
MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Mathematical Structure of Syntactic Merge

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MIT PRESS BOOK SERIES

Linguistic Inquiry Monographs
Samuel Jay Keyser

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Mathematical Structure of Syntactic Merge

An Algebraic Model for Generative Linguistics

Matilde Marcolli, Noam Chomsky, Robert C. Berwick

The MIT Press
Cambridge, Massachusetts
London, England

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Copyright text here.

ISBN etc.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Contents

List of Figures xiii
List of Tables xv

0 Minimalism and Merge: Introduction 1

0.1 Why this monograph? 2
0.2 Key ideas 5
0.3 Summary of main linguistic results 11
0.4 Acknowledgment 16

1 The Mathematical Structure of Syntactic Merge 17

1.1 A mathematical model of syntactic Merge 17
1.1.1 Notational conventions 17
1.1.2 Syntactic objects and the Merge magma 20
1.1.3 On the use of the tree notation 21

1.1.3.1 Planarity and lists versus sets 22
1.1.3.2 Algebra and operations on trees 23

1.2 Workspaces: product and coproduct 25
1.2.1 Combinatorial Hopf algebras and workspaces 34

1.3 Action of Merge on Workspaces 38
1.3.1 Matching terms 38
1.3.2 Grafting 39
1.3.3 The Merge operators 40
1.3.4 Examples 44

1.4 Forms of Merge 46
1.4.1 Different forms of Merge 46
1.4.2 External Merge 47
1.4.3 Internal Merge 47

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

vi Contents

1.4.3.1 Is Internal Merge composite? 48
1.4.4 Internal Merge: an example 50
1.4.5 Sideward Merge (2b) and (3b) 51
1.4.6 Countercyclic/Sideward Merge (case 3a) 52

1.5 Minimal Search 53
1.5.1 The Minimality of Minimal Search 54
1.5.2 Weighted terms in the coproduct 56
1.5.3 Minimal Search: Internal and External Merge 57

1.6 Other linguistic properties 58
1.6.1 Minimal Yield and Complexity 59
1.6.2 Cases of Merge and size counting 62
1.6.3 No Complexity Loss constraint 69

1.7 Countercyclicity and extensions of Merge? 70
1.7.1 Premise: Lie algebras and Hopf algebras 71
1.7.2 Insertion Lie algebra 74
1.7.3 Insertions Lie algebra of workspaces 75

1.8 Cancellation of copies 78
1.9 Merge is Markovian 82
1.10 The core computational structure of Merge 88
1.11 Constraints on Merge: the n-arity question 91

1.11.1 The n-ary Merge magma 92
1.11.2 Undergeneration 94
1.11.3 The structure of a hypothetical n-ary Merge 96
1.11.4 Overgeneration 98

1.12 A model of externalization 101
1.12.1 Externalization: a preliminary discussion 102
1.12.2 Externalization as correspondence 104
1.12.3 Correspondences 107
1.12.4 Magma and non-associative algebra 109
1.12.5 Merge representation 110
1.12.6 Externalization correspondence and algebras 113
1.12.7 The role of syntactic parameters 115

1.13 Externalization and planarization 118
1.13.1 Commutative and non-commutative magmas 119
1.13.2 Planarization versus Externalization 121
1.13.3 Abstract head functions 124

1.14 Phase Theory 127

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Contents vii

1.15 Labeling algorithm 134
1.16 Form Set 137

1.16.1 FormSet and workspaces 140
1.16.2 FormSet is not an n-ary Merge 141

1.17 Merge and fundamental combinatorial recursions in
physics 142
1.17.1 The recursive construction of Dyson–Schwinger

equations 144

2 Minimalism Old and New: a Hopf Algebra Comparison 147

2.1 Introduction 147
2.2 Old Minimalism and the Loday–Ronco Hopf algebra 150

2.2.1 Preliminaries on Hopf algebras of rooted trees 152
2.2.2 Binary rooted trees and admissible cuts 153
2.2.3 The Loday–Ronco Hopf algebra of binary

rooted trees 153
2.2.4 Graphical form of coproduct and product 155
2.2.5 Hopf algebra comparisons 157
2.2.6 Labeled trees 159
2.2.7 Old formulation of External and Internal Merge 160
2.2.8 Old form of External Merge 162
2.2.9 Old version of Internal Merge 162
2.2.10 Old version of Internal Merge and the coalgebra

structure 164
2.2.11 Old version of Internal Merge and algebraic

structure 165
2.2.12 Iterated Internal Merge 167
2.2.13 Feature checking complexity 169
2.2.14 Coideals, recursive structures, and symmetries 172
2.2.15 Partial operated algebra 173
2.2.16 Old version of External Merge and Hopf algebra

structure 174
2.3 Summary comparison of Old and New Minimalism 176

2.3.1 The core computational structure 177
2.3.1.1 Core process of New Minimalism 177
2.3.1.2 Core process of Old Minimalism 177

2.3.2 Relation to combinatorial Dyson-Schwinger
(DS) equations 178

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

viii Contents

2.3.2.1 DS equations and New Minimalism 178
2.3.2.2 DS equations and old Minimalism 179

2.3.3 Combinatorial objects 180
2.3.3.1 Syntactic objects and workspaces in

the New Minimalism 180
2.3.3.2 Labeled planar trees 182

2.3.4 Action of Merge 182
2.3.4.1 Action of Merge in the new Minimalism 182
2.3.4.2 Action of Merge in the Old Minimalism 185
2.3.4.3 Labeling in Old and New Minimalism 186

2.4 Conclusions 188
2.5 Comparison with other models 189

2.5.1 Tree Adjoining Grammars – TAGs 189
2.5.2 Tensor models 191
2.5.3 Physics methods in Minimalism 193

3 The Syntax-Semantics Interface: an Algebraic Model 195

3.1 Introduction: modeling the syntax-semantics interface 195
3.1.1 Some conceptual requirements for a syntax-

semantics interface 197
3.1.2 Syntax 198

3.1.2.1 Remark on the Hopf algebra coproduct 199
3.1.3 Consistency and substructures: preliminary

discussion 200
3.1.4 Algebraic Renormalization: a short summary 201
3.1.5 Semantic spaces 207

3.1.5.1 Neuroscience data and syntax-semantics
interface models 208

3.1.5.2 Formal properties of semantic spaces 209
3.1.5.3 Concept spaces outside of language 210

3.2 Syntax-Semantics Interface as Renormalization: Toy
Models 211
3.2.1 A simple toy model: Head-driven syntax-

semantics interface 212
3.2.2 Head-driven interfaces and convexity 219

3.2.2.1 Comparison functions 219
3.2.2.2 Threshold Rota-Baxter operators 221
3.2.2.3 Viterbi-valued semiring character 221

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Contents ix

3.2.2.4 Birkhoff factorization with threshold
operators 224

3.2.2.5 Convex neighborhoods 225
3.2.3 Head-driven interfaces and vector models 226

3.2.3.1 Max-plus-valued semiring character 227
3.2.3.2 Hyperplane arrangements 228
3.2.3.3 ReLU Birkhoff factorization 229

3.2.4 Not a tensor-product semantics 230
3.2.5 Boolean semiring 231

3.3 The image of syntax inside semantics 232
3.4 Head functions, moduli spaces, associahedra, and

Externalization 235
3.4.1 Preliminary discussion 235
3.4.2 Associahedra and moduli spaces of trees and

curves 239
3.4.3 Head functions, convex semantic spaces, and

metric trees 243
3.4.4 Origami folding and Externalization 247
3.4.5 An example 247
3.4.6 Geometric view of some planarization questions 252

3.4.6.1 Kayne’s LCA algorithm 252
3.4.6.2 Cinque’s abstract functional lexicon 253
3.4.6.3 A geometric view of syntactic parameters 254

3.5 Birkhoff factorization and (semi)ring parsing 254
3.5.1 Preliminary discussion 255
3.5.2 Minimal Yield as Birkhoff factorization 258

3.5.2.1 Effect of Merge on workspaces 259
3.5.2.2 Laurent series ring of Merge derivations 260

3.5.3 Birkhoff factorization in algebroids 265
3.5.4 Bialgeroids and Rota-Baxter algebroids 268

3.5.4.1 Algebroids and directed graph schemes 268
3.5.4.2 Rota–Baxter algebroids 270
3.5.4.3 Rota–Baxter semiringoids 272
3.5.4.4 Birkhoff factorization in algebroids and

semiringoids 273
3.5.5 Parsing semirings and Merge derivations 276
3.5.6 Summary of semiringoid parsing 277

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

x Contents

3.6 Pietroski’s compositional semantics 278
3.6.1 The Combine operation in Pietroski’s semantics 281
3.6.2 Concatenate operation 281

3.6.2.1 The role of idempotents 288
3.6.2.2 An example 289

3.6.3 Predicate saturation in Pietroski’s semantics
and operadic structure 291

3.6.3.1 Syntactic objects and operads 291
3.6.3.2 Semantic spaces and operads 292
3.6.3.3 Syntax-driven compositional semantics 293

3.7 Adjunction, embedded constructions, and the Pair-
Merge problem 295
3.7.1 Adjunctions and hierarchical structures 298

3.8 Language specific conditions and Theta Theory 304
3.8.1 Theta Theory 305
3.8.2 Deriving obligatory control 311

3.9 Heim–Kratzer Semantics 316
3.9.1 Boolean characters and HK semantics 318
3.9.2 Topologizing HK semantic types 320
3.9.3 Boolean probes and topological HK types 324
3.9.4 Fuzzy HK semantic types 325

3.10 No, they don’t: transformers as characters 326
3.10.1 Attention modules 328

3.10.1.1 Heads and heads 330
3.10.2 Maximizing attention 330
3.10.3 Attention-detectable syntactic relations 331
3.10.4 Threshold Rota-Baxter structures and attention 332

3.10.4.1 Syntax as an inverse problem: physics
as metaphor 333

4 Summary of Mathematical Concepts 337

4.1 Categories 337
4.2 Hopf algebras 339

4.2.1 Main idea 339
4.2.2 Formal definition 341
4.2.3 Bialgebras and Hopf algebras 343

4.3 Rooted Trees 343

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Contents xi

4.4 Other algebraic structures 344
4.4.1 Main idea 344
4.4.2 Rings, Algebras, Ideals, Modules, Semirings 346

4.5 Point set topology 347
4.6 Further remarks on Birkhoff factorization 350
Bibliography 357
Index 369

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

List of Figures

0.1 Sensory-Motor and Conceptual-Intensional interfaces 3

0.2 Workspaces and Hopf algebra product and coproduct 6

1.1 Quotients of binary rooted trees 28

1.2 Accessible terms and admissible cuts 30

1.3 Multiplicities in the deletion coproduct 38

1.4 Minimal Search 55

1.5 Countercyclic and Late Merge 71

1.6 Insertion Lie algebra 76

1.7 Syntactic objects produced by n-ary Merge 93

1.8 Decomposition into phases 128

2.1 Loday-Ronco coproduct 156

2.2 Loday-Ronco product 156

2.3 Admissible pruning 158

2.4 Trees of Stabler’s Computational Minimalism 159

3.1 Semantic points and geodesic arcs 224

3.2 Vietoris–Rips complex 226

3.3 Merge, Externalization, Semantic Space 237

3.4 Merge, Externalization, Semantic Space, and moduli spaces 238

3.5 Associahedron 239

3.6 Associahedron: cubic decomposition and parameterized
trees 240

3.7 Planar trees and configurations of points on the line 241

3.8 BHV moduli space and compactification 242

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

xiv List of Figures

3.9 Peterson graph 242

3.10 Associahedra, moduli space of curve, BHV moduli space, and
projections 246

3.11 Planar tree and vertex of the associahedron 248

3.12 Abstract tree and edge of the link graph 249

3.13 Selected link edge and metric square 249

3.14 Tiling of the associahedron 250

3.15 Associahedra decomposition of the moduli space of curves 250

3.16 Great dodecahedron as hyperbolic surface 251

3.17 Origami-folding map 251

3.18 Projection between spaces of planar and nonplanar trees 286

3.19 Adjunctions and semantic points 290

3.20 Two-peaked structures 297

3.21 Sequences of adjunctions 298

3.22 Tamari order 299

3.23 Abstract trees in BHV4 300

3.24 Decomposition of K4 303

3.25 Operad associativity 307

3.26 Symmetric operads 308

4.1 Vertical and horizontal composition of 2-morphisms 339

4.2 Generative grammar of Feynman graphs 351

4.3 Hopf algebra coproduct of Feynman graphs 352

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

List of Tables

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0 Minimalism and Merge: Introduction

Since 1993, followed by a 1995 monograph, the generative enterprise for the
study of language has developed in a direction that its originator Noam Chom-
sky has termed the “Minimalist Program.” Minimalism focuses on the design
of the human language faculty as a computational and cognitive process, aim-
ing to see how far one can reduce the number of assumptions required to ac-
count for human language syntax in terms of its variation, acquisition, evo-
lution, and use. Its key idea is that human language syntax rests on a single
structure building device called Merge, currently known as Free Symmetric
Merge, for reasons that will become apparent in what follows. In Minimalism,
it is Merge that builds sentence syntactic structure–a finite computational pro-
cess that generates an infinity of possible outputs. In previous, more familiar
accounts, this computational process was carried out by some sort of genera-
tive grammar with an (often large and language specific) set of rules, such as a
transformational grammar; one aim over the past sixty years has been to reduce
this ruleset to be as small as possible, for learnability and evolvability reasons.
It is evident that any such computational process for human language requires
some device to assemble smaller parts into larger ones, and, as we shall see,
the new theory also requires a way to examine and take apart the structures it
assembles, in order to accommodate what fell under earlier accounts as trans-
formational movement. We return to an explicit example shortly.

To serve as a “reference standard” for the detailed theory of the current con-
ception of Merge, in this monograph we follow what is laid out in the re-
cent publication by Chomsky and colleagues, Merge and the Strong Minimal-
ist Thesis, from November, 2023 (37). Sometimes we will cite this reference
simply as Elements. According to this account, Merge generates an “infinite
array of hierarchically structured expressions interpretable at a ‘meaning’ in-
terface and available for externalization at a ‘form’ (sound/sign) interface, the
so-called basic property of language (7).”

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2 Chapter 0 Minimalism and Merge: Introduction

The Merge framework thus assumes a tripartite division of human language
into (1) a central syntactic computation, Merge, and then two interface chan-
nels: (2) a syntax-semantics interface, also known as the interface to the Con-
ceptual–Intensional system; and (3) an interface to the Sensory–Motor system,
where the hierarchical structure of syntax gets “flattened” into a form suitable
for output or input (speech/sign or parsing), also known as Externalization.
Figure 0.1 sketches the basic picture in cartoon-like form. The display at the
top half of the figure indicates how Merge first selects items from a lexicon
of words and syntactic features, combining them in a kind of computational
scratchpad called a Workspace. Successive Merge actions lead to a sequence
of modified Workspaces, freely generating syntactic objects, which are then
fed to either Externalization or the Syntax-Semantics interface. (Many of these
freely generated objects will, of course, be ill-formed and so never result in any
intelligible outputs at these interfaces.) The bottom half of this figure displays
a slightly more elaborated version of the same tripartite subdivision, indicating
that the hierarchical structures free symmetric Merge generates, binary rooted
trees, are non-planar–that is, they have no left-to-right structure but instead
have their leaves unordered, like Calder mobiles. Externalization (depicted on
the bottom left), yields the actual word ordering found in some particular lan-
guage, a planar embedding of the unordered structures. On the right we picture
one view of the Syntax-semantics interface, reflecting what we adopt here.

In this monograph, our primary focus will be on Merge, in Chapter 1, but that
will lead in turn to important considerations of both Externalization and the
Syntax-Semantics interface, in Chapters 1 and 3. In Chapter 2 we discuss this
more recent formulation of Minimalism in comparison with earlier versions.

0.1 Why this monograph?

There has been a rapid development and significant modification to the Min-
imalist Program over the past nearly three decades, leading to a flourishing
linguistic field that includes, among much other work, more than a dozen
monographs in this Linguistic Inquiry Monograph series alone. However, this
same rapid development and change, came along with a proliferation of new
terminology and sometimes unfamiliar notions such as “Workspace,” “Mini-
mal Search,” “Minimal yield,” “Resource restriction,” “No tampering,” and the
like. This new machinery and assumptions have led not only to vigorous de-
bate on the details about Minimalism, but has also prodded some researchers
to criticize the entire Minimalist program itself as vague, contradictory, or even
unscientific; see (100), (84), among several others.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.1 Why this monograph? 3

Figure 0.1
The Sensory-Motor and Conceptual-Intensional interfaces (image from (37)) and the
geometric model we will describe in Chapter 3.

Given this context, the central goal of this monograph is to present a pre-
cise, mathematical formalization of Chomsky’s recent theory of Merge and its
supporting assumptions as laid out in Elements, that at a single stroke both fur-
nishes a new way to explore its important linguistic implications clearly, while
also laying to rest any fears that this framework itself might be formally inco-
herent. It is not. On the contrary, in the remainder of this monograph we show
that it can be described as a very particular kind of highly structured algebra.
In a way, this result should not be surprising at all. Language, particularly hu-
man language syntax, is all about structure; while mathematics, and especially
algebra, is really also the study of structure.

Beyond this, the most important result of this investigation is the high level
of coherence and consistency provided by this algebraic structure: many of the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4 Chapter 0 Minimalism and Merge: Introduction

properties of the attendant linguistic theory –the generative process for syntac-
tic objects, the necessity for workspaces in which this generation operates, the
requirement and optimality of minimal search, and so forth–simply fall into
place as a direct consequence of the algebraic structure. More strikingly, they
follow by necessity, in the sense that all these aspects of the model are required
for intrinsic structural reasons, and the algebraic structure would break down
if these aspects were modified arbitrarily.

The notion that a rigid and strongly constrained algebraic structure, ulti-
mately underwritten by simple mathematical rules, dictates by intrinsic neces-
sity the fundamental laws governing the natural world, is a fundamental tenet
of modern science. Especially in the domain of the physical sciences. it has
guided the entire development of the magnificent edifice of modern theoreti-
cal physics. It is the “Miracle Creed” referred to in Chomsky’s (31). It is in
our view a striking result of significant importance to explicitly discover that,
within the setting of Generative Linguistics, one can encounter the same level
of highly structured coherence governed by precise algebraic conditions as in
modern physics. Not only that, but in fact the algebraic structures involved are
exactly those that govern similar phenomena within the context of theoretical
physics.

Such uniformity is also part of a basic tenet of modern science: that similar
processes arising in different contexts will be governed by the same mathemat-
ical structures, describing the same fundamental laws. As Galileo famously
stated it: the universe is a book that is written in the language of mathemat-
ics.1 Or, as more recently put by Feynman in chapter 2 of his Lectures on
Physics, “the aim is to see complete nature as different aspects of one set of
phenomena” (our emphasis).

