
Generating Models of a Matched Formula With a Polynomial Delay
(Extended Abstract)∗

Petr Savický
Institute of Computer Science

The Czech Academy of Sciences
Czech Republic

savicky@cs.cas.cz

Petr Kučera
Department of Theoretical Computer Science

and Mathematical Logic
Faculty of Mathematics and Physics
Charles University, Czech Republic

kucerap@ktiml.mff.cuni.cz

Abstract
A matched formula is a CNF formula whose inci-
dence graph admits a matching which matches a
distinct variable to every clause. Such a formula
is always satisfiable. Matched formulas are used,
for example, in the area of parameterized complex-
ity. We prove that the problem of counting the
number of the models (satisfying assignments) of
a matched formula is #P-complete. On the other
hand, we define a class of formulas generalizing
the matched formulas and prove that for a formula
in this class one can choose in polynomial time a
variable suitable for splitting the tree for the search
of the models of the formula. As a consequence,
the models of a formula from this class, in partic-
ular of any matched formula, can be generated se-
quentially with a delay polynomial in the size of the
input. On the other hand, we prove that this task
cannot be performed efficiently for linearly satisfi-
able formulas, which is a generalization of matched
formulas containing the class considered above.

1 Introduction
In this paper, we consider the problem of counting the models
(satisfying assignments) and generating subsets of the mod-
els of a given formula in conjunctive normal form (CNF). It
is well known that #SAT, the problem of counting the models
of a general CNF, is #P-complete. The problem of enumerat-
ing the models of a general CNF formula is clearly also hard,
because checking whether there is at least one satisfying as-
signment of the formula, the SAT problem, is NP-complete.

In this paper, we mostly deal with the problem of enu-
merating models of a formula. This problem is important
in areas of research and applications, such as unbounded
model checking [Kang and Park, 2005; McMillan, 2002] or
data mining [Coquery et al., 2012]. The success of mod-
ern SAT solvers inspired design of model counting and enu-
meration algorithms as well, see e.g. [Jabbour et al., 2014;
Morgado and Marques-Silva, 2005]. In addition to the basic
enumeration problem in which we do not require the models

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Savický and Kučera, 2016].

to be generated in any prescribed order, other versions have
been considered, e.g. generating models by non-decreasing
weight [Creignou et al., 2011].

Another line of research concentrated on studying special
classes of boolean formulas for which an enumeration algo-
rithm with guaranteed complexity could be devised. One can
easily find an example of a formula for which the set of mod-
els is exponentially larger than the size of the formula itself.
In such a case it is reasonable to include the size of the out-
put into the bound on the running time of an enumeration
algorithm. More specifically we say that an algorithm which
enumerates models of a formula runs in output polynomial
time if its running time can be bounded by a polynomial in
two variables, the size of the input (i.e. the input formula ϕ)
and the size of the output (i.e. the number of models of ϕ).
In this paper, we consider more restrictive setting as follows.
The algorithm receives as input a formula and generates a se-
quence of all its models in such a way that the time needed
for generating the first model and the time between generating
any two consecutive models in the sequence is polynomial in
the length of the formula. This type of complexity bound is
called a polynomial delay. It should be clear that if we can
enumerate models of a formula with a polynomial delay, then
we can construct an output polynomial algorithm for this task
as well. On the other hand, it can be much harder to get an
enumeration algorithm with polynomial delay than an output
polynomial algorithm. For an overview of various notions of
enumeration complexity see [Johnson et al., 1988].

There are special classes of formulas for which polyno-
mial delay enumeration algorithms have been described, this
includes 2-CNF formulas, Horn formulas, generalized satis-
fiability problems and others, see e.g. [Aceto et al., 2013;
Creignou and Hébrard, 1997; Dechter and Itai, 1992; Kav-
vadias et al., 2000]. In this paper, we describe another class
of formulas for which a polynomial delay enumeration algo-
rithm based on backtrack-free search can be described. On
the contrary to such algorithms known for 2-CNF or Horn
formulas, the splitting variable in each step cannot be cho-
sen arbitrarily, however, the existence of a suitable variable is
guaranteed and it can be efficiently identified.

