoS Network Design: Quality of Service
in LANs, WANs, and VPNs. Cisco Press, 2004.

[68] T���� K���� Y���� � G��H��. Analyzing-Web-Censorship-Mechanisms-in-
India. https://github.com/tarun14110/Analyzing-Web-Censorship-Mechanisms-

in-India/blob/master/possibly_blocked_websites.txt, 2018. Accessed: 2020-08-20.
[69] T�������, M. C., A����, S., A��������, ��� P�����, V. Sok: Towards ground-

ing censorship circumvention in empiricism. In Proceedings of the IEEE Symposium
on Security and Privacy (2016), pp. 914–933.

[70] �4�2��������. https://github.com/umlaeute/v4l2loopback, 2005. Last Accessed:
2020-08-20.

[71] V�����, A., ��� P�����, G. Content delivery networks: status and trends. IEEE
Internet Computing 7, 6 (2003), 68–74.

[72] V������ B�������. IP Latency Statistics. https://enterprise.verizon.com/terms/l
atency/, 2015. Accessed: 2020-08-20.

[73] W���, L., D���, K. P., A�����, A., R���������, T., ��� S��������, T. Seeing
through network-protocol obfuscation. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (Denver, CO, USA, 2015),
pp. 57–69.

[74] W���, Q., G���, X., N�����, G. T., H���������, A., ��� B������, N. Censor-
spoofer: Asymmetric communication using IP spoo�ng for censorship-resistant
web browsing. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (Raleigh, NC, USA, 2012), pp. 121–132.

[75] W���, Z., C��, Y., Q���, Z., S���, C., ��� K������������, S. V. Your state is
not mine: a closer look at evading stateful internet censorship. In Proceedings of
the Internet Measurement Conference (London, UK, 2017), pp. 114–127.

[76] W�������, Z., W���, J., Y����������, V., B������������, L., C�����, S., W���,
F., ��� B����, D. Stegotorus: A camou�age proxy for the Tor anonymity system.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (Raleigh, NC, USA, 2012), pp. 109–120.

[77] W�����, C. V., C����, S. E., ��� M������, F. Tra�c morphing: An e�cient
defense against statistical tra�c analysis. In Proceedings of the 16th Network and
Distributed Security Symposium (San Diego, CA, USA, 2009), pp. 237–250.

[78] W������, E., S������, C. M., ��� H��������, J. A. Tapdance: End-to-middle
anticensorship without �ow blocking. In Proceedings of the 23rd USENIX Security
Symposium (San Diego, CA, 2014), pp. 159–174.

[79] W������, E., W������, S., G�������, I., ��� H��������, J. A. Telex: An-
ticensorship in the network infrastructure. In Proceedings of the 20th USENIX
Security Symposium (San Francisco, CA, USA, 2011).

[80] X����, R., ��� K������, J. An e�cient method to determine which combination
of keywords triggered automatic �ltering of a message. In Proceedings of the 9th
USENIX Workshop on Free and Open Communications on the Internet (Santa Clara,
CA, USA, 2019).

[81] X�, X., M��, Z. M., ��� H��������, J. A. Internet censorship in china: Where
does the �ltering occur? In Proceedings of the 12th International Conference on
Passive and Active Network Measurement (Vienna, Austria, 2011), pp. 133–142.

[82] Y����, T. K., S����, A., G�����, D., S�����, P. K., ��� C����������, S. Where
the light gets in: Analyzing web censorship mechanisms in India. In Proceedings
of the Internet Measurement Conference (Boston, MA, USA, 2018).

[83] Y�������� I���� � NTT C�������������. A Study of WebRTC Security.
https://webrtc-security.github.io/, 2015. Accessed: 2020-08-20.

[84] Z�����, S., A�������, G., ��� B�����, P. A survey of covert channels and
countermeasures in computer network protocols. IEEE Communications Surveys
& Tutorials 9, 3 (2007), 44–57.

[85] �����������. Register of Internet Addresses �ltered in Russian Federation.
https://github.com/zapret-info/z-i, 2020. Accessed: 2020-08-20.

[86] Z���, W., H���������, A., C�����, M., ��� B������, N. Sweet: Serving the
web by exploiting email tunnels. In Proceedings of the 6th Workshop on Hot Topics
in Privacy Enhancing Technologies (Bloomington, IN, USA, 2013).

[87] Z���������, H., ��� H���������, A. Practical censorship evasion leveraging
content delivery networks. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria, 2016), pp. 1715–1726.