This algebraic formulation of Merge and Minimalism is the result of a col-
laboration between Noam Chomsky, a mathematician and theoretical physicist
(Matilde Marcolli) and a computer scientist and computational linguist (Robert
Berwick). It introduces a methodology that is of interest in its own right, tak-
ing an innovative tack that is quite distinct from the usual and more familiar
formal language theory or axiomatic approaches. So far as we know, it is en-
tirely novel, distinct from any previous attempt to fully formalize Chomsky’s
theory, including computer implementations, though there have been other at-
tempts to draw on algebraic methods to analyze minimalism, though usually

1 “questo grandissimo libro che continuamente ci sta aperto innanzi agli occhi, io dico l’universo.
[...] Egli è scritto in lingua matematica,” G. Galilei, Il Saggiatore, 1623.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.2 Key ideas 5

in a very different way.2 In a certain sense, this monograph brings up to date
the algebraic analysis of context-free languages pioneered in the early 1960s
by Chomsky and Schüztenberger, (36) along with attendant techniques, in-
troducing algebraic tools that have already been successful at tackling similar
problems in the description of generative processes in the context of theoretical
physics.

0.2 Key ideas

In the remainder of this Introduction we provide some intuitions behind our
algebraic formulation and how Merge and its associated machinery can be
turned into mathematics while following both the abstract and linguistic ex-
amples presented in Elements (37). We will not rehearse the linguistic theory
of Merge in all its details, but refer the reader to Elements in order to follow
along with the remainder of this monograph. (We have also provided a sepa-
rate chapter at the end of this monograph that serves as a glossary regarding
algebraic concepts that might be less familiar to some of the readers.)

Further, our goal in this introduction will not be to cover the entire algebraic
formalization of this framework, but rather to illustrate only in part the general
approach we take and how we arrive at a few of the key results regarding the
algebra of Merge; how Minimal Search works in the theory by acting on what
is called a Workspace; and the general algebraic character of our results. This
turns out to crucially rely on an underlying formalism known in mathematics
as Hopf algebras.

Why Hopf algebras? Hopf algebras are designed to describe general compo-
sition and decomposition operations for various types of mathematical objects,
typically combinatorial, structured objects. That already suggests they might
be useful to capture language’s combinatorial structure. In the case we will be
discussing here, the combinatorial objects are the “Syntactic Objects” (SOs)
and the “Workspace” that Merge constructs. The composition and decomposi-
tion operations (algebraically, what are known as the product and coproduct)
will look like what is displayed in Figure 0.2, with the product assembling
syntactic objects into Workspaces and the corresponding coproduct extracting
what are called in current theory “accessible terms” from a Workspace, for
further action by Merge.

2 See, e.g., (44) for an algebraic definition similar to the one we use, developed independently for
comparing language and actions; and, for Minimalist computer implementations, (180), (98), and
(62), among others.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

6 Chapter 0 Minimalism and Merge: Introduction

A bit more detail about this composition/decomposition process is in order
here. As the left-hand side of the Figure shows, the product has two channels
that serve as input and one that serves as output. In contrast, as shown on the
right-hand side of the Figure, the coproduct has one channel of input (a single
syntactic object) and two channels of outputs (the two parts of the decomposi-
tion), where we use a sum of outputs as a bookkeeping device to keep track of
all the corresponding possibilities for the extraction of accessible terms (here
showing one hierarchical object decomposed seven ways).

Figure 0.2
Assembling workspaces and extracting accessible terms as product and coproduct in a
Hopf algebra.

To begin, we align the discussion in what follows with the account in (37)
that provides the definition of Merge as the (single) syntactic “structure build-
ing” operation. In the current Minimalist framework, sentences are built by
successive applications of Merge (a derivation), starting from some initial set
of syntactic features and a lexicon, but these operations only take place within
a kind of “computational scratchpad,” called a Workspace (WS), that repre-
sents available computational resources. In the Elements reference, the nota-
tion used for this is just WS = [P1, . . . , Pn], where each Pi is itself a Syntactic

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.2 Key ideas 7

Object–either a lexical item or a Syntactic Object constructed by a previous
application of Merge.

Readers familiar with Minimalism may recall that the “simplest” intuition
then behind this notion of Merge is that it is “just” binary set formation; e.g.,
merging two lexical items like the and apple yields the (unordered, binary)
set, {the, apple}–a new Syntactic Object. Given the Workspace idea, then “all”
Merge does is act on a Workspace W and output a new, modified Workspace
W ′, with the newly constructed set added. More generally, if we had started
with the Workspace [the, apple, ate], then the first application of Merge could
put together the and apple, yielding a new Syntactic Object {the, apple} and a
new Workspace [{the, apple}, ate], while a second Merge application combin-
ing ate with the previously formed Syntactic Object would yield

[{ate, {the, apple}}],

namely the workspace consisting of a single syntactic object {ate, {the, apple}}.
Importantly, recall that these set-notated syntactic objects themselves have no
“left to right” linear order–the Merge operation that assembles syntactic objects
is non-associative and commutative. Rather, following Figure 0.1, linear order,
as seen in any particular human language, is imposed by the Externalization
process, the “spell-out” yielding speech/sign or its inverse (parsing).

All this can be translated into mathematical form in a straightforward way.
We introduce syntactic objects below in section §1.1.2. We start with a set SO0

of lexical items and recursively form the set SO of syntactic objects through
repeated applications of a single commutative, nonassociative operationM, the
binary Merge operation

M(α, β) = {α, β} .

This yields what mathematicians call the free magma generated by the set
SO0.3 More precisely, we write this generative process, where we construct the
set of all possible Syntactic Objects over this set, SO, by repeated application
of Merge operating freely, as:

SO = Magmana,c(SO0,M) ,

where the subscripts indicate that the magma is non-associative and commuta-
tive; see §1.1.2 below and especially Definition 1.1.1 and equation (1.1.2). We

3 See (44) for a formulation of Merge as binary set formation using this algebraic approach. They
note as we do: “the strong compositionality of language requires a particular formalism, a magma,
to describe the algebraic structure corresponding to the set of hierarchical structures underlying
sentences.”

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

8 Chapter 0 Minimalism and Merge: Introduction

also show that the set SO of Syntactic Objects obtained in this way is canon-
ically identified with the set TSO0 of abstract binary rooted trees with leaves
labeled by the set SO0. Here, abstract means that the trees are nonplanar–as
we noted previously they look like Calder mobiles–and mathematically we say
they do not have an assigned planar embedding, reflecting the fact that there
is no left-to-right ordering (e.g., word ordering) of the leaves of the trees, as
required by Minimalist/SMT theory. A planar embedding, e.g., word order, is
imposed by the process of Externalization, an important matter to which we
return in detail below and later chapters.

If Syntactic Objects are nonplanar trees, then what about Workspaces? In
§1.2 where we introduce the notion of a Workspace, we use the notation FSO0

for the set of Workspaces, mathematically identified with the set of binary
forests whose connected components are trees in TSO0 . This is equivalent to
the linguistic description of Workspaces as multisets of Syntactic Objects. The
multiset possibility means that there can be repetitions of the same Syntactic
Object in a Workspace.

In the linguistic theory, this repetition is a necessity because Merge–in partic-
ular what is called Internal Merge–needs this kind of forest structure to locate
elements of the Syntactic objects called accessible terms by (Minimal) Search
in order to form copies (what replaces movement in older accounts). We show
that Workspaces are in fact a necessity for structural mathematical reasons.
Our notation for a Workspace, F = T1 ⊔ · · · ⊔ Tn, corresponds to the notation
WS = [P1, . . . , Pn] used in (37), or the notation WS = [SO1, . . . ,SOn] used in
Chomsky’s more recent work, e.g., (26), (28).

With our notation, one can view the disjoint union operation ⊔ that collects
the syntactic objects Ti ∈ TSO) to form the forest F ∈ FSO0 as a “multiplica-
tion” operation that works together with another “comultiplication” operation
that disassembles workspaces into their accessible terms. The necessity for
Workspaces is then dictated by the (algebraic) coherence conditions on these
two operations. As we discuss later, the use of Workspaces is one of the key
differences between the earlier versions of Minimalism and Merge described
in (20) as opposed to later versions, as in Bare Phrase Structure (21), (23), or
(25)–the algebra makes this difference completely clear.

With this algebra in hand, we can next turn to the important concept of Merge
acting on a Workspace to yield a new Workspace–a derivation. Here we will
need not just syntactic objects and Workspaces, but also the accessible terms
of syntactic objects: the substructures accessible for further computation via
Merge.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.2 Key ideas 9

Why do we need this? Merge builds structure, but then it also must take it
apart in order to find accessible terms to manipulate, to reproduce the effects of
movement via copying. For this, we need the algebra associated with products
and coproducts, and have these work hand in hand–so these two operations
must be compatible. As suggested above, this is somewhat like multiplication:
a familiar multiplicative product takes two terms, and operates on them to pro-
duce a single output, so one writes a product operation (on a vector spaceV) as
a map m : V⊗V → V, with the “left and right channels” of the tensor product
spaceV⊗V representing the two inputs to the multiplication x⊗ y 7→ m(x, y).

Here (and elsewhere) we use vector spaces as a convenient bookkeeping de-
vice to compile a list all the decomposition possibilities–all the acceptable
terms–as a formal sum. Here’s how it works. A coproduct takes one term
and can find all the ways of splitting it apart, so one writes a coproduct (on
a vector space V) as a map ∆ : V → V ⊗ V. Note that while it may seem
unnecessary to consider vector spaces when defining a product that might just
as well be defined simply on the elements of a set, it becomes necessary in
the case of coproducts, since in general there is no unique way of decompos-
ing an object, but rather a list of different possibilities that one can write as
a sum of possibilities. Hence our approach requires a vector space structure:
this is no serious issue, as any set X has an associated vector space V(X) for
which the elements of the set X form a linear basis, namely V(X) consists of
all the formal linear combinations of elements of X. We adopt this simple and
commonly used construction and we associate to the set of all workspaces the
vector space of formal linear combinations (formal sums) of them.

When it comes to syntactic objects and workspaces, a simple way of split-
ting apart the workspaces would be to again separate them out into the different
syntactic objects that compose them. In algebraic terms, this type of coprod-
uct operation would correspond to assigning the coproduct of each tree to be
∆(T) = T ⊗1+1⊗T and for a forest, F = ⊔iTi taking ∆(F) =

∏
i ∆(Ti). These

operations of product and coproduct do in fact satisfy compatibility and yield
a Hopf algebra,4

However, this is not a very interesting coproduct. From the point of view of
the linguistic theory we need, with this additive structure we would lose com-
pletely Internal Merge–required to replicate the copy theory of movement that
we have assumed. There is, however, a much better and more natural choice
of a coproduct operation that still satisfies the required algebraic compatibil-

4 The algebra Q[x] with the coproduct ∆(x) = x ⊗ 1 + 1 ⊗ x is known as the Hopf algebra of the
additive group Ga.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

10 Chapter 0 Minimalism and Merge: Introduction

ity with the product that assembles workspaces and admits a formulation of
Internal Merge.

Instead of just separating out a workspace into its constituent syntactic ob-
jects, this coproduct can also access deeper substructures than just the con-
nected components of a workspace. This coproduct not only disassembles the
workspace into its connected components, but also disassembles each compo-
nent (each syntactic object) into its accessible terms. This means replacing the
simple ∆(T) = T ⊗ 1 + 1 ⊗ T with the more elaborate

∆(T) =
∑

v

Fv ⊗ (T/Fv)

where the Fv are subforests (collections of disjoint accessible terms) inside of
T and the corresponding term T/Fv is what remains of T if the accessible terms
in Fv are removed (pruned out).

The sum is taken over all such choices of subforests, and it includes the
previous terms T ⊗ 1 + 1 ⊗ T as parts of the sum. This extraction of accessible
terms is what makes it possible for Merge to act by combining two of these
terms together into a new syntactic object and assembling the new workspace
from the remaining terms of the disassembled one. In our formulation, the
accessible terms of a syntactic object T are the full subtrees Tv, with a root at
one of the vertices. A precise mathematical formulation of this operation will
be presented in §1.3.

With this algebraic structure in hand, one can now account for both Exter-
nal Merge, that combines together two different components of the workspace,
and Internal Merge, that needs to extract accessible terms within a single com-
ponent. For instance, using the same example of §3.3.2 of Elements (37),
we can have a workspace of the form, WS = {{was, {eaten, {the, apple}}} and
Internal Merge extracts the accessible term {the, apple} and produces a new
workspace WS ′ = {{the, apple}, {was, {eaten, {the, apple}}}}. In our setting,
the pair consisting of the extracted accessible term {the, apple} and the remain-
ing term {was, {eaten, {the, apple}} (with the ultimately canceled deeper copy
of the same accessible term) are exactly what we have in the two channels of
the coproduct ∆(T) described above.

In this way, we obtain a description of the action of Merge on workspaces
that first uses the Hopf algebra coproduct to disassemble the workspace and
produce these types of pairs, that are then deposited, respectively, in the two
“channels” of the coproduct output:

{the, apple} ⊗ {eaten, {the, apple}}

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.3 Summary of main linguistic results 11

We then use free symmetricM to reassemble the new workspaces using the
product operation of the Hopf algebra. This automatically also takes care of
maintaining the distinction between repetitions in the workspace and copies
produced by the Internal Merge, so it incorporates what is referred to in (37)
as the Form Copy (FC) function. (This will be discussed in more detail in §1.3
below.)

Given this algebraic formulation of Merge, we find that a number of desirable
linguistic properties then follow easily, as a direct consequence of the tightly
constrained algebraic structure. The following subsection highlights the main
linguistic results in the remainder of this monograph.

0.3 Summary of main linguistic results

In Chapter 1 we introduce the main aspects of the algebraic formulation of
Merge and how it works given the Strong Minimalist Thesis, as outlined above:
we provide a mathematical formulation of syntactic objects, workspaces, the
action of Merge on a workspace to yield a new workspace, as well as Minimal
Search. Minimal Yield, Resource restrictions, and the like. We also propose
an algebraic model for the Externalization procedure that follows the syntactic
structure formation implemented by free symmetric Merge.

In particular, we provide rigorous mathematical proofs for several impor-
tant properties outlined in Elements (37), so showing that these properties are
directly dictated by the intrinsic necessity of consistency of the algebraic struc-
ture. In particular, we prove:

• Workspaces are necessary for the consistency of the product and coproduct
operations of the Hopf algebra.

• A Merge operation with higher arity than binary would necessarily both over-
generate and undergenerate as compared to binary Merge, and is therefore
empirically ruled out in favor of binary Merge.

• Merge acting on a workspace satisfies what is referred to in Elements (37) as
the computationally-motivated (Third factor principles) of Resource Restric-
tion and Minimal Yield.

• Minimal Search is indeed “minimal” in the sense that it optimizes a cost
function expressed in terms of a grading (ranking) of the coproduct, selecting
as the optimal leading terms what amounts to Internal and External Merge,
while eliminating other possibly linguistically undesirable forms of Merge
such as Sidewards and Countercyclic Merge.

• Merge is Markovian in the sense that it determines a Hopf algebra Markov
chain. While the Sidewards and Sidewards/Countercyclic forms of Merge

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

12 Chapter 0 Minimalism and Merge: Introduction

are subdominant and negligible in the structure formation process (as shown
by Minimal Search) they play a role in the Markovian property, by ensur-
ing a strong connectedness condition that makes Perron–Frobenius theory
applicable to the construction of the transition matrices of the Hopf algebra
Markov chain.

• Phase theory, syntactic head, labeling algorithm and other aspects needed for
semantic interpretation, like FormSet, Theta Theory, also have a natural for-
mulation in our setting, involving properties of the Hopf algebra coproduct
and the notion of operad, another fundamental algebraic structure.

• The core computational structure of free symmetric Merge is the same sort of
structure that governs the most basic case of combinatorial Dyson–Schwinger
equations in physics, the equations that recursively solve the least action
problem in the physics of fundamental interactions.

Given our formalization of Merge, we can then begin to examine, at least
in part, how to analyze two interfaces, Externalization and the Conceptual-
Intensional System, in the form of a syntax-semantics interface that we keep
as theory-neutral as possible.

In Chapter 1 we also compare our model of Externalization to other types
of “linearization” algorithms, such as Kayne’s Linear Correspondence Axiom
(LCA). In our model, what is referred to in linguistics as “linearization” cor-
responds to imposing a choice of planar embedding on abstract binary rooted
trees. To this end, we introduce a precise mathematical definition of a head
function that abstracts the main properties of syntactic heads as formulated by
Chomsky in Bare Phrase Structure, (21). Using this formulation we prove that
the LCA is not equivalent to Externalization in general.

In Chapter 2 we explore the consequences of our algebraic formulation to
see whether it can be used to tell us something about the differences between
linguistic theories regarding Merge. We carry out a comparative analysis, at
the level of the algebraic structures, between the formulation of Minimalism
in terms of free symmetric Merge and the Strong Minimalist Thesis as pre-
sented in (37) and in Chapter 1 of this monograph, versus older formulations
of Minimalism that used features and planar trees. To be specific, we choose
for comparison here Stabler’s Computational Minimalism (180), simply be-
cause it is so clearly formalized and widely-known, due to its relationship to
formal languages. We prove the following:

• In this alternative account of Minimalism, Internal and External Merge can-
not be seen as cases of the same operation, unlike in our setting and the more
recent accounts by Chomsky and others.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.3 Summary of main linguistic results 13

• Feature checking in Stabler’s Minimalism introduces a significant level of
additional complexity in the algebraic structure, as compared to the case
of the current theory. More precisely, the absence of workspaces and the
fact that Merge operations are partially defined on domains dictated by la-
bel matching conditions force the use of a different and algebraically more
complex Hopf algebra and the selection of a further structure, in the form
of a family of right-ideal coideals in this Hopf algebra, that keep track of
the feature checking problem. These structures are a partial substitute for
the Hopf algebra quotients (like those that would normally be associated
with Dyson–Schwinger equations), and their presence is due to the com-
bined effects of the three main factors where Stabler’s Minimalism differs
from Chomsky’s more recent accounts: planar trees, absence of workspaces,
and feature checking.

• This family of right-ideal coideals in the Hopf algebra account for the com-
putational complexity of feature checking in Stabler’s Minimalism, by pro-
viding a provable, explicit estimate of the growth of the feature checking
problem in a chain of derivations when Merge is applied repeatedly, where
the problems with partially defined operations and domain checking com-
pound. This result agrees with what has been found in axiomatic treatments
of this older version of Minimalism, as described in, e.g., (98).