In particular we consider the class of matched formulas in-
troduced by [Franco and Van Gelder, 2003]. Given a CNF
formula ϕ, we consider its incidence graph I(ϕ) defined as
follows. I(ϕ) is a bipartite graph with one part consisting

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5055

of clauses of ϕ and the other part containing the variables
of ϕ. An edge {x,C} for a variable x and a clause C is in
I(ϕ) if x or x appears in C. It was observed by Aharoni and
Linial [1986] and Tovey [1984] that if I(ϕ) admits a matching
(i.e. a set of pairwise disjoint edges) of sizem (wherem is the
number of clauses in ϕ), then ϕ is satisfiable. Later the for-
mulas satisfying this condition were called matched formulas
by Franco and Van Gelder. Since a matching of maximum
size in a bipartite graph can be found in polynomial time, one
can check efficiently whether a given formula is matched.

Given a general formula ϕ, we can measure how far it is
from being matched by considering its maximum deficiency
δ∗(ϕ), the number of clauses which remain unmatched in a
maximum matching of I(ϕ). A formula ϕ is thus matched iff
δ∗(ϕ) = 0. A weaker notion of deficiency δ(ϕ) = m − n,
where m is the number of clauses and n the number of the
variables in ϕ, is also often being considered.

Matched formulas play a significant role in the theory of
satisfiability solving. Since their introduction matched for-
mulas have been considered as a base class in parameterized
algorithms for satisfiability, see e.g. the book of [Flum and
Grohe, 2006] for an overview of parameterized algorithms
theory. In particular, [Fleischner et al., 2002] show that satis-
fiability of formulas with maximum deficiency bounded by
a constant k can be decided in time O(‖ϕ‖nO(k)) where
‖ϕ‖ is the length of the input formula ϕ and n denotes
the number of its variables. This result was later improved
by [Szeider, 2003] to an algorithm for satisfiability param-
eterized with maximum deficiency of a formula with com-
plexity O(2kn3). Parameterization based on backdoor sets
with respect to matched formulas were considered by Szei-
der [2007].

Since all matched formulas are trivially satisfiable, we ask
a stronger question: How hard is it to count or enumerate the
models of a matched formula? We prove that counting the
models of a matched formula is a #P-complete problem, and
turn our attention to generating models of a matched formula.
The main result of the paper is an algorithm which generates
models of a matched formula with a polynomial delay. The
algorithm starts by constructing a splitting tree whose nodes
correspond to either a matched or an unsatisfiable formula.
In some cases this strategy is not sufficient since some nodes
of the tree cannot be split in this way. We prove that such a
node corresponds to a formula which can be satisfied by iter-
ated elimination of pure literals. Formulas with this property
will be called pure literal satisfiable. These formulas were
studied by [Kullmann, 2000] as a subclass of linearly satis-
fiable formulas. If a node with a pure literal satisfiable for-
mula is reached, the algorithm switches to a simpler strategy.
We prove that the models of a pure literal satisfiable formula
can be generated with a delay linear in the length of the for-
mula. On the other hand, the #SAT problem for pure literal
satisfiable formulas is #P-complete, because this problem is
#P-complete for monotone 2CNFs [Valiant, 1979], which are
pure literal satisfiable.

Several generalizations of matched formulas have also
been considered in the literature. Kullmann [2000] gener-
alized matched formulas into the class of linearly satisfi-
able formulas. Autarkies based on matchings were studied

by Kullmann [2003]. Szeider [2005] considered another gen-
eralization of matched formulas, the classes of biclique sat-
isfiable and var-satisfiable formulas. Unfortunately, for both
biclique satisfiable and var-satisfiable formulas it is hard to
check if a formula falls into one of these classes.