In Chapter 3 we advance and discuss a mathematical model for the syntax-
semantics interface based on our algebraic theory for syntax. The basic struc-
ture that we consider for a syntax-semantics interface consists of a computa-
tional process for syntax (given by free symmetric Merge) combined with a
relational-topological structure on semantic spaces (realized in various possi-
ble models, aimed to be as general and theory-neutral as possible). We show
that the problem of assigning semantic values to syntactic structure in a way
that satisfies consistency over substructures can be addressed using a mathe-
matical procedure known as Bogolyubov preparation and Birkhoff factoriza-
tion.

To quickly get a sense of how this mechanism works, consider the following
very simple example that we discuss in §3.2.5. Consider the sentences “France
is a republic”, “France is hexagonal” and “France is a hexagonal republic”. The
first two have an immediate and clear semantic interpretation, while the third
appears odd in view of the semantic awkwardness of the expression “hexagonal
republic”, assuming that a polygonal shape is not usually regarded as a prop-
erty of a form of governance. However, the sentence “France is a hexagonal
republic” can be modeled by a syntactic object of the form T = {a, {b, {c, d}}},
with a, b, c, d the lexical items { France, is, hexagonal, republic }. The Hopf

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

14 Chapter 0 Minimalism and Merge: Introduction

algebra coproduct extracts accessible terms from this object and yields terms
of the form Tv ⊗T/Tv in the resulting decomposition. These terms include, for
example,

c ⊗ {a, {b, d}} and d ⊗ {a, {b, c}}

that reproduce as quotient structures {a, {b, d}} and {a, {b, c}} the two sentences
“France is a republic” and “France is hexagonal” that have straightforward
semantic interpretations, but it also contains terms such as, for example,

{c, d} ⊗ {a, b}

These terms track the precise place (the extracted term {c, d} “hexagonal repub-
lic”) where the assignment of semantic values runs into problems. The math-
ematical Birkhoff factorization construction we describe in Chapter 3 (and in
additional detail in §4.6) is designed to incorporate this type of consistency
checking across substructures into a recursively defined function that modifies
an initial assignment of semantic values to track its behavior over all substruc-
tures. In this way, the hexagonal republic interpretation can be properly located
as the source of the problem of coherent semantic values.

This technique again originates in the context of theoretical physics, where
a very similar problem of assigning meaningful physical values to the combi-
natorial products of a generative process (Feynman graphs) is solved using the
same method.

Overall, again we find that once the algebraic structure is in place, many
desirable properties can be directly derived by way of structural necessity. We
use this to obtain several results, depending on various choices of the model for
the semantic spaces that we consider, all within the same algebraic formalism:

• An algorithm for checking the consistency of assignments of semantic values
over syntactic substructures (e.g., 0/1 truth value type assignments)

• A simple computational model that can be implemented in a vector space
semantics (as in the currently natural language processing method of word
embeddings, the simplest being just the familiar example of cosine similar-
ity), as well as in Viterbi (probabilistic) semiring parsing.

• By incorporating ReLU thresholds, a geometric formulation related to neural
network models in terms of hyperplane arrangements, see (85).

• A proof that this model avoids known problems that arise in other tensor-
product models for language semantics; e.g., as in (176). A more general
comparison with other models, including these tensor-models, the tree ad-
joining grammars (TAGs), and other models inspired by physics, is outlined
in §2.5.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

0.3 Summary of main linguistic results 15

In Chapter 3 we then discuss how the two different processes of Externaliza-
tion (the interface with the Sensory-Motor system) and our syntax-semantics
interface (the interface with the Conceptual-Intensional system) can interact
and combine. This again can be expressed in mathematical terms, and is de-
scribed by a geometric model based on moduli spaces of trees with metric
structures, and the combinatorial object known as the associahedron. We can
fold into this geometric model various aspects of “linearization”: External-
ization, syntactic parameters, Kayne’s LCA, and the like. This model model
suggests a novel approach for a mathematical theory of syntactic parameters
and the geometry of the space of “possible languages,” though here we shall
leave much of this aside here for later inquiry.

Chapter 3 then turns to Pietroski’s compositional semantics from the per-
spective of our algebraic model. We prove that in our model:

• Merge suffices to determine Pietroski’s Combine operation.
• Pietroski’s account of predicate saturation also follows from Merge and our

proposed mathematical structure (expressed in terms of the mathematical
notion of an operad) of the magma of syntactic objects.

• We can prove that asymmetrical Pair-Merge is not needed to describe ad-
junctions and their invisibility to syntax.

Next, in § 3.8 of Chapter 3 we provide a series of explicit examples drawn
from Elements to illustrate how we can use our model to analyze language-
specific properties such as:

• Thematic role assignment and the distinction between External and Internal
Merge (a dichotomy referred to in §5.2 of (37). This dichotomy refers to a
segregation of External Merge and Internal Merge in semantics: in Elements
only EM assigns thematic roles).

• Double-object constructions in terms of binary branching–this turns out to
be forced by the algebra.

• Obligatory control, as in §5.3 of Elements, e.g., “the man tried to read a
book,” among other cases.

In §3.9, we consider instead the Heim–Kratzer model of semantics of (86).
We show that it is possible to topologize Heim–Kratzer semantics, so as to
make it compatible with our model of syntax-semantics interface. This can be
done by inductively assigning to the inductive construction of types in Heim–
Kratzer semantics and the associated sets of functions between types, an ad-
ditional structure of topological spaces. Although the inductive construction
does not fully preserve all the properties of these topological spaces, they suf-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

16 Chapter 0 Minimalism and Merge: Introduction

fice to develop a good formalism for both Boolean and Viterbi parsing. We
also show that the compatibility with our formalism is even better if one con-
siders an extension of Heim–Kratzer semantics where the {0, 1} truth values
are replaced by fuzzy [0, 1]-valued representing confidence levels.

At the conclusion of Chapter 3, we analyze the current form of neural net-
work transformer architectures and attention modules used in the setting of
large language models (LLMs).

• We prove the compatibility of LLMs with Generative Linguistics in general,
contrary to some existing statements in the literature. This is because we can
prove that attention modules satisfy the same algebraic structure as our basic
model of syntax-semantic interface, demonstrating that LLMs do not in any
way “invalidate” generative linguistic models.

• We show that LLMs can be seen as (partial) solvers of an “inverse problem”
of reconstructing syntactic structure from the image of syntax inside seman-
tics through the syntax-semantics interface. Consequently, recent results that
have successfully recovered (at least in part) syntactic structure from LLMs
are, in fact, completely to be expected; though full recovery of syntax might
turn out to be very difficult computationally. See (127) for a recent example
of the discovery of certain syntactic relations in LLMs.

0.4 Acknowledgment

We especially would like to thank Riny Huijbregts for his many comments,
suggestions, for his frequent helpful feedback and advice, and for being al-
ways available to answer our many questions. We also benefited from com-
ments, questions, and conversations with many other people, including Ku-
rusch Ebrahimi-Fard, Martin Everaert, Sandiway Fong, Danny Fox, Jeffrey
Heinz, Norbert Hornstein, Tim Hunter, Richard Kayne, Minhyong Kim, Joachim
Kock, Dominique Manchon, Jack Morava, Paul Pietroski, Jon Rawski, Barry
Schein, Yiannis Vlassopoulos. The first author received support for this work
from NSF grant DMS-2104330, FQXi grants FQXi-RFP-1 804 and FQXi-
RFP-CPW-2014, SVCF grant 2020-224047, and the Center for Evolutionary
Science at Caltech.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1 The Mathematical Structure of Syntactic Merge

1.1 A mathematical model of syntactic Merge

We consider here the formulation of Minimalism as presented in (25), (26),
(28), and in the Elements text (37), with a fundamental free symmetric Merge
operation of binary set formation. We refer the reader especially to Elements
for a detailed account of the underlying linguistic theory. Our analysis here
will primarily focus on the underlying mathematical structure of that theory.

Our formulation here of syntactic objects and of the action of Merge on
workspaces is the same as described by Chomsky in (25) and (26). What we
make explicit here are the following aspects of this account:

• The algebraic structure (magma) of syntactic objects (used implicitly in (25),
(26), (28))

• The structural aspects of the sequence of workspaces constructed during
derivations (product and coproduct operations, also used implicitly in (25),
(26) in the description of the Merge action),

• How to write the Merge action in a way such that the role of these algebraic
structures manifestly appears.

We stress again that in order to make it easier for the readers to align our
notation and terminology here with (25), (26), (28) and especially with (37),
we outline in §1.1.1 the precise matching of notation between this monograph
and the “Merge and the Strong Minimalist Thesis” text, Elements.

1.1.1 Notational conventions
Since in this monograph we discuss the mathematical structure of Merge, we
have chosen a notation that is standard in mathematics for the various objects
we consider. This is necessary in order to articulate mathematical arguments
where the terminology and notation is already well established and where the
linguistic terminology and usage has sometimes been less clear.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

18 Chapter 1 Mathematical Structure

An obvious drawback of this choice is that mathematical notation does not
always agree with the notation that is well-established in generative linguistics.
Consequently, in this subsection we outline the basic “notational translations”
between this text and the Elements text, (37), that should be regarded as the
main companion text, where the same theory is introduced in a purely linguistic
setting.

• syntactic objects: in §1.1.2, where we introduce syntactic objects, we use
the notation SO0 for the set of lexical items and both the notation SO and
TSO0 for the set (magma) of syntactic objects. The first notation SO follows
(26), where the individual syntactic objects are denoted by SOi,SO j ∈ SO.
The second notation TSO0 is the standard mathematical notation for the set
(magma) of abstract binary rooted trees with leaves labeled by the set SO0.
The two sets SO and TSO0 can be identified, so we mostly use the notation
T ∈ TSO0 for syntactic objects. Also, the set notation such as {α, {β, γ}}
is used in (37) (and in the previous literature such as (25), (26), (28)) for
syntactic objects. In mathematics this notation and the tree notation are used
equivalently

{α, {β, γ}} =
α β γ

with the important caveat that these are not planar trees, so that, for instance

{α, {β, γ}} =
α β γ

=
α γ β

=

β γ α
.

We do mention explicitly throughout the text when it happens that trees are
abstract (non-planarly-embedded) trees T ∈ TSO0 (the case of syntactic ob-
jects), and when they come endowed with a planar embedding T π ∈ T

pl
SO0

.
The latter case never occurs in core Merge, but it does occur in Externaliza-
tion and in other “linearization” procedures (planarization in mathematical
terminology).

• workspaces: in §1.2 where we introduce the notion of a workspace, we
use the notation FSO0 for the set of workspaces, mathematically identified
with the set of binary forests whose connected components are trees in TSO0 .
This is equivalent to the linguistic description of workspaces as multisets
of syntactic objects. Our notation F = T1 ⊔ · · · ⊔ Tn for a workspace
corresponds to the notation WS = [P1, . . . , Pn] used in (37) or the nota-
tion WS = [SO1, . . . ,SOn] used in (26), (28). Note that we use the term
workspaces here because while at any one point in a derivation there is a
single workspace, a sequence of workspaces is constructed in the course of
a derivation. As we explain below, Merge is a transformation of the set

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.1 A mathematical model of syntactic Merge 19

of workspaces, which means that it takes one workspace as its input and it
outputs a new workspace. In the course of a derivation, one has several ap-
plications of Merge, hence an initial workspace is transformed by the first
application of Merge into the next one, which is transformed by the second,
and so on.

• accessible terms: these are the parts of a workspace accessible for compu-
tation, namely that can be targeted by the action of Merge. They are defined
in §3.3.2 of Elements (37) (see equation (14) in Elements (37)), where one
distinguishes between “terms” and “members” of a workspace. In our ter-
minology, the accessible terms of a syntactic object T are the subtrees Tv,
with v a non-root vertex of T and Tv denoting the subtree below v in T , see
Definition 1.2.2 for a more precise discussion. The description of accessible
terms of the workspace in (37) corresponds here to our (1.2.4). So, as in
the example that follows (14) in (37), if we have a workspace of the form
T ⊔M(T1,T2) (or [a, {b, c}] in the notation of (37)) then the syntactic objects
T and T ′ = M(T1,T2) (that is, a and {b, c}) are “members” in the terminol-
ogy of (37) (connected components in the mathematical terminology) and
the syntactic objects T1 and T2 (that is, b and c) are accessible terms.

• action on workspaces: In (37) the notation (see equations (10) and (12) of
(37))

Merge(P1, P2,WS) = WS ′ = [{P1, P2}, . . .]

is used for the action of Merge on workspaces, that we discuss here in §1.3.
We write this same action equivalently as a mapMS ,S ′ : FSO0 → FSO0 , for a
pair S , S ′ of syntactic objects, as:

MS ,S ′ (F) = F′ = M(Tv,Tv′) ⊔ T/Tv ⊔ T ′/Tv′ ⊔ F̂ ,

Here, F = T ⊔ T ′ ⊔ F̂ and T,T ′ are the components (members) containing
accessible terms that match the objects S , S ′, and F̂ are all the remaining
(unchanged) components. In this case

M(Tv,Tv′) = {Tv,Tv′ } = Tv Tv′

matches the term {P1, P2} in the notation of (37) while our T/Tv⊔T ′/Tv′⊔F̂ is
just subsumed into the . . . in [{P1, P2}, . . .] of Elements (37). We will provide
more details on this way of writing the action of Merge in §1.3 below.
In fact, in equation (10) of Elements (37), the more general form of a hypo-
thetical m-ary Merge is described as:

Merge(P1, . . . , Pm,WS) = WS ′ = [{P1, . . . , Pm}, . . .] .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

20 Chapter 1 Mathematical Structure

The operation written here as (P1, . . . , Pm) 7→ {P1, . . . , Pm} is the same one
that we write as,

B(T1 ⊔ · · · ⊔ Tm) =
T1 T2 · · · Tm

(1.1.1)

in (1.3.5) in Definition 1.3.2. We follow the notation B for this operation,
because it is commonly adopted in the mathematical physics literature. We
will discuss the case of a hypothetical m-ary Merge in §1.11, and the FormSet
operation, that also involves, in a different way the grafting operation (1.1.1),
in §1.16.

We now outline more precisely how the various objects listed above: syntac-
tic objects, workspace(s), accessible terms, and the action of Merge, should be
understood from a mathematical perspective.

1.1.2 Syntactic objects and the Merge magma
As in (25), (26), one considers, as the starting point in the construction of the
set of syntactic objects SO, an initial set, which we denote by SO0 consisting
of lexical items and syntactic features.

Definition 1.1.1. The set SO of syntactic objects is the free, non-associative,
commutative magma over the set SO0,

SO = Magmana,c(SO0,M) , (1.1.2)

with the binary Merge operation:

M(α, β) = {α, β} . (1.1.3)

This means that, as described by Chomsky in (25) and (26), the set SO is
obtained from an initial set SO0 through iterations of the Merge operation
(1.1.3). This procedure generates elements of SO of the form {α, β}, {α, {β, γ}},
for α, β, γ ∈ SO0, and so on. The Merge operation (1.1.3) acts on the set SO,
yielding the structure of non-associative, commutative magma.5.

Remark 1.1.2. The description of the set SO of syntactic objects given in
Definition 1.1.1 above provides an identification

SO ≃ TSO0 (1.1.4)

5 The existence of magma structures like these in generative linguistics was also recently observed
independently in (44), in a somewhat different context.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.1 A mathematical model of syntactic Merge 21

of the set of syntactic objects with the set of binary, non-planar, rooted trees,
with leaves labeled by elements of SO0.

By non-planar we mean that we regard trees T ∈ TSO0 as abstract trees,
without fixing a choice of a planar embedding. This implies that there is no
choice of a linear ordering on the leaves of such trees. As in (25), (26), word
order, that is, the linearly ordered externalized form of sentences, is considered
a part of the Externalization process, not of the core computational mechanism
of syntax given by Merge.

1.1.3 On the use of the tree notation
In mathematics there are two different notations that can be used for the objects
T ∈ TSO0 , the non-planar (also called abstract) binary rooted trees with leaves
labelled by elements of the set SO0. One notation, referred to as the “set
notation”, represents these objects as balanced bracketed expressions such as

{α, {β, γ}}

with α, β, γ ∈ SO0. The other notation, referred to as the “tree notation” rep-
resents the same objects graphically as trees, for example

α β γ

in the example above, where no planar embedding of the tree is assigned, so
that the tree represented above is, for instance, the same as

γ β α

These two different choices, set or tree notation, are completely equivalent,
in the sense that the set of balanced bracketed expressions described above
is canonically isomorphic to the set of non-planar binary rooted trees, hence
these two different notations are, for all mathematical purposes, completely
indistinguishable. In mathematics the set notation is very rarely used, because
it would be too cumbersome and unnecessarily complicated to write any proof
in that notation. So the tree notation is the standard default. This is also the
default we will follow in this book for exactly the same reasons.

In the linguistic literature on the Merge and Strong Minimalist Thesis, in par-
ticular, for instance, in Chomsky’s (26), it is pointed out that the “tree notation”
may be confusing and that the use of the “set notation” is preferable.

There are indeed two main reasons why the tree notation may be confusing,
one of them is very simple and the second one is more subtle, and we will

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

22 Chapter 1 Mathematical Structure

discuss here how to avoid either problem. Indeed, both problems are correctly
identified in these warnings in (26) and elsewhere, but we argue here that both
issues are better addressed, not in terms of a change of notation, since the
two notations describe the same mathematical objects, but in terms of which
algebraic structures one considers on this set of objects.

The two main potential sources of confusion when using the tree notation for
syntactic objects are:

1. planar versus abstract trees: when one uses the set notation, there is a
completely clear and immediate way of distinguishing planar and non-
planar (abstract) trees, namely one uses { , } bracket (as in unordered sets)
in the case of abstract trees where no planar structure is assigned, and the
brackets (,) (as in lists) for planar trees where the set of leaves is ordered.
When using the tree notation, one is forced to necessarily draw the tree on
the page, hence using a planar embedding, while having to remember that
the embedding is not part of the data.

2. operations on trees: a more important caveat in Chomsky’s (26) and else-
where, about the use of the tree notation refers to the fact that drawing
trees may suggest “operations” on trees that might not correspond to vi-
able linguistic operations (especially referring to operations that act via
insertions in lower levels of the trees, like Countercyclic and Late Merge,
or grafting of trees away from the root, like Parallel Merge). As we dis-
cuss in §1.1.3.2 below, such insertion operations do exist as mathematical
operations on trees, but they belong to different algebraic structures on the
set of trees, and a direct analysis of the corresponding algebraic structures
reveals whether these are genuine extensions of Merge and whether they
are compatible or not with the basic structure of Merge in SMT. Thus,
whether such operations do or do not occur is a consequence of their al-
gebraic structure, regardless of what notation is used to represent trees.

We discuss the first, simpler, issue in §1.1.3.1, and the second, more subtle,
issue in §1.1.3.2.

1.1.3.1 Planarity and lists versus sets In the formulation above, in Def-
inition 1.1.1 and Remark 1.1.2 we identify syntactic objects with non-planar
binary rooted finite trees with leaves labeled by the set SO0, where non-planar
means that no choice of a planar embedding is taken for the tree. These are
often also referred to as “abstract trees.” This is the usual mathematical de-
scription of the elements of the free, non-associative, commutative magma on
a given set.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.1 A mathematical model of syntactic Merge 23

While planar trees (trees together with a choice of a planar embedding) and
abstract trees might at first appear to be similar mathematical objects, their
combinatorial properties are very different, and this accounts for several sig-
nificant differences, in linguistics, between older forms of Minimalism and the
newer form we discuss in this chapter and monograph. This is discussed more
explicitly in the Chapter 2, based on our paper (132).

In the linguistics literature, the passage from planar trees in the older versions
of Minimalism to abstract trees is usually discussed using the terminology sets
to refer to the abstract trees as elements of the free, non-associative, commu-
tative magma. The reason for the use of this terminology is that in dropping
the planar structure one replaces an identification of the set of leaves with
parenthesized lists (ordered sets, often referred to in the linguistics literature
as “strings”) with just sets (in fact more precisely multisets). In order to avoid
the conflict of terminology between sets and multisets, we prefer here to fol-
low the standard mathematical terminology and refer to the syntactic objects
as abstract binary rooted trees (with no assigned planar embedding).

It is important to note that, because all the trees are binary, the clash of termi-
nology between sets and multisets is very mild when one considers syntactic
objects. Indeed, since trees are binary rather than n-ary with some n ≥ 3, the
only repetitions of labels that give rise to multisets can be on two consecutive
ones, so there is an unambiguous way of labeling the same objects by sets. For
example, a multiset of the form {{a, a}, b, {c, d}} can be written equivalently as
the set {{a}, b, {c, d}} with the convention that a set of the form {a} stands for
the abstract tree a a.

However, even with binary trees, the clash of terminology between sets
and multisets becomes much more problematic when it comes to describing
workspaces, as we will see in §1.2 below. These are genuinely multisets that
do not have an equivalent description as sets. Hence the mathematically correct
notion to use for them is binary forests (disjoint unions of a finite collection
of abstract binary rooted trees), rather than sets. Indeed, forests are multisets
where the same tree (the same syntactic object) may appear more than once,
as what in linguistics is called repetitions. This is to be expected, as the same
syntactic object may be used repeatedly, in different ways, in the course of a
derivation. This is another of the reasons why we will not be using the “sets”
terminology that is more common in the linguistics literature, and we prefer to
adopt the mathematical notation of trees (with no planar structure) and forests.

1.1.3.2 Algebra and operations on trees As we discussed above, the more
subtle and more serious concern expressed in Chomsky’s (26) about the use of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

24 Chapter 1 Mathematical Structure

the tree notation for syntactic objects lies the fact that several types of math-
ematically well defined operations on trees are possible, and are suggested
by the geometric visualization of trees, that do not necessarily correspond to
viable linguistic operations. One should note, however, that the change of
notation from “tree notation” to “set notation” may be suggestive of which op-
erations are preferable, in the sense that it can make certain operations more
transparent and others more cumbersome to write, but since the underlying
objects are still the same in both notations, the corresponding operations are
still there and well defined. We want to argue here that one can in fact explic-
itly analyze the kind of algebraic structure that various types of operations on
trees satisfy, and compare them with the algebraic structure describing the free
symmetric Merge operation in SMT, and on the basis of this comparison argue
about the relevance and compatibility of such operations within the mathemat-
ical structure of the linguistic model.

Some of these operations have been adapted to linguistic use: for example
some forms of Countercyclic Merge or Late Merge that involve operations
that graft and grow tress via insertions at non-root vertices. Operations of this
form are also considered in tree-adjoining grammars. However, these other
proposed forms of Merge, involving this type of insertion operations on trees,
have been criticized in Chomsky’s (26) and elsewhere on linguistic ground,
and are not seen as part of the Merge formulation in the Strong Minimalist
Thesis. We will be analyzing these operations explicitly in §1.7.

The main important point here is that the set TSO0 of abstract binary rooted
trees, and the associated set FSO0 of forests that we will be discussing in §1.2
and following, are not just sets. They carry algebraic structures. For example,
we have already seen that TSO0 is a free non-associative commutative magma.
Additional algebraic structures will be described in §1.2 and following, involv-
ing the notion of Hopf algebra. One of our main goals will be to show that this
algebraic structure is responsible for the form and properties of the free sym-
metric Merge and its action on workspaces within the framework of the Strong
Minimalist Thesis.

Then the key point, regarding several possible other types of operations on
trees, for example those involving insertions and grafting at internal vertices,
is that they can be defined, and they have their own algebraic structure. The
relation between different algebraic properties of different types of tree oper-
ations determines whether they are mutually compatible and whether some of
these operations are genuine extensions of Merge or are in fact obtainable from
the usual Merge operation.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 25

Thus, we will follow here the principle that the issues of concern are in-
dependent of the choice of notation with which one represents the syntactic
objects, and depends entirely on which algebraic structure is considered. We
will return to this point several times throughout the book and especially in
§1.7 for the discussion of the insertion operations that were the main reason of
concern in the comments on the “tree notation” in (26).

Another related concern expressed in (26) is the fact that the tree notation
might erroneously give the impression that “there has to be something at the
root of the tree”, but we hope the reader will understand that there is absolutely
no mathematical ground for this impression, as the magma that generates the
objects of TSO0 creates no root labels, and in fact no labels at any non-leaf ver-
tices. We will be discussing later in this book how one can introduce labeling
algorithms and subdomains of the set TSO0 on which labelling can happen, but
the syntactic objects in SO = TSO0 , by definition, do not have anything at all
attached to the root, nor there is any reason to expect them to.

1.2 Workspaces: product and coproduct

We next introduce workspaces, as in (25), (26) and the action of Merge on
workspaces. We first introduce workspaces with a bialgebra structure related
to the combination of workspaces and the extraction of accessible terms with
cancellation of copies.

Definition 1.2.1. Workspaces are nonempty finite (multi)sets of syntactic ob-
jects. The identification (1.1.4) between syntactic objects and binary, non-
planar, rooted trees, with leaves labeled by elements of SO0, induces an iden-
tification

WS ≃ FSO0 (1.2.1)

between the setWS of all workspaces and the set FSO0 of binary non-planar
forests (disjoint unions of binary, non-planar, rooted trees) with leaf labels in
SO0.

Note that, with this definition of workspaces, we allow for the presence of
repeated copies of the same syntactic object in a workspace, since a forest
can have multiple connected components that are isomorphic to the same tree.
This is needed for the operations of combination of workspaces and extraction
of accessible terms described below to be well defined, as the result of these
operation can produce repeated copies of the same tree, even when starting
with a forest that has none.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

26 Chapter 1 Mathematical Structure

Definition 1.2.2. Given a binary non-planar rooted tree T ∈ TSO0 , let Vint(T)
denote the set of all internal (non-root) vertices of T . For v ∈ Vint(T), let Tv ⊂

T denote the subtree consisting of v and all its descendants. Let Lv = L(Tv) be
the set of leaves of Tv. The set of accessible terms of T is given by

Acc(T) = {Lv = L(Tv) | v ∈ Vint(T)} , (1.2.2)

while we write

Acc′(T) = {Lv = L(Tv) | v ∈ V(T)} = {T } ∪ Acc(T) . (1.2.3)

We can identify, when convenient, Acc(T) with the set of Tv (rather than the sets
of leaves L(Tv)) and also with the set Vint(T) (of corresponding root vertices).
For a workspace given by a forest F = ⊔aTa ∈ FSO0 , the set of accessible
terms is

α(F) := Acc(F) =
⋃

a

Acc(Ta) , (1.2.4)

so that we have the total number of vertices of the forest given by the sum

#V(F) = b0(F) + #Acc(F) , (1.2.5)

where b0(F) is the number of connected components (trees) of the forest F. We
define the size of a workspace F by

σ(F) := #Acc′(F) = #V(F) = b0(F) + #Acc(F) , (1.2.6)

namely the number of syntactic objects plus the total number of accessible
terms. We also define another counting function, which is given by

σ̂(F) := b0(F) + #V(F) . (1.2.7)

Remark 1.2.3. In the linguistics literature one sometimes prefers to define
the number of accessible terms in a workspace F as σ(F) of (1.2.6), rather
than as α(F) of (1.2.4), also counting the individual components as accessible
terms of the workspace. Then the size σ̂(F) is the sum of the two sizes of the
workspace: number of members and number of accessible terms (with each
component counted both as a member and as an accessible term).

The size σ(F) of the workspace, defined as in (1.2.6) is consistent with (25),
(26) and agrees with the definition of size used in (60). As pointed out to us
by Riny Huijbregts, it may be preferable to consider the effect of Merge on
workspaces in terms of the counting of accessible terms α(F), rather than in
terms of the size σ(F). We will discuss and compare the effect on various
size-counting in §1.6.2 below.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 27

In this section we describe the set of all possible workspaces and the al-
gebraic structure it carries. In §1.3 we introduce the action of Merge as an
action on the set of workspaces, as in (37), namely an operation that takes a
workspace as its input and gives a new workspace as its output.

The set of workspaces is endowed with two operations: (1) A product oper-
ation that combines workspaces by taking their union is simply given by the
disjoint union on the set of forest (It is a commutative and associative product,
with unit given by the empty forest); (2) A coproduct operation, that provides
all the possible extractions of accessible terms. In order to be able to consider
all accessible terms simultaneously, one considers, instead of the set FSO0 , as
above, a space comprised of the formal linear combinations of elements in this
set. Namely, we denote by V(FSO0) the Q-vector space (or the Z-module)
freely generated by elements of FSO0 , formal linear combinations of binary
non-planar forests with rational (or integer) coefficients, so that one can sum
over all the possible extractions of accessible terms (see (1.2.8) below).

This construction that assigns to a set B the vector space V(B) with basis
B, namely the vector space of formal linear combinations of elements in X, is
standard in mathematics. The vector space operations of linear combinations
(sum and scalar multiplication) just act on the coefficients of such linear com-
binations. The advantage in the case of composition/decomposition operations
on the elements of X lies in the fact of being able to handle the case where
there are multiple possibilities for either composition or decomposition, by
combining all the different possibility into a single element given by a formal
sum. In a case like ours where composition is single valued but decomposition
is multivalued, the product is a map m : B × B → B (extended(bi)linearly to
m : V(B) × V(B) → V(B)), while the coproduct ∆ assigns to elements of
B a sum of elements in the vector space V(B) ⊗ V(B) (extended by linearity
to ∆ : V(B) → V(B) ⊗ V(B)). The tensor products account for the fact that
product multiplication has two inputs and that the coproduct has two outputs,
the two parts of a decomposition.

The construction of the coproduct is designed to extract from a workspace
the accessible terms that are needed for Merge computation. For every acces-
sible term Tv of a syntactic object T , we want ∆(T) to contain a term of the
form Tv ⊗ X, with X representing “what is left” of T when the accessible term
Tv is extracted. The suitable notion of “what is left” of a combinatorial object
when a subobject is extracted should be described in terms of a suitable can-
cellation, that is, a quotient operation. There are different possibilities for how
to construct a quotient T/Tv, illustrated in Figure 1.1. We describe them here
and compare their properties in §1.2.1 below.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

28 Chapter 1 Mathematical Structure

Figure 1.1
Different ways of taking the quotient of a binary rooted tree by a subtree.

The usual way of defining the quotient of T by Tv, in the context of Hopf
algebras of rooted trees in mathematics and theoretical physics, is to contract
(shrink) the entire tree Tv down to a single vertex, so that the root vertex of Tv

becomes a leaf. We write this quotient with the notation T/cTv, to stress that
it is obtained by contraction. With this definition of the quotient, in particular,
one has T/cT = •, the tree consisting of a single root vertex. We extend this
definition below to the case where we extract a disjoint collection of accessible
terms Fv = Tv1 ⊔ · · · ⊔ Tvn from T .

Definition 1.2.4. Let T ∈ TSO0 be a syntactic object and let Fv = Tv1⊔· · ·⊔Tvn

be a forest Fv ∈ FSO0 where the Tvi are non-intersecting accessible terms of T .
We define T/cFv as the binary rooted tree obtained from T by contracting each
Tvi to its root vertex vi, which becomes a leaf of T/cFv. The leaf vi carries a
label of the form Tv. We call this label the trace of Tv.

For example consider syntactic objects of the form

T1 = α β
and T2 = γ T3

with T3 = δ ϵ

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 29

and consider the forest F1,3 = T1 ⊔ T3 with T1,T3 accessible terms of the
syntactic object

T = M(T1,T2) =
α β γ δ ϵ

.

The quotient, in the sense of Definition 1.2.4 T/cF1,3 is given by

T/cF1,3 =
T1 γ T3

.

The other way one can define the remainder term of the extraction of an
accessible term Tv (or a collection Fv of accessible terms) from a syntactic
object T is by deletion of the extracted term. Simple deletion leaves a tree that
is no longer necessarily a binary tree, but there is a unique maximal binary tree
defined by it (obtained via contraction of some edges), which one can take as
the final result of the quotient operation. We use the notation T/dFv for this
quotient to stress the fact that it is obtained by deletion and distinguish it from
the quotient T/cFv of Definition 1.2.4. When it is clear from the context which
quotient is used, we will drop the notation and just write T/Fv for either case.

Definition 1.2.5. Given a rooted binary tree (with no assigned planar embed-
ding) T ∈ TSO0 and a collection of disjoint accessible terms Fv = Tv1⊔· · ·⊔Tvn

in T , consider the rooted binary tree T ∖ Fv obtained by removing the entire
trees Tvi from T. There is then a unique maximal rooted binary tree that can
be obtained from this complement T ∖ Fv via contraction of some edges. That
resulting rooted binary tree is what we call the quotient T/dFv.

In the example illustrated above the quotient T/dF1,3 consists of the single
lexical item γ. With this definition the quotient is notated as follows: T/dT =
∅.

There is an intermediate step that more clearly explains the relation between
the quotients, by rephrasing the extraction of accessible terms using the notion
of ‘admissible cuts.”

Definition 1.2.6. Let T ∈ TSO0 be a syntactic object. An admissible cut C on
T is the removal of a collection of edges of T with the property that no two of
them lie on the same path from the root to one of the leaves. An admissible cut
separates T into a forest πC(T) consisting of all the subtrees disconnected from
the root by the cut, and a tree ρC(T), that is the (not necessarily binary) rooted
tree comprising the remaining component that still contains the root vertex.
We use the notation T/ρπC(T) := ρC(T).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

30 Chapter 1 Mathematical Structure

An example of admissible cut and the corresponding subforest πC(T) = Fv

is illustrated in Figure 1.2. In this example one sees that the remaining tree
ρC(T) is not a binary tree.

Figure 1.2
A subforest of accessible terms in a syntactic object and the corresponding admissible
cut.

The following observation follows directly from the above definition of ad-
missible cut.

Lemma 1.2.7. Given a syntactic object T ∈ TSO0 the subforests Fv ⊂ T

Fv = Tv1 ⊔ · · · ⊔ Tvn

where the Tvi ⊂ T are all accessible terms, disjoint in T , are in bijective
correspondence with the admissible cuts of T , with πC(T) = Fv. The quo-
tient operation T/dFv of Definition 1.2.5 is then the unique maximal binary
rooted tree determined by the (non-binary) tree ρC(T) of the admissible cut
with πC(T) = Fv.

We therefore have three slightly different choices of a remainder term, when
a collection Fv of accessible terms is extracted from a syntactic object T :

1. the contraction quotient T/cFv;
2. the remainder term T/ρFv = ρC(T) corresponding to the admissible cut C

with πC(T) = Fv;
3. the deletion quotient T/dFv.

These three case are exactly the three possibilities illustrated in Figure 1.1. In
linguistic terms we should think of these three possibilities in the following
way, in the case where the extracted term is a single accessible term Tv: the
first case corresponds to the FormCopy operation described in (37), where one
copy is the extracted accessible term Tv and the other is the deeper copy that

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 31

remains visible in T/cTv only as label of the leaf obtained by contracting the
subtree; the second case (with the admissible cut made of a single cut edge) has
the extracted accessible term Tv = πC(T) and a trace represented by a vertex in
ρC(T); in the third case the deeper copy is cancelled (while the extracted term
Tv remains) and the trace is not explicitly carried over in the resulting syntactic
object.

The relation between these three forms of “remainder term” of the extraction
of an accessible term account for the fact that the deeper copy (first case) that
remains as trace (second case) and is not explicitly visible (in the syntactic ob-
ject resulting from the third case) is still interpreted and the semantic interface.
Thus, in terms of the diagram of Figure 0.1 in the Introduction (which we will
return to in Chapter 3), we should think of T/cFv as the form that goes to the CI
(semantic) interface for interpretation, of T/dFv as the form that is used in ex-
ternalization, and T/ρFv as the form that the combined process accesses. The
extraction of accessible terms and construction of the corresponding remaining
objects can be expressed in the form of a coproduct operation.

Definition 1.2.8. Corresponding to these three choices, we can form decom-
positions of a syntactic object T in the form of a coproduct. For ω ∈ {c, d, ρ}
take

∆ω(T) := T ⊗ 1 + 1 ⊗ T +
∑

v

Fv ⊗ T/ωFv (1.2.8)

where the sum is over all the subforests Fv ⊂ T consisting of disjoint accessible
terms of T . We can absorb the primitive part

P(T) := T ⊗ 1 + 1 ⊗ T (1.2.9)

into the sum with the first term corresponding to the full tree T seen as an
accessible term (of the workspace) and the last term as the extraction of the
empty subforest. The coproduct (1.2.8) is extended to forests F = ⊔aTa in the
form

∆ω(F) = ⊔a∆(Ta)

or equivalently

∆ω(F) = F ⊗ 1 + 1 ⊗ F +
∑
Fv⊂F

Fv ⊗ F/ωFv .

We write (1.2.8) as a sum

∆ω(F) =
∑
n≥0

∆ω(n)(F) , (1.2.10)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

32 Chapter 1 Mathematical Structure

where the terms ∆ω(n) involve the extraction of a subforest given by a collection
of n accessible terms in Acc′(F). It is also customary to use the notation

∆̃ω(F) := ∆ω(F) − (F ⊗ 1 + 1 ⊗ F) =
∑
Fv⊂F

Fv ⊗ F/ωFv (1.2.11)

for the non-primitive part of the coproduct.

While only the terms ∆ω(1)(F) and ∆ω(2)(F) are used in the action of Merge, see
§1.3, all the higher terms ∆ω(n)(F) are required for the algebraic properties of
the coproduct, see §1.2.1, and will play a role in another linguistic operation
that is a necessary part of the Minimalist model, called FormSet, which we will
discuss in §1.16.