We show in the paper that the algorithm for efficient gen-
erating models of a matched formula does not transfer to the
class of linearly satisfiable formulas by demonstrating that it
is not possible to generate models of a linearly satisfiable for-
mula with a polynomial delay unless P=NP.

2 Definitions
In this section, we give the necessary definitions and summa-
rize the results we use in the paper.

A Boolean function on n variables is a mapping f :
{0, 1}n → {0, 1}. A literal is either a variable (e.g. x),
called positive literal, or its negation (e.g. x), called nega-
tive literal. A clause is a disjunction of a set of literals, which
contains at most one literal for each variable. Formula ϕ is in
conjunctive normal form (CNF) or, equivalently, ϕ is a CNF
formula, if it is a conjuction of clauses. We shall exclusively
work with CNF formulas, in particular by “formula” we al-
ways mean a “CNF formula”. The size of a formula ϕ is
the number of the clauses in ϕ and will be denoted as |ϕ|.
The length of a formula ϕ is the total number of occurrences
of literals in ϕ, i.e. the sum of the sizes of the clauses in ϕ,
and will be denoted as ‖ϕ‖. Given a variable x and a value
a ∈ {0, 1}, ϕ[x = a] denotes a formula originating from
ϕ by substituting x with value a and the obvious simplifi-
cations consisting in removing falsified literals and satisfied
clauses. Given a partial assignment x1 = a1, . . . , xk = ak,
then ϕ[x1 = a1, . . . , xk = ak] denotes the formula originat-
ing from ϕ by substituting the variables according to the spec-
ified partial assignment and the obvious simplifications. Sim-
ilarly, if l1, . . . , lk is a sequence of literals, then ϕ[l1, . . . , lk]
denotes the formula obtained from ϕ using the partial assign-
ment defined so that the literals l1, . . . , lk are satisfied. We
say that a literal l is pure in a CNF formula, if it occurs in
the formula and the negated literal l does not. A literal is
irrelevant in a formula, if neither the literal nor its negation
occurs in the formula. A variable is pure, if it appears only
positively, or only negatively in ϕ, i.e. it appears in a literal
which is pure in ϕ.

Let ϕ be a formula defining a Boolean function f on n
variables. An assignment of values v ∈ {0, 1}n is a model of
ϕ (also a satisfying assignment of ϕ), if it satisfies f , i.e. if
f(v) = 1. The set of models of ϕ is denoted as T (ϕ). The
models in T (ϕ) are defined on the variables which have an
occurrence in ϕ. A partial assignment assigns values only to
a subset of the variables.

Note that an empty clause does not admit a satisfying as-
signment and an empty CNF is satisfied by any assignment.

3 Efficient Splitting Tree Algorithm
The idea of the algorithm is to construct a decision tree for
the function represented by a given satisfiable CNF, such that
every subtree larger than a single leaf contains a 1-leaf. Con-
sider a decision tree of a function represented by a CNF ϕ.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5056

Each leaf node in this tree labeled with 1 represents a set of
models of ϕ, more precisely, a leaf in depth d represents 2n−d
models of ϕ. Moreover, different leaves of the tree represent
disjoint sets of models. Given a decision tree for the func-
tion represented by ϕ, we can, by traversing it, generate all
models of ϕ in time proportional to its size. This process
leads to a large delay between generating successive models,
if the tree contains large subtrees with only 0-leaves. The fol-
lowing condition on a class of formulas describes a situation
when this can be avoided.
Definition 3.1. Let U be a class of formulas, let ϕ ∈ U and
let x be a variable with an occurrence in ϕ. We say that x is a
splitting variable for ϕ relative to U , if for every a ∈ {0, 1},
such that ϕ[x = a] is satisfiable, we have ϕ[x = a] ∈ U . A
class of formulas U has the splitting property, if every for-
mula in U containing a variable contains a splitting variable
relative to U .

We shall associate a splitting problem with a class of for-
mulas U having splitting property.
Definition 3.2. Let U be a class of formulas with the splitting
property. The splitting problem relative to U is the following
problem: Given a formula ϕ ∈ U , find a splitting variable
for ϕ relative to U and the results of satisfiability tests for the
formulas ϕ[x = 0] and ϕ[x = 1].