Remark 1.2.9. As we explain in more detail below, the coproduct ∆c is well
defined as given in (1.2.8) and is in fact the restriction to non-planar binary
rooted tree of the well studied coproduct of the Connes-Kreimer Hopf algebra
of Feynman graphs (42). The restriction to trees of the Connes-Kreimer Hopf
algebra was already considered in (18). The coproduct ∆ρ requires a larger
Hopf algebra, as the right channel of the coproduct can contain rooted trees
that are not binary: in fact it is the coproduct of the other Hopf algebra used
in the Connes-Kreimer theory of renormalization (42), the Hopf algebra of
rooted trees (non-necessarily binary) with the coproduct given by admissible
cuts. The relation between the restriction to trees of the Hopf algebra of Feyn-
man graphs and the Hopf algebra of rooted trees is discussed in detail in (18).
Finally, the coproduct ∆d, that performs the “cancellation of deeper copies” in
linguistic terms, satisfies a weaker relation where the lists of terms for the coas-
sociativity relation match up to certain multiplicities in some of the terms. We
will not discuss here explicitly how to use multiplicities on vertices and edges
to correct this counting, but we will rather work with the relation between the
quotients T/cFv, T/ρFv, and T/dFv described above and the coassociativity
property of ∆ρ and ∆c.

Before discussing further the algebraic properties of the coproducts (1.2.8),
we can look at a simple example. To see of what (1.2.10) means, consider here
the case of equation (17) of Elements (37), where we have a workspace of the
form WS = [{eaten, {the, apple}}], or in our notation F = T with

T =
α β γ

=

eaten
the apple

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 33

with α =“eat(en)”, β =“the”, γ =“apple” ∈ SO0. Keep in mind that this is a
non-planar tree so

{α, {β, γ}} =
α β γ

=

γ β α
=
α γ β

=

β γ α
.

Then the coproduct produces a list of accessible terms in the left channel,
accompanied by the complementary term in the right channel, in the following
way

∆c(T) = T ⊗ 1 + 1 ⊗ T +
β γ

⊗
α {β, γ}

+α ⊗
α β γ

+ β ⊗
α β γ

+ γ ⊗
α β γ

+α ⊔ γ ⊗
α β γ

+ α ⊔ β ⊗
α β γ

+ β ⊔ γ ⊗
α β γ

+α ⊔
β γ

⊗
α {β, γ}

+ α ⊔ β ⊔ γ ⊗
α β γ

while in the deletion form this reads as

∆d(T) = T ⊗ 1 + 1 ⊗ T +
β γ

⊗ α

+α ⊗
β γ

+ β ⊗
α γ

+ γ ⊗
α β

+α ⊔ γ ⊗ β + α ⊔ β ⊗ γ + β ⊔ γ ⊗ α

+α ⊔
β γ

⊗ 1 + α ⊔ β ⊔ γ ⊗ 1 .

The non-primitive terms in the first two lines correspond to the terms in ∆(1);
the remaining non-primitive terms are in ∆(2), except the last one that is in
∆(3). All these terms are there for “structural reasons”–namely to ensure good
behavior of the coproduct under iteration (the coassociativity we will discuss
in Lemma 1.2.10 and Lemma 1.2.12).

We see that in each term of these sums–where the formal sum is just a way of
handling the list of possibilities–the left-hand-side exhibits a selection of one or
more of the possible accessible terms of the workspace and the corresponding
right-hand-side shows what remains of the workspace if those accessible terms
are removed. So the coproduct takes a workspace and “disassembles” it into
all its possible constituent parts that are available for computation (in the left
channel of the coproduct output), while at the same time keeping track (in
the right channel) of what would remain of the rest of the workspace if those
accessible term are used (that is, the cancellation of the deeper copy).

So. in all expressions like this, the sum should be read as a list of alternative
possibilities, and each tensor product term as the pair of a possible choice

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

34 Chapter 1 Mathematical Structure

of accessible terms for computation, and the corresponding effect on the rest
of the workspace produced by the choice of those terms. As we discuss in
§1.3, this list of possibilities is the input to Merge, that uses it to produce a
new workspace. Summarized in a short slogan, the coproduct presents all the
possible items available for the Merge computation.

1.2.1 Combinatorial Hopf algebras and workspaces
We conclude the discussion of the coproducts by showing that the workspaces
form a Hopf algebra. In fact, two slightly different but closely related alge-
braic structures, corresponding to the forms ∆c and ∆d of the coproduct (with
the instrumental use of ∆ρ as part of the argument). The relation between
these two forms of the coproduct encodes the linguistic operation of “cancel-
lation of deeper copies.” The general definition of a Hopf algebra, and the
corresponding conditions on product and coproduct and their compatibility are
summarized in §4.2 of the final Chapter 4 on mathematical background, that
we invite the readers to look at before continuing with this section.

The description of assembling and disassembling operations on combinato-
rial objects in terms of bialgebras and Hopf algebras was developed by Gian-
Carlo Rota (see (166) and especially the work of Joni and Rota (99), and also
Schmitt (173)). The specific notion of combinatorial Hopf algebra was intro-
duced by Loday and Ronco in (119). For a general approachable introduction
to composition and decomposition operations described by Hopf algebras see
also (12).

In this section we demonstrate that workspaces with the composition and
decomposition operations described in the previous section result in Hopf al-
gebras that fit into a well-studied class called combinatorial Hopf algebras.
These are Hopf algebras with the following properties.

1. They are graded, in the sense that the underlying vector spaceV = ⊕k≥0Vk

is graded, with multiplication and comultiplication compatible with the
grading, in the sense that degrees add when elements are multiplied,

· : Vk ⊗Vℓ →Vk+ℓ ,

and the coproduct ∆ : Vk → ⊕
k
j=0V j ⊗ Vk− j has a primitive part P(x) =

x⊗1+1⊗ x of the same degree deg(x), while all remaining (non-primitive)
terms are of lower degree,

∆(x) = x ⊗ 1 + 1 ⊗ x +
∑

x′ ⊗ x′′

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 35

with deg(x′) < deg(x), deg(x′′) < deg(x), that is,

∆̃ = ∆ − P : Vk → ⊕
k−1
j=1V j ⊗Vk− j .

2. The homogeneous components Vk of the underlying vector space V are
spanned by sets Bk of combinatorial objects (e.g. permutations, sets of
partitions, sets of finite graphs, of abstract or planar rooted trees, of ma-
troids, etc.). The sets Bk are finite for each fixed k, with k specifying a
measure of “size” of the objects.

3. The coproduct describes decomposition operations on the given combi-
natorial objects, with terms x′ ⊗ x′′ representing, for instance, pairs of a
sub-object and a quotient object.

4. They are connected, namely the degree zero partV0 consists of just scalars
(with the only object of size zero spanning this one-dimensional space).

5. As a consequence of the graded connected property, the bialgebra struc-
ture entirely suffices to determine inductively an antipode, in the form

S (x) = −x −
∑

S (x′) · x′′, (1.2.12)

for ∆(x) = x ⊗ 1 + 1 ⊗ x +
∑

x′ ⊗ x′′, with x′, x′′ of lower degree, so that
one obtains a Hopf algebra structure.

The Hopf algebra formed by workspaces is a combinatorial Hopf algebra in
the sense described above.

The following statement is a specialization to binary forests of §4.1 and 4.2
of (18).

Lemma 1.2.10. Let Vc(FSO0) denote the vector space (over Q) spanned by
the workspaces F ∈ FSO0 , endowed with the product given by disjoint union
⊔ and the coproduct ∆c of (1.2.8). The space Vc(FSO0) is graded by number
of edges. Then (Vc(FSO0),⊔,∆c) is a graded bialgebra. This induces a Hopf
algebra structure on the complement in Vc(FSO0) of the span of the lexical
items and features.

Proof. The multiplication given by disjoint union is both associative and com-
mutative, in the case of non-planar trees and forests, with unit the empty forest.
Coassociativity of the coproduct,

(id ⊗ ∆c) ◦ ∆c = (∆c ⊗ id) ◦ ∆c ,

follows by the well known coassociativity of the coproduct of the Connes-
Kreimer Hopf algebra of Feynman graphs of (42). It suffices to verify it on
trees T , the case of forests follows. In essence, in (id⊗∆c)◦∆c(T) the operation
id ⊗ ∆c extracts accessible terms from the contracted trees in the right channel

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

36 Chapter 1 Mathematical Structure

of the range of ∆c(T) and produces further contractions of these, leaving the
previously extracted accessible terms of T unchanged while in (∆c⊗ id)◦∆c(T)
the operation ∆c ⊗ id extract accessible terms from the previously extracted
accessible terms of T and produces corresponding contractions, while leaving
the previously contracted trees unchanged.

The reason why the two operations (id ⊗ ∆c) ◦ ∆c and (∆c ⊗ id) ◦ ∆c yield
the same results lies in the fact that the accessible terms of accessible terms of
T extracted by (∆c ⊗ id) are themselves accessible terms of T and the result-
ing contractions (of the accessible terms extracted by ∆c(T)) can themselves
be seen as accessible terms produced by (id ⊗ ∆c), as described in the proof
(for more general graphs) in Theorem 1.27 of (43). The number of edges gives
a grading on Vc(FSO0), but the term in degree zero is not one-dimensional
(as the connected condition for Hopf algebras would require) because the trees
consisting of a single leaf identified with their labeling items in SO0 are also of
degree zero. These single-point trees give rise to non-invertible group-like ele-
ments that do not have inverses, preventing the construction of the antipode S ,
so the resulting structure is only a bialgebra, not a Hopf algebra. It does induce
a Hopf algebra, however, by passing to the quotient by the ideal generated by
the elements 1 − α with 1 the product unit and α ∈ SO0. This reduces the de-
gree zero part to a one-dimensional space, and one obtains a graded connected
bialgebra hence a Hopf algebra with the inductive construction (1.2.12) of the
antipode, see §4.2 of (18). This quotient can be identifies, as vector space, with
the subspace of Vc(FSO0) spanned by those forests that, if non-empty, have a
non-empty set of edges. □

Lemma 1.2.11. Let F̃SO0 denote the set of all forests (not necessarily binary)
with leaves labels in the set SO0 (including in this case the possibility of an
empty label). The vector space V(F̃SO0) has the structure of commutative,
associative algebra with the product ⊔, and the coproduct ∆ρ makes it a graded
connected Hopf algebra (a combinatorial Hopf algebra). Let F̃≤n

SO0
denote the

subspace spanned by “at most n-ary” forests (internal vertices of valence at
most n + 1). The coproduct ∆ρ restricts to the subalgebraV(FSO0 ⊂ V(F̃SO0)
as a map

∆ρ : V(FSO0)→V(FSO0) ⊗V(F̃≤2
SO0

) , (1.2.13)

where the trees in the right channel of ∆ρ(T) may contain internal vertices of
valence two.

Proof. The combinatorial Hopf algebra structure on V(F̃SO0) determined by
⊔ and ∆ρ is the same as the Connes–Kreimer Hopf algebra of non-planar (and

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.2 Workspaces: product and coproduct 37

not necessarily binary) rooted trees, see (42) and (18). For T ∈ TSO0 , in the
non-primitive part of the coproduct ∆̃ρ(T) =

∑
C πC(T) ⊗ ρC(T), the terms

πC(T) in the left channel are all forests in FSO0 , since deleting edges of an
admissible cut implies that each resulting component is an accessible term of
T (see Lemma 1.2.7). In the right channel of ∆̃ρ(T), the source vertex of each
of the edges in a cut C will become a vertex of valence two (if internal) or one
(if the original root of T) in the term πC(T), which is therefore in F̃SO0 but not
necessarily in FSO0 . □

Consider then the coproduct ∆d. In this case we have the following property.

Lemma 1.2.12. With the coproduct ∆d of the form (1.2.8), for any T ∈ TSO0

(hence for any F ∈ FSO0) the list of terms in (1⊗∆d)◦∆d(T) matches the corre-
sponding list of terms in (∆d⊗1)◦∆d(T). Let d(C,C′) = mine∈C,e′∈C” d(e, e′) be
the distance between admissible cuts given by the shortest path in T between
the cuts. The terms in (1⊗∆d) ◦∆d(T) and (∆d ⊗ 1) ◦∆d(T) that correspond to
pairs of admissible cuts with distance d(C,C′) ≤ 1 occur with different multi-
plicity.

Proof. We have

(∆ ⊗ id) ◦ ∆(T) = (∆ ⊗ id)
∑

w

Fw ⊗ T/Fw =
∑
v,w

Fv ⊗ (Fw/Fv) ⊗ T/Fw ,

where the sums are taken over subforests with the disjointness condition where
the subforests Fv ⊂ Fw consists of either full components of Fw or of subforests
of the components. The first case gives terms of the form Fv ⊗ Fu ⊗ T/Fv,u for
w = (v, u). On the other hand, we have

(id⊗∆)◦∆(T) = (id⊗∆)
∑

v

Fv ⊗T/Fv =
∑
u,v

Fv ⊗ (T/Fv)u ⊗ (T/Fv)/(T/Fv)u .

We distinguish among these terms the case where the subtrees of T with root at
ui are disjoint from the trees of Fv, where we have (T/Fv)/(T/Fv)u = T/Fv,u,
and the remaining cases where some vertices ui in u, as vertices of T , are above
some vertices v j of the components of Fv, in which case the corresponding
quotient is (T/Tv j)/Tui = T/Tui and (T/Tv j)ui = Tui/Tv j . Thus, we see that
we obtain the same two types of terms with the same set of terms for both
(1 ⊗ ∆d) ◦ ∆d(T) and (∆d ⊗ 1) ◦ ∆d(T). Consider then pairs of admissible cuts
with d(C,C′) ≤ 1. It suffices to consider the case where both cuts consist
of a single edge. Figure 1.3 illustrates the sources of the different counting
multiplicities. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

38 Chapter 1 Mathematical Structure

Figure 1.3
Multiplicities: cutting first C leaves two cuts C′ in (∆d⊗1)∆d(T) producing two identical
terms but only one in (1 ⊗ ∆d)∆d(T).

This possible discrepancy of multiplicities in the counting of terms has no
significant consequences in our setting, as we will see in §1.3.

1.3 Action of Merge on Workspaces

We next introduce our formalization of the action of Merge on workspaces via
an operator that performs a search for matching terms. This operator will be
applied to the terms of the coproduct, that is, to the accessible terms that Merge
is supposed to work on. In fact, as we have seen, the left-hand-side of the
coproduct produces this list of accessible terms–the search runs over the list–
while the right-hand-side of the coproduct keeps track of the corresponding
cancellation of copies. We introduce the Merge action via some preliminary
definitional steps.

1.3.1 Matching terms
As we explained in the previous section, the coproduct on workspaces pro-
duces the list of accessible terms available for computation. We introduce here
an operator that inspects all the terms produced by the coproduct for matching
terms with an assigned pair of syntactic objects.

Definition 1.3.1. Suppose given two syntactic objects S , S ′ ∈ TSO0 . Define a
linear operator γS ,S ′ : V(FSO0)→V(FSO0) by setting

γS ,S ′ (F) =

 F F = S ⊔ S ′

0 otherwise
, (1.3.1)

extended by linearity. We then define

δS ,S ′ : V(FSO0) ⊗V(FSO0)→V(FSO0) ⊗V(FSO0)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.3 Action of Merge on Workspaces 39

as
δS ,S ′ = γS ,S ′ ⊗ id , (1.3.2)

so that
δS ,S ′ (S ⊔ S ′ ⊗ F′) = S ⊔ S ′ ⊗ F′

while all basis elements F ⊗ F′ not of this form are mapped to zero.

Note that γS ,S ′ (hence δS ,S ′) is a linear operator but not an algebra homo-
morphism, since γS ,S ′ (S ⊔ S ′) = S ⊔ S ′ while γS ,S ′ (S) = γS ,S ′ (S ′) = 0.

When applied to a term of the form Fv ⊗ F/Fv, for F = ⊔i∈ITi, the operator
δS ,S ′ gives

δS ,S ′ (Fv ⊗ F/Fv) = S ⊔ S ′ ⊗ Ta/S ⊔ Tb/S ′ ⊔ F(a,b) (1.3.3)

with F(a,b) = ⊔i,a,bTi, if there are indices a, b ∈ I such that Ta,va ≃ S , Tb,vb ≃

S ′, or
δS ,S ′ (Fv ⊗ F/Fv) = S ⊔ S ′ ⊗ Ta/(S ⊔ S ′) ⊔ F(a) , (1.3.4)

with F(a) = ⊔i,aTi, if for some a ∈ I we have two disjoint accessible terms
Ta,va ≃ S and Ta,wa ≃ S ′. If there is more than one choice of indices a, b for
which matching pairs Ta,va ≃ S , Tb,vb ≃ S ′ exist, then in the right-hand-side
of (1.3.3) one obtains the sum over all the possibilities. All other terms of the
coproduct where no matching occurs are mapped to zero.

1.3.2 Grafting
Next, observe that the operation (1.1.3) on syntactic objects factors through a
grafting operator familiar from physics B on forests, as defined below.

Definition 1.3.2. Let TN
SO0

denote the set of all n-ary finite rooted trees with
arbitrary n ∈ N, with no assigned planar structure and with labels labeled by
the set SO0. Let FN

SO0
be the set of finite forests with connected components in

TN
SO0

. LetV(TN
SO0

) andV(FN
SO0

) denote the Q-vector spaces spanned by these
sets. The grafting operator B : V(FN

SO0
) → V(TN

SO0
) is the linear operator

defined on generators by

B(T1 ⊔ T2 ⊔ · · · ⊔ TN) =
T1 T2 · · · TN

, (1.3.5)

with the convention that if F = T is a single tree then B(T) = T and that
B(F ⊔ 1) = B(F).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

40 Chapter 1 Mathematical Structure

The grafting operator B is well-known in the mathematical formulation of
perturbative quantum field theory, as it is the operator that defines the recursive
structure of Dyson–Schwinger equations, see (5), (58).

Lemma 1.3.3. The Merge operator M of (1.1.3), namely the multiplication
operation in the Magma Magmana,c(SO0,M), determines a bilinear operator
M : V(TSO0) ⊗V(TSO0)→V(TSO0) defined on generators as

M : T ⊗ T ′ 7→ M(T,T ′) = T T ′ , (1.3.6)

where we set M(1, 1) = 1 and M(T, 1) = M(1,T) = T. This operator factors
through the grafting operator B restricted to the range of multiplication ⊔,
namely the diagram

V(TSO0) ⊗V(TSO0) M //

⊔
((

V(TSO0)

V(FSO0)
B

99

Proof. Since trees and forests do not have an assigned planar structure, both
M and the operator B do not depend on the order of the trees. Moreover, the
image of V(TSO0) ⊗ V(TSO0) under ⊔ consists of forests with two connected
components, so that their image under B is still a binary tree, which is of the
form (1.3.6). □

1.3.3 The Merge operators
The operation (1.3.3), in combination with the operation (1.1.3) on syntac-
tic objects, and the bialgebra structure on workspaces, all contribute to the
definition of the action of Merge on workspaces as described in Chomsky’s
work (25), (26), and in Elements, that we can now define in the following way.

Definition 1.3.4. Let B be the grafting operator of Definition 1.3.2, and con-
sider the coproduct ∆ = ∆d of (1.2.8). The action of Merge on workspaces
consists of a collection of operators

{MS ,S ′ }S ,S ′∈TSO0
, MS ,S ′ : V(FSO0)→V(FSO0) ,

parameterized by pairs S , S ′ of syntactic objects, that act on F ∈ V(FSO0) by

MS ,S ′ (F) = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆(F) . (1.3.7)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.3 Action of Merge on Workspaces 41

Remark 1.3.5. There is a small difference between the definition of the opera-
torsMS ,S ′ that we give in (1.3.7) and the definition followed by (25), (26), and
Elements (37). We show below that these descriptions agree in the case where
matching elements for the pair S , S ′ are found among the acessible terms of
the workspace. The difference is in the case of no matching terms. In the
formulation of (25), (26), (37) one defines

MS ,S ′ : FSO0 → FSO0 (1.3.8)

as maps on the set of workspaces (assigning to a workspace a new workspace).
When no matching terms for S , S ′ exist, it is assumed that MS ,S ′ acts as the
identity map, leaving the workspace unchanged. This is the natural choice, but
this has a drawback when it comes to algorithmic implementation: one can
make any chain of Merge derivations infinitely long by repeatedly applying
a loop consisting of the identity map (applying maps MS ,S ′ with no matching
terms). From this perspective, it appears more convenient to assume that, when
no matching terms for S , S ′ exist, the derivation crashes and does not continue.
This cannot be directly implemented if one writes MS ,S ′ as a function of sets
(1.3.8) but it can easily be excpressed if one considers the induced map of
vector spaces

MS ,S ′ : V(FSO0)→V(FSO0) (1.3.9)

as in Definition 1.3.4. In the vector space V(FSO0) there is a natural way of
expressing the idea that the derivation crashes, by mapping to the zero-vector
(which exists as an element ofV(FSO0) but not as an element of FSO0).

If one wishes to retain the original assumption that Merge acts as the identity
(rather than the zero map) when no match exists for S , S ′, then one needs to
modify the map (1.3.7) (that maps to the zero vector in this case). One can
obtain such a modification, for example, by requiring that (1.3.7) holds when
δS ,S ′ (∆(F)) , 0, and one sets MS ,S ′ (F) = F otherwise, or by a modification
of the maps δS ,S ′ with the same effect. This expresses the requirement that,
if no matching terms for S , S ′ are found by δS ,S ′ are found anywhere in the
output of the coproduct, then the Merge operator MS ,S ′ outputs the original
workspace unchanged. This modification produces a map of sets that is no
longer a linear map of vector spaces (as a formal sum F + F′ with δS ,S ′ (F) = 0
and δS ,S ′ (F′) , 0 would go to MS ,S ′ (F′) not to F + MS ,S ′ (F′)). In terms
of computational implementations, it is generally an advantage to be able to
formulate operations in terms of linear algebra. Thus, we will adopt here the
form (1.3.7), with a minor deviation from the formulation of (37).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

42 Chapter 1 Mathematical Structure

We can equivalently write (1.3.7) using the other forms of the coproduct ∆ω

of (1.2.8) with ω = c, ρ. Namely, let Πρ,d, Πc,ρ and Πc,d denote the following
linear projections:

• the projection (with the notation as in (1.2.13))

Πd,ρ : V(F̃≤2
SO0

)→V(FSO0)

that maps an “at most binary” tree to the unique maximal binary tree in TSO0

obtained by edge contraction (extended componentwise to forests);
• the projection

Πρ,c : V(FSO0)→V(F̃≤2
SO0

)

that deletes any edge terminating in a leaf with label of the form T (see
Definition 1.2.4);

• the projection Πd,c = Πd,ρ ◦ Πρ,c

Πd,c : V(FSO0)→V(FSO0) .

We then have:

∆d = (id ⊗ Πd,ρ) ◦ ∆ρ = (id ⊗ Πd,c) ◦ ∆c .

We can then equivalently write (1.3.7) as,

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ (id ⊗ Πd,ρ) ◦ δS ,S ′ ◦ ∆
ρ

= ⊔ ◦ (B ⊗ id) ◦ (id ⊗ Πd,c) ◦ δS ,S ′ ◦ ∆
c .

(1.3.10)

Note that we are using here the fact that δS ,S ′ is acting on the left-channel
of the coproduct, while the coproducts ∆ω differ only in the right-channel,
so that the projections Πd,ρ and Πd,c commute with δS ,S ′ . The vanishing of
δS ,S ′ (∆(F)) is independent of which ∆ω is used, so this does not change when
MS ,S ′ (F) = F.

Lemma 1.3.6. The expression (1.3.7) agrees with the description of the action
of Merge on workspaces in (25), (26), and Elements (37) in all cases where
δS ,S ′ (∆(F)) , 0.

Proof. We need to check that indeed, when matches for S , S ′ exist, the Merge
operator MS ,S ′ searches for copies of the syntactic terms S and S ′ among the
accessible terms of a given workspace F, extracts those accessible terms to
perform the Merge operation on, and then finally, cancels copies from the
workspace, producing the resulting new workspace.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.3 Action of Merge on Workspaces 43

In (1.3.7) we see this description as in (37) by following, step by step, the
chain of compositions in (1.3.7).

1. The first operation, the coproduct ∆, produces (in the left-channel) all
possible collections Fv = Tv1 ⊔ · · · ⊔ Tvn of accessible terms Tvi of the
workspace. In the right-channel it keeps track of the corresponding re-
maining terms F/Fv.

2. The second operation δS ,S ′ searches for a matching term for S and S ′.
If none is found, then the chain of compositions ends. If a term with
Fv = S ⊔ S ′ exists, then this term is selected and the next step receives an
input of the form

(S ⊔ S ′) ⊗ F/Fv

as in (1.3.3) or as in (1.3.4).
3. The third operation B ⊗ id takes the term S ⊔ S ′ in the left-channel and

replaces it byM(S , S ′), while leaving the right-channel unchanged.
4. Finally, the product ⊔ reassembles the new workspace by merging back

the two channels of the coproduct into a single one, so that the resulting
new workspace looks like

M(S , S ′) ⊔ F/Fv .

In this new workspace the two accessible terms S , S ′ have been extracted
and merged into a new structure M(S , S ′) while in the remaining part of
the original workspace F/Fv the deeper copies of S and S ′ have been
cancelled.

This matches the description of the action of Merge given in (25) and (26),
modulo the small modification discussed in Remark 1.3.5. Workspaces that
contain matching accessible terms are replaced by a new workspace given by
merging the matching terms and by cancellation of the deeper copies, in the
form ∑

v,w :Tv=S ,Tw=S ′
M(Tv,Tw) ⊔ (T/Tv) ⊔ (T ′/Tw) ⊔ F̂ , (1.3.11)

where we include the sum over possibilities in case of multiple possible matches
in the same workspace, and F̂ is the rest of the workspace that is not involved
in the operation. We describe the various cases here in more in detail in §1.4.

Remark 1.3.7. In the second step only the terms of ∆(F) that have Fv =

Tv1 ⊔ Tv2 with two components can be selected by δS ,S ′ , while all other terms
are mapped to zero at this step. This makes it appear as if a large part of the
coproduct is superfluous. This is not the case, as we will discuss in §1.16,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

44 Chapter 1 Mathematical Structure

as they are used by another operations required in Minimalism, namely the
FormSet operation.

1.3.4 Examples
We can now compare again the mathematical formulation given here with
the same action as described in Elements (37). Let us consider the example
of equations (15), (16), and (17) of Elements (37). There, one considers a
workspace of the form WS = [eaten, {the, apple}] which we write in the math-
ematical notation as the forest F = T1⊔T2 with T1 the tree with a single vertex
labeled by the lexical item α =eat(en), and

T2 = β γ
with β = the γ = apple .

Then equation (16) of Elements (37) tells us that we want to use the Merge
operator

MS ,S ′ with S = α and S ′ = T2 .

According to our description of the action of Merge on workspaces,

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆

the first step in applyingMS ,S ′ to F is to compute the coproduct ∆(F). This is
computed as ∆(F) = ∆(T1)∆(T2), using (1.2.8). We obtain

∆(F) = F ⊗ 1 + 1 ⊗ F + α ⊗ T2 + T2 ⊗ α

+α ⊔ β ⊗ γ + α ⊔ γ ⊗ β + β ⊔ γ ⊗ α + α ⊔ β ⊔ γ ⊗ 1 ,

where the last two lines are the terms with simultaneous extraction of more
than one accessible term. Equivalently,

∆(eaten ⊔
the apple

) = eaten ⊔
the apple

⊗ 1 + 1 ⊗ eaten ⊔
the apple

+eaten ⊗
the apple

+
the apple

⊗ eaten

+ eaten ⊔ the ⊗ apple + eaten ⊔ apple ⊗ the + the ⊔ apple ⊗ eaten

eaten ⊔ the ⊔ apple ⊗ 1 .

The second step in the action of MS ,S ′ is to apply the operator δS ,S ′ to the
output of the coproduct to check for matching terms. The only term of the
coproduct that extracts two accessible terms matching S and S ′ is F ⊗ 1 =
α ⊔ T2 ⊗ 1. In all the other summands, the terms extracted do not match the
chosen pair S , S ′, so MS ,S ′ cannot act and just leaves F unchanged, just as

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.3 Action of Merge on Workspaces 45

required by the linguistic theory. (This is expressed by δS ,S ′ mapping these
terms to 1 ⊗ F.)

In the cases with matching terms δS ,S ′ acts as in (1.3.3) and finds the match-
ing term

δS ,S ′ (α ⊔ T2 ⊗ 1) = α ⊔ T2 ⊗ 1 = eaten ⊔
the apple

⊗ 1 ,

The last term here is just 1, since in this case both S , S ′ match with components
of F rather than with accessible terms inside components. Applying (B ⊗ id)
to this result yields

(B ⊗ id) (α ⊔ T2 ⊗ 1) =
α T2

⊗ 1 =
eaten

the apple

⊗ 1 .

In the last step, applying ⊔ multiplies together the two entries of the tensor
product, which gives

α T2
⊔ 1 =

α T2
=

eaten
the apple

since 1 is the unit of the product ⊔, so that we have obtained the workspace of
(17) of Elements (37):

α β γ
=

eaten
the apple

.

Remark 1.3.8. Note that in the action of External Merge, the operation δS ,S ′

singles out a term in the coproduct that belongs to its primitive part (1.2.9),
namely the part where each component Ta contributes only through Ta ⊗ 1 +
1 ⊗ Ta, and not through extraction of accessible terms. This is because Ex-
ternal Merge applies to components of the workspace rather than to accessible
terms contained inside components. The more interesting, non-primitive part
of the coproduct is needed in order to have a linguistic model that accounts for
Internal Merge (hence movement).

Remark 1.3.9. With our formulation of the action ofMS ,S ′ we also keep track
of some amount of extra information, which is counting how many of the pos-
sibilities for extraction of accessible terms yield a match (in this case two: both
α ⊗ T2 and T2 ⊗ α). This additional information about counting possibilities
is not carried over in the next, successive step of the derivation (in accordance
with the Markovian principle as stated in §3.3.3 of (37)) (see §1.9). Different

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

46 Chapter 1 Mathematical Structure

possible matching terms yield new workspaces to which, individually, one can
then apply the next Merge action.

1.4 Forms of Merge

One of the drawbacks of the formulation (1.3.7) of Definition 1.3.4 is that it al-
lows for additional forms of Merge, besides Internal and External Merge, that
are not considered desirable in certain linguistic accounts, such as “sideward
Merge” or “countercyclic Merge.” We discuss here how a simple modification
of our previous Definition 1.3.4 that incorporates a formulation of “Minimal
Search” suffices to eliminate these cases and retain only the (presumably) lin-
guistically desirable cases of External and Internal Merge (EM and IM). This
is the usual argument provided in linguistics, where only External and Inter-
nal Merge are intended to be retained based on Minimal Search, except that
here we reformulate it in a way that fits our algebraic setting, see §1.5. First,
we review in this section how the different cases of Merge are incorporated in
(1.3.7), then in §1.5 we describe how Minimal Search is implementable in our
Hopf algebra setting; then we show that this has the effect of retaining only
External and Internal Merge.

1.4.1 Different forms of Merge
In the description of Merge in Definition 1.3.4 one can distinguish several
cases. We recall here the various cases, and we show how they are realized
in the formulation given above.

Two syntactic objects α, β ∈ SO = TSO0 can occur in a workspaces F ∈
FSO0 either as “members”, in the terminology of (37) (that is, as connected
components of the forest F), or as “accessible terms” of members. We write
T ∈ F to indicate that a certain syntactic object T ∈ SO, seen as a tree, is a
connected component of the forest F. We write T ∈ Acc(T ′) to indicate that T
occurs as an accessible term T ′v of a syntactic object T ′ ∈ F.

Thus, we have the following three possibilities:

1. α = Ti and β = T j with Ti,T j ∈ F and i , j;
2. α = Ti ∈ F and β ∈ Acc(T j) for some T j ∈ F, with two sub-cases:

a) i = j

b) i , j

3. α ∈ Acc(Ti) and β ∈ Acc(T j) for some Ti,T j ∈ F, with two sub-cases:

a) i = j

b) i , j

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.4 Forms of Merge 47

1.4.2 External Merge
Case (1) describes External Merge: for a workspace F = ⊔aTa, the Merge
operationMTi,T j replaces the pair Ti,T j of elements of F with a new syntactic
object given by the tree Ti j = {Ti,T j} = M(Ti,T j), and produces the new
workspace

F′ = Ti j ⊔
⊔
a,i, j

Ta ,

where the two components Ti,T j of F have been removed and replaced by
the new tree Ti j = {Ti,T j}. External Merge decreases by one the number of
syntactic objects, and increases by two the number of accessible terms, by
adding Ti and T j to the set Acc(Ti) ∪ Acc(T j). In the case of External Merge
the following is immediately evident.

Lemma 1.4.1. External Merge is achieved by the operators MTi,T j of Defi-
nition 1.3.4 when the syntactic objects (trees) Ti,T j match two different con-
nected components of the workspace F = ⊔aTa. The operator δTi,T j in this
case selects the term of the coproduct of the form

(Ti ⊔ T j) ⊗ F̂ .

with F̂ = ⊔a,,i, jTa. The operator B ⊗ id then maps this term to

B ⊗ id : (Ti ⊔ T j) ⊗ F̂ 7→ M(Ti,T j) ⊗ F̂ ,

and finally applying the product ⊔ gives

MTi,T j (F) = M(Ti,T j) ⊔ F̂ ,

that is, the two components Ti,T j are merged while the rest of the workspace
F̂ remains unchanged.

1.4.3 Internal Merge
Case (2a) describes Internal Merge: in this case the new workplace F′ contains
a new component of the formM(β,Ti/β) for β ∈ Acc(Ti) an accessible term of
Ti and Ti a component of the given workspace F. The quotient Ti/β indicates
that the deeper copy of β as an accessible term of Ti is no longer an accessible
term of M(β,Ti/β) in F′, as β already occurs as accessible term at a higher
level in the new syntactic objectM(β,Ti/β) formed by Merge. In this case, the
realization of Internal Merge by the operatorsMS ,S ′ of Definition 1.3.4 is more
interesting, as it involves the composition of two such operators, and the role
of the multiplicative unit 1 of the Merge magma, given by the trivial tree.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

48 Chapter 1 Mathematical Structure

Proposition 1.4.2. Internal Merge is realized by the operators introduced in
Definition 1.3.4 as a composition

MT/β,β ◦Mβ,1, (1.4.1)

where 1 is the unit of the Merge magma, and where the tree β is an accessible
term of a connected component of F isomorphic to T .

Proof. The operator δβ,1 in Mβ,1, acting on the workspace F, will select a
term β ⊗ T/β in the coproduct ∆(F), where β occurs as accessible term of a
component T of F, using the identification β⊗T/β = (β⊔1)⊗T/β, since 1 is the
product unit. Then B⊗ id acts as the identity on (β⊔1)⊗T/β since B(β, 1) = β
and the product then maps this to β ⊔ T/β producing two components β =
M(1, β) and T/β. The operator MT/β,β can then be applied to β ⊔ T/β, as an
external Merge, where δβ,T/β selects the term β ⊔ T/β ⊗ 1 of the coproduct,
B ⊗ id maps it toM(β,T/β) ⊗ 1 and the product maps this toM(β,T/β) ⊔ 1 =
M(β,T/β), which is the Internal Merge. □

Remark 1.4.3. Note that in (1.4.1) internal Merge appears to involve the re-
peated application of two external Merge operations, one of them involving
the magma unit, that has the effect of extracting an accessible term and adding
it to the new workspace, together with the cancellation of its deeper copy. At
first glance, this appears to be a return to older formulations of Minimalism
where Internal Merge was considered a composite operation, later discarded
on the grounds that both external and internal Merge should both be the same
simple operation. While our formulation gives the impression that internal
Merge is more complex than external Merge, in fact this is not the case. The
formulation (1.4.1) is not equivalent to such older formulations: we will see
by examining Minimal Search, as well as by counting the size and number of
accessible terms, that the operationMβ,1 in fact can only occur in the combina-
tionMT/β,β ◦Mβ,1, that is by Internal Merge, and not on its own. Hence internal
Merge cannot be further decomposed; see also §1.4.3.1.

1.4.3.1 Is Internal Merge composite? If we look more closely at the form
(1.4.1) of internal Merge, we see that the role of the first operation Mβ,1 is to
move the term T/β from the right to the left channel of the coproduct, where B
can then combine it with β forming the mergeM(β,T/β), which is the desired
outcome of internal Merge.

Thus, the main reason for the apparent “composite” nature of internal Merge
is the fact that in (1.3.7) the grafting operation B acts only on the left-channel

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.4 Forms of Merge 49

of the coproduct. We explain here why this is both mathematically and linguis-
tically desirable.

Suppose that we were to instead define the Merge operationMS ,S ′ by access-
ing pairs of terms on the two sides of the coproduct. If applied to a workspace
consisting of a single syntactic object T , then this would be no problem, and
we could simply define an operator δ̃S ,S ′ that searches for S in the left channel
and for S ′ in the right channel (and viceversa for symmetry), selecting a co-
product term of the form β ⊗ T/β with S ≃ β and S ′ ≃ T/β. One could then
apply

M : TSO0 ⊗ TSO0 → TSO0

to this term and getM(β,T/β) as desired. This looks like a simpler description
of Merge than what we used in (1.3.7), and internal Merge is clearly not a
composite operation in this description.