Note that the complexity of the splitting problem relative
to U is also an upper bound on the time of a satisfiability test
for formulas in U . This is because a formula ϕ is satisfiable,
if and only if for any variable x we have that at least one
of the formulas ϕ[x = 0] and ϕ[x = 1] is satisfiable. The
result of these satisfiability checks for a splitting variable x is
a required part of a solution to the splitting problem.
Theorem 3.3. If a class of formulas U has the splitting prop-
erty and the splitting problem relative to U can be solved in
time c(ϕ), where c(ϕ) ≥ ‖ϕ‖ for each formula ϕ ∈ U , then
the models of a formula ϕ ∈ U on n variables can be gener-
ated with a delay O(n · c(ϕ)).
Remark 3.4. Ifϕ contains a unit clause andU is closed under
unit propagation, then a variable x contained in a unit clause
is a splitting variable which can be identified efficiently. The
reason is that if ϕ is known to be satisfiable and one of the
formulas ϕ[x = a] contains an empty clause, then the other
is satisfiable.
Remark 3.5. It is not hard to observe that if a classU satisfies
that

1. the satisfiability of formulas in U can be tested in poly-
nomial time, and

2. U is closed under partial assignments,
then the splitting problem relative to U has polynomial com-
plexity. All classes of generalized satisfiability problem de-
scribed by [Creignou and Hébrard, 1997] have this property.
In addition to other classes, consider, for instance, Horn for-
mulas, SLUR formulas, 2CNFs, q-Horn formulas, etc. As a
corollary of Theorem 3.3, it is possible to generate the models
of formulas in these classes with a polynomial delay.

The main result of this paper is that the splitting problem
relative to a slight generalization of matched formulas also

has polynomial complexity although the class of matched for-
mulas is not closed under partial assignments.

4 Pure Literal Satisfiable Formulas
Before considering matched formulas, let us look at the class
of formulas which are satisfiable by iterated elimination of
pure literals which we call pure literal satisfiable.

Definition 4.1. A pure literal sequence for a formula ϕ is a
consistent sequence of literals (l1, . . . , lk), such that for every
i = 1, . . . , k, the literal li is either pure or irrelevant in the
formula ϕ[l1, . . . , li−1].

If L is a pure literal sequence for ϕ, the formula ϕ[L] will
be called the reduced formula corresponding to ϕ and L. If
ϕ[L] does not contain a pure literal, L will be called a maxi-
mal pure literal sequence for ϕ.

Definition 4.2. A formula ϕ is pure literal satisfiable, if there
is a pure literal sequence L for ϕ, such that the reduced for-
mula ϕ[L] is empty or, equivalently, the literals in L corre-
spond to a satisfying assignment of ϕ.

A maximal pure literal sequence for a CNF formula can be
found in polynomial time by a simple greedy algorithm.

Lemma 4.3. A maximal pure literal sequence L for a CNF
formula ϕ can be constructed in time O(‖ϕ‖).

It turns out that ϕ[L] is the same for every maximal pure
literal sequence L.

Lemma 4.4. Let ϕ be a CNF formula and let L be a maximal
pure literal sequence for ϕ.

1. The formula ϕ[L] is uniquely determined by ϕ.

2. The formula ϕ is pure literal satisfiable, if and only if
ϕ[L] is empty.

Let us note that pure literal satisfiable formulas are not
closed under partial assignments. Therefore pure literal sat-
isfiable formulas do not satisfy the second property required
in Remark 3.5 and we have to put more effort into showing
that pure literal satisfiable formulas have the splitting prop-
erty and that the splitting problem relative to pure literal sat-
isfiable formulas has polynomial complexity.

If we take the literals of a maximal pure literal sequence for
a formula ϕ in reversed order, we get the order of variables
suitable for selecting a splitting variable. It follows that we
can solve the splitting problem for a pure literal satisfiable
formula in polynomial time.