The problem with this description arises when the workspace F has several
components, with several syntactic objects as members, say for simplicity F =
T1 ⊔ T2 ⊔ T3. Suppose that we proceed as proposed above and we want to
perform MS ,S ′ on this workspace. In the case of external Merge we already
run into a difficulty. Suppose that S ≃ T1 and S ′ ≃ T2. Then δ̃S ,S ′ can find S
in the left channel and S ′ in the right channel in the terms T1 ⊗ (T2 ⊔ T3) and
(T1⊔T3)⊗T2, or S ′ in the left channel and S in the right channel in T2⊗(T1⊔T3)
and (T3⊔T2)⊗T1 (These are some of the terms of ∆(F) = ⊔3

i=1∆(Ti) that come
from multiplying with ⊔ the primitive parts (1.2.9) of each ∆(T1).) Thus, there
are four terms selected by δ̃S ,S ′ . Now, however, we cannot apply

M : TSO0 ⊗ TSO0 → TSO0

to these terms, because in each of them one or the other side has two compo-
nents and so is in FSO0 and not in TSO0 . The only way to makeM act on inputs
in FSO0 is to mark which componentM should act on. Having to keep track of
specific components by marking them is a case of what is usually referred to in
linguistics as a coindexing operation–and that would violate the no tampering
condition (NTC), according to which Merge does not in any way modify the
combined objects.

If one instead makesM always derive its input entirely from the left channel
of the coproduct as the B ⊗ id operator, there is no coindexing involved and
NTC is preserved.

This choice, however, requires the possibility of moving a term from the right
to the left channel of the coproduct. This can again be done easily without any
need for coindexing, using the operationMβ,1 described above.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

50 Chapter 1 Mathematical Structure

Note that this does not mean that internal Merge is really a composite of
Merge operations, asMβ,1 is not in itself a Merge operation. This is so because
with 1 being the unit element, nothing is merged. We will discuss more in
detail the properties ofMβ,1 below and we will see that it does not in fact exist
on its own, so that the composite nature of (1.4.1) is purely illusory.

In Chapter 2 we will compare these forms of Merge with older versions of
Minimalism, such as Stabler’s computational minimalism. We will see that,
while here the same mechanism (1.3.7) accounts for both Internal and External
Merge, in older versions these two operations exhibit very different algebraic
structures, and need to be introduced as two separate mechanisms.

1.4.4 Internal Merge: an example
The description of Internal Merge given in Proposition 1.4.2 may at first seem
at odds with the usual description of IM in the literature (as given for instance
in §3.3.2 of Elements (37)). However, we can check via an explicit example
that our description is indeed the same as in (37).

Consider then the case of equations (18), (19), and (20) of Elements (37).
Here we start with a workspace of the form WS = [{was, {eaten, {the, apple}}}]
that we write as:

F = T =
was

eaten
the apple

=
α

β γ δ

We consider here, according to (19) of Elements (37), the action of Merge of
the form:

MS ,S ′ with S = T and S ′ =
γ δ

=
the apple

We write
T1 = α β

and T2 = γ δ

According to our Proposition 1.4.2, we first act usingMS ′,1. The corresponding
δS ′,1 finds a match in the term of the coproduct ∆(T) of the form

γ δ
⊗
α β

=
the apple

⊗
was eaten

where
T1 = α β

= T/d
γ δ

= T/dT2 (1.4.2)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.4 Forms of Merge 51

The latter can be also seen as in (1.3.10) as

was eaten
= T/dT2 = Πd,c(T/cT2) = Πd,c

 was
eaten {the, apple}


.

We can identify

γ δ
⊗
α β

=
γ δ

⊔ 1 ⊗
α β

.

Since B(T ⊔ 1) = T , we then obtain as a result ofMS ′,1 the forest

γ δ
⊔
α β

.

Then, following Proposition 1.4.2, we apply MT/S ′,S ′ to this forest. Here
δT/S ′,S ′ finds a match in the term

γ δ
⊔
α β

⊗ 1

of the coproduct, yielding under ⊔ ◦ (B ⊗ id) the new workspace:

γ δ α β

=

the apple was eaten

.

Note here that this differs from the way the resulting workspace is written in
equation (20) of Elements (37), as the deeper copy of T2 has been cancelled
when taking the quotient (1.4.2). If one keeps the quotient notation explicit,
using the quotient T/cT2 one could write instead the new workspace as:

T2 T/cT2
=

the apple
was

eaten {the, apple}

that would be more directly our analog of (20) of Elements (37), where the
quotient notation T/cT2 reminds us that this T2 is a copy, and is the deeper
copy that gets deleted.

1.4.5 Sideward Merge (2b) and (3b)
Case (2b) corresponds to a case of Sideward Merge. Here, one obtains in the
new workspace F′ a component of the form M(Ti, β) and a component of the
form T j/β. Similarly, case (3b) also represents a case of Sideward Merge,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

52 Chapter 1 Mathematical Structure

where in the resulting workspace F′ one has new components: M(α, β), as
well as Ti/α and T j/β.

In the form (2b) Sideward Merge was originally proposed in (90), and these
two types of Sideward Merge operations have been proposed as models for
various constructions in linguistics. However, Sideward Merge is criticized as
a proposal by Chomsky in (26) and (28).

These cases of Sideward Merge also occur in the formulation of Merge of
Definition 1.3.4, as the following statement clearly shows.

Lemma 1.4.4. The two cases of Sideward Merge (2b) and (3b) are realized by
the Merge operators of (1.3.7) withMTi,β with Ti occurring as a component of
F and β as an accessible term of a different component T j of F, andMα,β with
α ∈ Acc(Ti) and β ∈ Acc(T j), for two components i , j of F.

Proof. In the Sideward Merge (2b) the operator δTi,β picks the term of the
coproduct ∆(F), for F = ⊔aTa of the form

(Ti ⊔ β) ⊗ (T j/β ⊔ F̂) ,

with F̂ = ⊔a,i, jTa. ThenB⊗id acts on this term producingM(Ti, β)⊗(T j/β⊔F̂)
and applying the product ⊔ to this we obtainM(Ti, β) ⊔ T j/β ⊔ F̂ as expected.
The case of the Sideward Merge (3b) is analogous with δα,β selecting the term

(α ⊔ β) ⊗ (Ti/α ⊔ T j/β ⊔ F̂)

which is mapped toM(α, β)⊗ (Ti/α⊔T j/β⊔ F̂) by B⊗ id and then toM(α, β)⊔
Ti/α ⊔ T j/β ⊔ F̂ as expected. □

1.4.6 Countercyclic/Sideward Merge (case 3a)
The last remaining case (3a) corresponds to what is sometimes regarded as
a form of Countercyclic Merge, for instance in (60). In general, in linguistics
one refers of countercyclic constructions to indicate operations where structure
formation/modification on a tree is performed away from the root vertex. The
case described above can be seen as a special case of this situation, since case
(3a) results in modifying one of the components T of the workspace away from
its root. However, the extraction of two substructures Tv and Tw from a tree
T and the merging of them into a new componentM(Tv,Tw) of the workspace
is also regarded as a further form of Sideward Merge. For example, our case
(3a) was considered in (181) as a form of Sideward Merge, where both Tv

and Tw simultaneously perform sideward movement, and is proposed in (181)
as a model for cleft sentences with multiple phrases in the focus position in

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.5 Minimal Search 53

Japanese. This form of Merge is also criticized in (26), (28), and arguments
for ruling out these extensions of Merge are discussed in (95) and in (60).

In our case (3a) the new workspace F′ contains a new component M(α, β)
and a modified component Ti/(α, β), where we write Ti/(α, β) for the cancel-
lation from the accessible terms of the deeper copies of α and β inside Ti.

This type of Merge can also be obtained through our formulation (1.3.7). In
this case, as for the Internal Merge, one uses a composition of operatorsMS ,S ′ .

Lemma 1.4.5. The case (3a) of Merge is realized as Mα,β where matching
terms in F = ⊔iTi are found as disjoint accessible terms α ≃ Tv, β ≃ Tw of
the same component Ta of the workspace, corresponding to an admissible cut
on two edges, and to a term of the coproduct of the form Tv ⊔ Tw ⊗ (Ta/(Tv ⊔

Tw) ⊔ F̂), with F̂ = ⊔i,aTi.

Proof. Indeed in this case the operator δα,β selects a term of the form Tv⊔Tw⊗

(T/(Tv⊔Tw)⊔ F̂) in the coproduct, with α ≃ Tv, β ≃ Tw, that B⊗ id then maps
toM(Tv,Tw)⊗(T/(Tv⊔Tw)⊔F̂) and ⊔maps toM(Tv,Tw)⊔T/(Tv⊔Tw)⊔F̂. □

This brief discussion shows that, in addition to Internal and External Merge,
our construction allows for three extensions of Merge, of the form (2b), (3a),
and (3b) that correspond to forms of Sideward and possibly Countercyclic
Merge, that are considered undesirable in certain linguistic accounts such as
Elements. We show in the next subsection how one can introduce a simple
weight (cost function) on the Merge operation described in (1.3.7) that will re-
tain only Internal and External Merge. This will correspond to implementing
Minimal Search to eliminate the unwanted extensions of Merge.

Remark 1.4.6. Countercyclic Merge more generally refers to other construc-
tions on trees performed at non-root vertices (especially insertions of structures
at internal vertices) that are not attainable in our setting, through the Hopf al-
gebra coproduct and the grafting operations. This is because Hopf coproduct
grafting always involves the root vertex. In contrast, all countercyclic con-
structions involving insertions at internal non-root vertices are a priori not im-
plementable as extensions of Merge in our formalism. All Countercyclic forms
of Merge are considered controversial as linguistic models.

1.5 Minimal Search

To avoid misunderstandings regarding the purpose of the construction in the
coming §1.5.1 and §1.5.3, it is worth stressing that our goal here is sim-
ply to implement the usual mechanism by which, in linguistics, only Inter-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

54 Chapter 1 Mathematical Structure

nal and External Merge are in general retained, and not other extensions of
Merge, namely the mechanism of Minimal Search. Where our presentation
differs from the usual formulation in linguistics is that we provide a somewhat
different-looking, but in fact equivalent, description of Minimal Search.

The reason why we introduce a reformulation of Minimal Search is the fol-
lowing. We are arguing here that all the key properties of Merge follow directly
from underlying Hopf-algebraic properties. In particular, in order to show that
this is the case, we need to reformulate all the necessary aspects of the linguis-
tic description of the key Merge operation in such algebraic terms, including
Minimal Search. This requires describing the “minimality” property of Min-
imal Search in terms of a minimization procedure that can be made sense of
entirely in terms of the associated algebraic structure. We argue in §1.5.1 and
§1.5.3 below that this can indeed be done, with minimality expressed in the
form of extraction of a leading order term, with respect to a suitable grading
(cost function) associated to the terms of the coproduct.

1.5.1 The Minimality of Minimal Search
In the formulation of Merge in Chomsky’s accounts in (25) and (26), the search
for matching copies of S , S ′ in the workspace components and accessible terms
to serve for application ofMS ,S ′ is performed according to a “Minimal Search”
principle, where accessible terms in the higher levels of trees are preferentially
searched, before those occurring in the deeper levels.

This should be compared with the discussion of Minimal Search in §3.3.2 of
Elements (37), that analyzes this situation in terms of the question: given the
resources available in the workspace, what does Search locate, and why? In the
description given in Elements (37), Search first locates a connected component
(member) of the workspace and then searches for another term to merge with
this, either in the form of another component (External Merge) or in the form
of an accessible term of the component first selected (Internal Merge). All
other forms of Merge are expected to be less cost-effective than this form of
search, which is therefore described as “Minimal Search.”

To clarify why we want to provide a mathematical formulation for this de-
scription of Minimal Search, and to explain its “minimality,” consider the fol-
lowing problem. Suppose given a workspace F = T1 ⊔ T2, where T1 and T2

are the trees of Figure 1.4. Suppose then that we are acting on this workspace
with the Merge operator MS ,S ′ where S = T1 and the other syntactic objects
S ′ ∈ SO is the tree β in the figure, which has a match in the workspace F both
as an accessible term of T1 and as an accessible term of T2. We need to justify
why Minimal Search as described above would more easily (at a lower com-
putational cost) find the occurrence of S inside T1, even if it is much deeper

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.5 Minimal Search 55

into the tree and further away from the root, rather than the occurrence in T2,
even though that is located very near the root of a smaller tree, hence appar-
ently easier to find in a search. This question will be answered using a cost
function, which we define by assigning“weights” to the terms occurring in the
coproduct, that will, in a natural way, assign a lower cost to performing the
MergeM(T1, β) using the occurrence of β inside T1 than the one inside T2.

Figure 1.4
Minimal Search forMS ,S ′ with S = T1 and S ′ = β should assign a lower cost to finding
the copy of β inside T1 than the one inside T2.

What we will do here is to quantify, in our description of the action of Merge,
exactly in what sense the Minimal Search described in §3.3.2 of Elements (37)
is indeed minimal, demonstrating that External and Internal Merge are indeed
the most efficient (leading order terms in our formulation) possibilities while
other forms of Merge are not. Since in our description of the action of Merge
the possible material available for search is given by the terms of the coprod-
uct of the Hopf algebra, a quantitative measure of cost/efficiency of different
choices should be a way of assigning a “weight” to the terms occurring in the
coproduct that reflects a measure of how computationally hard it is to locate
that term and extract it from the object being decomposed by the coproduct,
and perform the corresponding cancellation of the deeper copy. What we mean
by saying that our choice of cost function (of weights) should be “natural” is
that it should be defined in a way that does not introduce any arbitrary new data
and only uses the form of the coproduct that we already have in the formalism
for the Merge operator. This means that such a weight/cost function is not an
arbitrary choice and is already implicitly built into (1.3.7).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

56 Chapter 1 Mathematical Structure

The coproduct extracts the entire list of accessible terms (simultaneously
implementing the cancellation of deeper copies). It is then natural that a weight
measuring the cost of the extraction of a particular accessible term will depend
on the distance from the root vertex of that accessible term Tv ⊂ T from the
root of T . This is not all though, in the sense that, while this will assign a
cost to the extraction of Tv, we also need to assign a cost to simultaneously
perform the corresponding quotient operation T/Tv in the right-channel of the
coproduct. The cost of this operation will also naturally depend on the location
of Tv ⊂ T in terms of its distance from the root vertex, but it is clear that the
dependence of the cost on this distance should be inversely related in the two
cases. Indeed, if on the one hand one can expect that the cost of extracting a
term Tv that is very deep into a T should be high compared to extracting near
the root of T , the cost of quotientlng out a very deep term in T should be very
low (since heuristically if Tv is very deep, then T and T/Tv do not differ much).
We formalize this idea in §1.5.2

1.5.2 Weighted terms in the coproduct
We want to assign a cost to the operation M(α, β) where α, β is material ob-
tained from a given workspace F. We will let this cost function depend on
a parameter ϵ > 0. This is so that the minimal cost can be reinterpreted as
the identification of a leading term, when one takes a limit on the parameter
ϵ → 0.

We assign a cost to the structures obtained from the given workspace as terms
in the coproduct in the following way.

1. Weight of extracted accessible terms. It is reasonable to assume that the
cost increases with the depth at which the accessible term is located (the
depth of where the admissible cut has to be performed), so we assign to
Tv ⊂ T a weight of ϵdv , with dv = dist(v, vT) for vT the root of T .

2. Weight of quotient terms. It is also reasonable to assign a cost to perform-
ing the operation T 7→ T/Tv. The larger dv is the more similar T and T/Tv

are (the farther down the tree one needs to search to notice the difference).
Thus, it is reasonable to assign to the quotient T/Tv a weight of ϵ−dv .

3. Weight of multiple extractions/quotients. If a collection of disjoint ac-
cessible terms Fv = Tv1 ⊔ · · · ⊔ Tvn is simultaneously extracted from the
workspace F, the weight associated to the extraction is taken to be the
product of the weights, ϵdv with dv = dv1 + · · · + dvn . Correspondingly, in
the quotient term F/Fv, every quotient of a component of Fv produces a
weight of ϵ−dvi . Thus, a term of the form Fv ⊗ F/Fv in the coproduct ∆(F)
has weight ϵdv in the left channel and weight ϵ−dv in the right channel.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.5 Minimal Search 57

4. Cost of grafting. We can then assign a cost to the operation of grafting
together two trees to a common root. The MergeM(T, 1) = T should be a
no-cost operation, regardless of the weight of T , since nothing is merged
in this case, so we assign to M(T, 1) = T cost c(M(T, 1)) = 0 and weight
equal to the weight of T . In the nontrivial case, we assign to M(T,T ′) a
cost that is obtained from the weights of the two merged components, so
if T has weight ϵd and T ′ has weight ϵd′ , then we set c(M(T,T ′)) = d + d′

and weight ϵd · ϵd′ = ϵc(M(T,T ′)).
5. Cost/weight of derivations. Suppose given a derivation (in the linguistic

sense) consisting of a finite sequence of Merge operations φ = MS n,S ′n ◦

· · · ◦MS 1,S ′1 . Then the total cost is the sum of the costs of the individual
Merge operations, c(φ) =

∑
i c(MS i,S ′i) and the weight is the product of the

weights, ϵc(ϕ) =
∏

i ϵ
c(MS i ,S

′
i
).

Taking the parameter ϵ > 1 gives larger weight (a multiplicative form of cost)
to an extraction of a Tv with larger dv (father away from the root) and lower
weight (cost) to a deeper quotient (with largert dv) as discussed in §1.5.1.

1.5.3 Minimal Search: Internal and External Merge
Given this accounting, then to evaluate the resulting cost of a Merge operation,
we keep track of these weights and cost function, by making them explicit in
(1.3.7) by taking

M
ϵ
S ,S ′ (F) = ⊔ ◦ (Bϵ ⊗ id) ◦ δS ,S ′ ◦ ∆ , (1.5.1)

where the weighted grafting operator Bϵ is defined as

Bϵ(α ⊔ β) = ϵc(M(α,β)) B(α ⊔ β) . (1.5.2)

Proposition 1.5.1. Consider weights/costs as above andMϵ
S ,S ′ as in (1.5.1).

• The only zero-cost Merge operations are Internal and External Merge. All
other forms of Merge (2b), (3a), (3b) have higher cost.

• For ϵ < 1, Internal and External Merge are the leading order terms in any
derivation.

• In the limit ϵ → 0 only derivations in which all the Merge operations are
Internal and External Merge remain.