Theorem 4.5. The splitting problem relative to pure literal
satisfiable formulas can be solved in time O(‖ϕ‖) where ϕ
is the input pure literal satisfiable formula. Moreover, the set
T (ϕ) of the models of a pure literal satisfiable formula ϕ can
be generated with a delay of O(‖ϕ‖).

5 Matched Formulas
In this section we concentrate on matched formulas. In par-
ticular we show that the problem of determining the number
of models of a matched formula ϕ, i.e. the size |T (ϕ)|, is as
hard as a general #SAT problem.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5057

Theorem 5.1. The problem of determining |T (ϕ)| given a
matched formula ϕ is #P-complete.

Our goal is to show that we can generate the models of
a matched formula with a polynomial delay. Theorem 3.3
cannot be used for this directly, since the class of the matched
formulas does not have the splitting property. For example,
the monotone formula (x∨y)(x∨z)(y∨z) is matched, but has
no splitting variable relative to the class of matched formulas.
We thus have to consider a richer class of formulas. The class
we consider generalizes matched and pure literal satisfiable
formulas as follows.
Definition 5.2. A formula ϕ is called pure literal matched, if
ϕ[L] is matched for a maximal pure literal sequence L.

Elimination of a pure literal preserves the property of being
matched. Hence, a matched formula is pure literal matched.
Clearly, every pure literal satisfiable formula is pure literal
matched, since its reduced formula is empty and, hence,
matched.

The basic idea of an efficient splitting algorithm for the
pure literal matched formulas is presented in the following
theorem.
Theorem 5.3. Let ϕ be a matched formula. If for every vari-
able x, which has an occurence in ϕ, there is a ∈ {0, 1}, such
that ϕ[x = a] is not matched, then ϕ is pure literal satisfiable.

Assume that ϕ is a pure literal matched formula. If ϕ is
actually pure literal satisfiable, then the models of ϕ can be
generated with polynomial delay based on Theorem 4.5. Oth-
erwise consider a maximal pure literal sequence L and let
ψ = ϕ[L], which is, by the assumption, a matched formula.
Since L is maximal, ψ does not contain a pure literal and
since ϕ is not pure literal satisfiable, ψ is nonempty. Hence,
by Theorem 5.3, there is a variable x of ψ, such that ψ[x = 0]
and ψ[x = 1] are both matched. Such x is a splitting variable
for ϕ relative to the class of pure literal matched formulas be-
cause L can be used as a pure literal sequence for ϕ[x = a]
for any value a ∈ {0, 1}. We thus get the following theorem.
Theorem 5.4. The splitting problem relative to pure literal
matched formulas can be solved in time O(n · ‖ϕ‖) where ϕ
is the input formula on n variables.

Similarly as the class of matched formulas, also the class
of pure literal matched formulas is closed under unit propa-
gation and, hence, Remark 3.4 applies to these classes.

As a corollary of Theorem 5.4 and the general bound from
Theorem 3.3, we get the main result of the paper.
Corollary 5.5. Models of a pure literal matched formula ϕ,
in particular of any matched formula ϕ, on n variables can
be generated with a delay O(n2 · ‖ϕ‖).

6 Linearly Satisfiable Formulas
In this section we consider the class of linearly satisfiable for-
mulas. By results of [Kullmann, 2000], this class generalizes
both the matched formulas and the pure literal satisfiable for-
mulas and, by combining the proofs, also the class of pure
literal matched formulas. In this section, we show that it is
not possible to generate models of linearly satisfiable formu-
las with a polynomial delay unless P=NP.

Theorem 6.1. It is an NP-complete problem to determine,
whether a general linearly satisfiable formula has at least 2
models.

Moreover the following is an example of a linearly satisfi-
able formula which has no splitting variable.
Example 6.2. Denote E = {a ∈ {0, 1}4 | 2 ≤ a1 + a2 +
a3 + a4 ≤ 3} and for every Boolean variable x, let x1 = x
and x0 = x. The formula

β(x1, x2, x3, x4) =
∧
a∈E

4∨
i=1

xai
i

is linearly satisfiable, but has no splitting variable relative to
the class of linearly satisfiable formulas.

7 Conclusion and Directions for Further
Research

In the paper, we have shown that it is possible to generate
the models of a matched formula ϕ on n variables with delay
O(n2 · ‖ϕ‖). As a byproduct we have shown that the models
of a pure literal satisfiable formula ϕ (i.e. a formula satisfiable
by iterated pure literal elimination) can be generated with de-
lay O(‖ϕ‖). We have also shown that this result cannot be
generalized for the class of linearly satisfiable formulas since
it is not possible to generate models of linearly satisfiable for-
mulas with a polynomial delay unless P=NP.

The algorithms described in the paper for the cases of pure
literal satisfiable and pure literal matched formulas can be
used in a general algorithm for model enumeration which
is based on splitting tree. This, in turn, is any DPLL based
enumeration algorithm. To this end, a similar approach to
the one described by Stefan Szeider [2003] can be used. To-
gether with a formula ϕ we would keep a maximum match-
ing M of I(ϕ). This maximum matching can then be main-
tained through the reduction and assignment steps performed
in the enumeration algorithm. Once the algorithm arrives at
a matched formula, it can select splitting variables in the way
we have described in this paper which has a guaranteed poly-
nomial delay.

Recall that Szeider [2003] introduced an algorithm for sat-
isfiability parameterized with maximum deficiency of a for-
mula. This algorithm is based on a DPLL search procedure
where between decision steps nontrivial reductions are per-
formed. It would be interesting to know whether the algo-
rithm described by Szeider [2003] could be modified into an
algorithm for generating models of a general CNF formula so
that the delay is parameterized with maximum deficiency.

Acknowledgments
Petr Savický was supported by CE-ITI and GAČR under the
grant number GBP202/12/G061 and by the institutional re-
search plan RVO:67985807. Petr Kučera was supported by
the Czech Science Foundation (grant GA15-15511S).

References
[Aceto et al., 2013] Luca Aceto, Dario Monica, Anna

Ingólfsdóttir, Angelo Montanari, and Guido Sciavicco.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5058

Logic for Programming, Artificial Intelligence, and Rea-
soning: 19th International Conference, LPAR-19, Stellen-
bosch, South Africa, December 14-19, 2013. Proceedings,
chapter An Algorithm for Enumerating Maximal Models
of Horn Theories with an Application to Modal Logics,
pages 1–17. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[Aharoni and Linial, 1986] Ron Aharoni and Nathan Linial.
Minimal non-two-colorable hypergraphs and minimal un-
satisfiable formulas. Journal of Combinatorial Theory, Se-
ries A, 43(2):196 – 204, 1986.

[Coquery et al., 2012] Emmanuel Coquery, Said Jabbour,
Lakhdar Sais, Yakoub Salhi, et al. A SAT-based approach
for discovering frequent, closed and maximal patterns in a
sequence. In Proceedings of ECAI, 2012.

[Creignou and Hébrard, 1997] Nadia Creignou and J-J
Hébrard. On generating all solutions of generalized satis-
fiability problems. Informatique théorique et applications,
31(6):499–511, 1997.

[Creignou et al., 2011] Nadia Creignou, Frédéric Olive, and
Johannes Schmidt. Theory and Applications of Satisfia-
bility Testing - SAT 2011: 14th International Conference,
SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Pro-
ceedings, chapter Enumerating All Solutions of a Boolean
CSP by Non-decreasing Weight, pages 120–133. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Dechter and Itai, 1992] Rina Dechter and Alon Itai. Finding
all solutions if you can find one. In AAAI-92 Workshop on
Tractable Reasoning, pages 35–39, 1992.

[Fleischner et al., 2002] Herbert Fleischner, Oliver Kull-
mann, and Stefan Szeider. Polynomial-time recognition of
minimal unsatisfiable formulas with fixed clause-variable
difference. Theoretical Computer Science, 289(1):503 –
516, 2002.

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Pa-
rameterized complexity theory, volume 3 of Texts in The-
oretical Computer Science. An EATCS Series. Springer-
Verlag Berlin Heidelberg, 1st edition, 2006.

[Franco and Van Gelder, 2003] John Franco and Allen
Van Gelder. A perspective on certain polynomial-time
solvable classes of satisfiability. Discrete Appl. Math.,
125(2-3):177–214, 2003.

[Jabbour et al., 2014] Said Jabbour, Jerry Lonlac, Lakhdar
Sais, and Yakoub Salhi. Extending modern SAT solvers
for models enumeration. In IEEE 15th International Con-
ference on Information Reuse and Integration (IRI), 2014,
pages 803–810. IEEE, 2014.

[Johnson et al., 1988] David S. Johnson, Mihalis Yan-
nakakis, and Christos H. Papadimitriou. On generating all
maximal independent sets. Information Processing Let-
ters, 27(3):119 – 123, 1988.

[Kang and Park, 2005] Hyeong-Ju Kang and In-Cheol
Park. SAT-based unbounded symbolic model check-
ing. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 24(2):129–140, Feb
2005.

[Kavvadias et al., 2000] Dimitris J. Kavvadias, Martha
Sideri, and Elias C. Stavropoulos. Generating all maximal
models of a Boolean expression. Information Processing
Letters, 74(3–4):157–162, 2000.

[Kullmann, 2000] Oliver Kullmann. Investigations on autark
assignments. Discrete Applied Mathematics, 107(1–3):99
– 137, 2000.

[Kullmann, 2003] Oliver Kullmann. Lean clause-sets: gen-
eralizations of minimally unsatisfiable clause-sets. Dis-
crete Applied Mathematics, 130(2):209 – 249, 2003. The
Renesse Issue on Satisfiability.

[McMillan, 2002] Ken L. McMillan. Computer Aided Verifi-
cation: 14th International Conference, CAV 2002 Copen-
hagen, Denmark, July 27–31, 2002 Proceedings, chapter
Applying SAT Methods in Unbounded Symbolic Model
Checking, pages 250–264. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[Morgado and Marques-Silva, 2005] A Morgado and
J Marques-Silva. Algorithms for propositional model
enumeration and counting. Technical report, Instituto de
Engenharia de Sistemas e Computadores, Investigação e
Desenvolvimento, Lisboa, February 2005.

[Savický and Kučera, 2016] Petr Savický and Petr Kučera.
Generating models of a matched formula with a polyno-
mial delay. Journal of Artificial Intelligence Research,
56:379–402, 2016.

[Szeider, 2003] Stefan Szeider. Minimal unsatisfiable for-
mulas with bounded clause-variable difference are fixed-
parameter tractable. In Tandy Warnow and Binhai Zhu, ed-
itors, Computing and Combinatorics, volume 2697 of Lec-
ture Notes in Computer Science, pages 548–558. Springer
Berlin Heidelberg, 2003.

[Szeider, 2005] Stefan Szeider. Generalizations of matched
CNF formulas. Annals of Mathematics and Artificial In-
telligence, 43(1-4):223–238, 2005.

[Szeider, 2007] Stefan Szeider. Matched formulas and back-
door sets. In João Marques-Silva and Karem A. Sakallah,
editors, Theory and Applications of Satisfiability Testing
– SAT 2007, volume 4501 of Lecture Notes in Computer
Science, pages 94–99. Springer Berlin Heidelberg, 2007.

[Tovey, 1984] Craig A. Tovey. A simplified NP-complete
satisfiability problem. Discrete Applied Mathematics,
8(1):85 – 89, 1984.

[Valiant, 1979] L.G. Valiant. The complexity of computing
the permanent. Theoretical Computer Science, 8(2):189 –
201, 1979.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5059