Proof. External Merge applied to a workspace F = ⊔aTa merges two compo-
nents of the workspace,M(Ti,T j) with cost c(M(Ti,T j)) = 0 since for both the
distance to the root is zero. Thus, (1.5.1) produces

ϵc(M(Ti,T j))M(Ti,T j) ⊔ F̂ = M(Ti,T j) ⊔ F̂

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

58 Chapter 1 Mathematical Structure

with F̂ = ⊔a,i, jTa. Thus, External Merge has cost zero and weight one.
Internal Merge is obtained as Mϵ

Tv,Ti/Tv
◦ Mϵ

Tv,1
= Mϵ

Tv,Ti/Tv
◦ MTv,1, which

gives
ϵc(M(Tv,Ti/Tv))

M(Tv,Ti/Tv) ⊔ F̂ ,

for F̂ = ⊔a,iTa. We have c(M(Tv,Ti/Tv)) = c(Tv)+ c(Ti/Tv) = dv − dv = 0. So
Internal Merge also is zero-cost with weight one.

In the Sideward Merge of type (2b) we haveMϵ(Tv,T ′) where T ′ is a compo-
nent of the workspace F and Tv is an accessible term Tv ⊂ T of a different com-
ponent T , T ′. This Merge operation has cost c(Mϵ(Tv,T ′)) = c(Tv)+ c(T ′) =
c(Tv) = dv > 0 so in this case we obtain ϵdvMϵ(Tv,T ′) ⊔ T/Tv ⊔ F̂.

In the type (3a) case we haveMϵ(Tv,Tw) with Tv,Tw disjoint accessible terms
of the same component T of the workspace F. We have c(Mϵ(Tv,Tw)) = dv +

dw > 0 and we obtain ϵdv+dwMϵ(Tv,Tw) ⊔ T/(Tv ⊔ Tw) ⊔ F̂.
In the type (3b) case we have Mϵ(Tv,Tw) with Tv ⊂ T , Tw ⊂ T ′ accessible

terms of components T , T ′ of the workspace F. This has c(Mϵ(Tv,Tw)) =
dv + dw > 0 so we obtain ϵdv+dwMϵ(Tv,Tw) ⊔ T/Tv ⊔ T ′/Tw ⊔ F̂.

Clearly for ϵ < 1 the dominant terms are those involving Internal and Exter-
nal Merge as the other ones are scaled by some ϵd < 1 factor. In particular, in
the limit ϵ → 0 any chain φ = MS n,S ′n ◦ · · · ◦MS 1,S ′1 that contains at least one
term MS i,S ′i that is of type (2b), (3a), or (3b) will have weight ϵc(φ) → 0, so
the only derivations that remain are those involving only External and Internal
Merge. □

In particular, in the example of Figure 1.4, Mϵ(T1, β) with the occurrence
β ⊂ T1 (Internal Merge) has cost zero (weight one), while with the occurrence
β ⊂ T2 (Sideward Merge of type (2b)) has cost dv > 0 and weight ϵdv , so
that the first option is more cost effective than the second, despite the fact that
β ⊂ T1 is deeper in the tree than β ⊂ T2.

The cost function described here then implements the minimality of Minimal
Search as expected by linguistic theory, see §3.3.2 of (37).

1.6 Other linguistic properties

We verify in this section that the action of Merge on workspaces defined as
in (1.3.7) satisfies other desired linguistic properties of the linguistic theory
in Elements (37). We have seen in §1.4 that (1.3.7) accounts for the usual
types of Merge: External and Internal Merge, and for three extended forms of
Merge of Sideward/Countercyclic type. We showed in §1.5 that our model also
provides a natural choice of a cost function that implements Minimal Search,
eliminating the linguistically undesirable extended forms.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 59

We now show that several properties that are imposed empirically on Merge
are in fact naturally built into the mathematical formulation. In particular,
we discuss the requirement that Merge does not decrease the total size of
workspaces in the course of a derivation; rather, increases it at most by one
at each derivational step, as required in Elements, (37). We show that these
empirical constraints on workspace size are indeed satisfied by the dominant
(Minimal Search) partMϵ

S ,S ′ |ϵ=0 obtained as in Proposition 1.5.1, that recovers
internal/external Merge, while violations occur when one also includes Side-
ward/Countercyclic Merge, confirming what is known from linguistic theory.

Moreover, in §1.8 we will also show that the cancellation of copies of ac-
cessible terms in the resulting workspaces is dictated not only by “economy
principles” like these, but also by algebraic constraints, dictated by the coasso-
ciativity property of the coproduct ∆c.

1.6.1 Minimal Yield and Complexity
We now analyze the effect of the action of Merge on workspaces in terms the
size of the workspace and on the number of accessible terms.

Our discussion here should be directly compared with the discussion on
Merge and the non-expansion of the workspaces in §4 of Elements (37). The
results we obtain in this subsection, on the effect of different forms of Merge
on various measures of workspace size, quantify what is described in §4 of El-
ements (37) as “Resource Restriction” and “Minimal Yield,” namely the prin-
ciple that Merge yields the fewest possible new terms accessible for further
computation. These restrictions are intended to be associated with notions of
limitations on computational resources, e.g., so-called “Third Factor” princi-
ples; see Elements for further discussion.

Recall from Definition 1.2.2 that one can evaluate the size of the workspace
in terms of one of the following measures:

• the number b0 of connected components of the workspace F = ⊔a∈ITa, that
is, b0(F) = #I, the number of syntactic objects Ta;

• the number α of accessible terms of the components,

α(F) = #Acc(F) =
∑

a

#Acc(Ta) ;

• the number σ of accessible terms of the workspace (components and acces-
sible terms of each component),

σ(F) = #Acc′(F) = b0(F) + #Acc(F) = b0(F) +
∑
a∈I

#Acc(Ta) . (1.6.1)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

60 Chapter 1 Mathematical Structure

The counting of the effect of Merge on the number of accessible terms de-
pends on the cancellation of the deeper copy, as we will see more precisely
below, that is, on the use of the coproduct ∆c or ∆d. This bookkeeping gives
rise to slightly different counting of the effect on the size of the workspace. We
will see that it is in some way more natural, in view of the formulation of Min-
imal Yield we give in Definition 1.6.1, to use the form ∆c of the coproduct to
evaluate this counting. However, we also explain how one can use a different
counting, directly based on the grading of the Hopf algebra, that has two main
advantages over the measures b0, α, σ explained above: it is not sensitive to the
difference between the forms of quotient used in the different coproducts ∆c,
∆d, ∆ρ and does eliminate in a very transparent and straightforward way all the
unwanted forms (2b), (3b), (3a) of Sideward/Countercyclic Merge discussed
in Section 1.4.1.

In Elements (37), “Resource Restriction” in its instantiation as the “Minimal
Yield” principle is described as the empirical constraint that Merge yields the
fewest possible new terms accessible to further operations. We formulate this
principle here as the following requirement.

Definition 1.6.1. A transformation of workspaces Φ : FSO0 → FSO0 satisfies
the Minimal Yield principle if the following conditions hold:

σ(Φ(F)) = σ(F) + 1 (minimality of yield)
b0(Φ(F)) ≤ b0(F) (no divergence)
α(Φ(F)) ≥ α(F) (no information loss)

(1.6.2)

The requirement b0(Φ(F)) ≤ b0(F) is meant to ensure the convergence of
derivations, while α(Φ(F)) ≥ α(F) is meant to avoid syntactic information
loss, and σ(Φ(F)) = σ(F)+1 is a constraint that balances these two conditions
(since σ = b0 + α) and encodes the “minimality” of “Minimal Yield”. (One
can consider a weaker form by only requiring the two bounds on b0 and α.)

We also present a different “Resource Restriction” requirement–an alterna-
tive to the constraints expressed in Definition 1.6.1. What we want to de-
scribe here is the idea that Merge recursively builds hierarchical structures of
increasing complexity. Consequently, a natural constraint on Merge operations
arises by requiring that the complexity of the syntactic objects present in the
workspace is non-decreasing when Merge is applied. Namely, the components
of the workspace either remain untouched by Merge or contribute to the build-
ing of a new structure that should have greater (or at least the same) complexity.
A very simple measure of the level of complexity of the syntactic objects in a
workspace is their degree as elements in the Hopf algebra. The Hopf algebra
is graded by the number of leaves of the trees/forests. We can see how this

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 61

provides an estimate of the complexity of the structure, as a binary rooted tree
T with n = #L(T) leaves has depth at least log2(n), and the depth (the longest
path from the root to a leaf) is the most basic measure of the complexity of a
binary rooted tree.

In the free non-associative commutative magma SO of syntactic objects
this measures the number of iterations of the Merge magma multiplication M
needed to generate that structure. The lower bound on the depth given in terms
of the Hopf algebra grading behaves better than the depth itself, as it is more
stable. We therefore consider the constraint, which we are going to call “No
Complexity Loss” principle, that this lower bound on complexity (measured
by the Hopf algebra) is non-decreasing over components of the workspace.

Definition 1.6.2. Suppose given a transformation of workspaces Φ : FSO0 →

FSO0 . For F ∈ FSO0 let π0(F) denote the set of connected components of F:
for F = ⊔a∈ITa, one has π0(F) ≃ I. The induced map Φ0 : π0(F)→ π0(Φ(F))
maps a component a ∈ π0(F) to the componentΦ0(a) of π0(Φ(F)) that contains
the image of the root vertex of the component Ta of F. We say thatΦ : FSO0 →

FSO0 satisfies the No Complexity Loss principle if, for all a ∈ π0(F)

deg(Φ0(a)) ≥ deg(a) , (1.6.3)

where deg(a) is the degree of the component Ta as an element of the Hopf
algebra, that is, deg(a) = #L(Ta). We define associated “degree loss” function
as

DL(Φ, F) = min
a∈π0(F)

(deg(Φ0(a)) − deg(a)) (1.6.4)

with (1.6.3) equivalent to DL(Φ, F) ≥ 0.

Observe that the overall degree deg(F) = #L(F) of the workspace F ∈ FSO0

is a conserved quantity throughout all the forms of Merge described by (1.3.7),
as none of the lexical items originally present in the workspace is ever re-
moved. However, what (1.6.3) is measuring is how the degrees deg(Ta) =
#L(Ta) of the individual components of the workspace change under the ef-
fect of the various forms of Merge, by following which structures combine
together and are altered by the transformation, so it is a much more refined
counting than just the total degree deg(F). The No Complexity Loss principle
expresses the idea that Merge is a structure formation operation and should al-
ways generate structures with increasing, or at least non-decreasing, minimal
complexity.

We show that this Minimal Yield property of Definition 1.6.1 holds for the
dominant term (the ϵ = 0 term) of the Merge action of Proposition 1.5.1,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

62 Chapter 1 Mathematical Structure

namely Internal/External Merge, while it fails for the forms (3b) and (3a) of
Sideward/Countercyclic Merge (2b), of Section 1.4.1. This recovers an ob-
servation already known from linguistics. We also analyze how the measures
b0, α, σ of size of workspaces described in Definition 1.2.2 transform under
Merge and we give further supportive evidence, based on this counting, of the
fact that Internal Merge is not a “composite” operation, despite appearance.
We also show, however, that the Sideward Merge of type (2b) cannot be dis-
tinguished from Internal Merge solely on the basis of the size measures of
Definition 1.2.2, so it is not eliminated by Minimal Yield requirements as in
Definition 1.6.1. On the other hand, we show that our “No Complexity Loss”
of Definition 1.6.2 suffices to easily rule out all the forms (2b), (3b), (3a) of
Sideward/Countercyclic Merge, leaving only Internal and External Merge.

1.6.2 Cases of Merge and size counting
We look at the change in each of the measures b0, α, σ produced by the action
of Merge F 7→ F′ = MS ,S ′ (F). We first discuss the cases of External/Internal
Merge. We then discuss the other forms of Merge that are eliminated by Mini-
mal Search, according to Proposition 1.5.1.

Lemma 1.6.3. For a workspace F, the counting α of accessible terms satisfies

α(M(Tv,Tw)) = α(Tv) + α(Tw) + 2 (1.6.5)

σ(M(Tv,Tw)) = σ(Tv) + σ(Tw) + 1 (1.6.6)

for any v,w ∈ V(F), and for an accessible term Tv ⊂ T,

α(T) = α(Tv) + α(T/dTv) + 2 (1.6.7)

α(T) = α(Tv) + α(T/cTv) + 1 . (1.6.8)

Correspondingly, we also have

σ(T) = σ(Tv) + σ(T/dTv) + 1 . (1.6.9)

σ(T) = σ(Tv) + σ(T/cTv) . (1.6.10)

Proof. In the first case, the mergeM(Tv,Tw) contains all the accessible terms
of Tv and Tw. Moreover, the root vertices of Tv and Tw also correspond to two
accessible terms ofM(Tv,Tw) given by the full components Tv and Tw, respec-
tively. This gives (1.6.5), while the total number of vertices increases by one
(the new root vertex), which gives (1.6.6). In the case of the quotient T/dTv,
according to Definition 1.2.5, T/dTv is obtained by removal of Tv, contraction
of the edge above the root of Tv and of the other edge adjacent to it at the vertex

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 63

above the root of Tv, so that all the vertices of Tv as well as one additional ver-
tex of T are removed to form T/dTv. Thus, the total number of vertices satisfies
(1.6.9). When counting accessible terms, we then obtain (1.6.7). Similarly, in
the case of the quotient T/cTv, where the subtree Tv is contracted to its root
vertex, all the accessible terms (non-root vertices) of Tv are remover from T to
form T/cTv, leaving α(T) − α(Tv). Moreover, the leaf of T/cTv corresponding
to the root vertex of Tv, with label Tv, is no longer counted as an accessible
term of T/cTv (cancellation of the deeper copy), so that we have a resulting
counting as in (1.6.8). □

Note that, in the case case of σ(T/cTv), this is not exactly the total number
of vertices of T/cTv, as it does not count the leaf labelled by Tv among the
accessible terms in Acc′(T/cTv). It is in fact the total number of vertices of
ρC(T) with C the elementary admissible cut with πC(T) = Tv.

Proposition 1.6.4. Under External and Internal Merge, the effect on the count-
ing functions of Definition 1.2.2 is given by the following table, where we dis-
play the difference between the counting function before and after the applica-
tion of Merge.

Type of Merge Coproduct b0 α σ

External ∆c and ∆d −1 +2 +1
Internal ∆c 0 +1 +1
Internal ∆d 0 0 0

Thus, the counting with ∆c satisfies all the constraints of Definition 1.6.1, while
the counting with ∆d satisfies the weaker form only.

Proof. In the case of External Merge, for F = ⊔aTa, we have F′ = MS ,S ′ (F)
given by

F′ = M(Ti,T j) ⊔ F̂(i, j) ,

with Ti ≃ S , T j ≃ S ′ (where S , S ′ are assumed to be non-trivial syntactic
objects, that is, not equal to 1), and with F̂(i, j) = F ∖ (Ti ⊔ T j) the remaining
components. Thus, the number of connected components (of syntactic objects
in the workspace) decreases by one, b0(F′) = b0(F)− 1. The number of acces-
sible terms Acc(F) increases by 2 by (1.6.5) and the total number of vertices
(accessible terms Acc′(F) increases by 1 by (1.6.6). The counting for Exter-
nal Merge is independent of the choice of the coproduct, as ∆c and ∆d have
the same primitive part where no quotient term T/Tv is involved. The spe-
cial case MS ,1, where S ′ = 1 is the trivial object (empty tree) is discussed in
Remark 1.6.7 below.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

64 Chapter 1 Mathematical Structure

In the case of Internal Merge, the number of connected components (number
of syntactic objects in the workspace) remains unchanged, as Internal Merge
operates on a single tree, so b0(F′) = b0(F). The number of accessible terms
is obtained by combining (1.6.5) and (1.6.7) or (1.6.8). In the case of the
coproduct ∆d we obtain

α(M(Tv,T/dTv)) = α(Tv) + α(T/dTv) + 2 = α(T)

so the number of accessible terms is conserved under Internal Merge, while
with respect to the coproduct ∆c we obtain a counting

α(M(Tv,T/cTv)) = α(Tv) + α(T/cTv) + 2 = α(T) + 1

so the number of accessible terms increases by one. The number σ of Acc′(F)
is correspondingly also preserved in the case of the coproduct ∆d and increases
by one in the case of ∆c. □

Remark 1.6.5. The number of connected components decreases by one un-
der External Merge while remaining unchanged under Internal Merge, so the
number of components of the workspace decreases overall during the course
of a derivation, as expected, leading to the desired “convergence.”

Remark 1.6.6. The fact that with External Merge the number of syntactic
objects decreases by one at each derivation step and the number of acces-
sible terms increases by two, while under Internal Merge with ∆d both the
number of syntactic objects and the number of accessible terms remain the
same, is consistent with the counting described in (60). Note that if one takes
the quotient T/cTv of the coproduct ∆c instead, then the number of accessible
terms (counted by α or by σ) in Internal Merge would increase by one: this
is the counting considered by Riny Huijbregts. With this choice of quotient
and counting, both Internal and External Merge would increase the number σ
of accessible terms Acc′(F) by exactly one. This makes using the counting
with ∆c more natural in terms of what is empirically expected of Merge. This
difference in counting with ∆c and ∆d only reflects different measures of size
(which we may call σd and σc, etc.) not a difference in the Merge operation
itself, since (1.3.10) is the same as (1.3.7).

Remark 1.6.7. In the special case of a MergeMS ,1, where S ′ = 1 is the trivial
syntactic object (empty tree), if S is matched by a component tree Ti of the
workspace forest F = ⊔aTa, thenM(Ti, 1) = Ti so F′ = MS ,1(F) = F and the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 65

operation is just the identity. In the case of interest for us, where S is matched
by a subtree Ti,vi of a component Ti of F, then

MS ,1(F) = M(Ti,vi , 1) ⊔ Ti/Ti,vi ⊔ F̂ = Ti,vi ⊔ Ti/Ti,vi ⊔ F̂ ,

for F̂ = ⊔a,iTa. In this case the number of connected components grows by
one, as the original component Ti is separated into two components. We also
have

σ(Ti,vi ⊔ Ti/
cTi,vi) = σ(Ti,vi) + σ(Ti/

cTi,vi) = σ(Ti) ,

where the leaf with label Ti,vi is not included in Acc′(Ti/
cTi,vi) so the root vertex

of Ti,vi is counted only once, while

σ(Ti,vi ⊔ Ti/
dTi,vi) = σ(Ti,vi) + σ(Ti/

dTi,vi) = σ(Ti) − 1 ,

because of the edge contraction and resulting identification of two vertices in
forming the quotient Ti/

dTi,vi . The counting α of accessible terms then satisfies

α(Ti,vi ⊔ Ti/
cTi,vi) = α(Ti) − 1

α(Ti,vi ⊔ Ti/
dTi,vi) = α(Ti) − 2

Thus, we have the table

Merge Coproduct b0 α σ

MS ,1 ∆c +1 −1 0
MS ,1 ∆d +1 −2 −1

Thus MS ,1 violates all the constraints of Minimal Yield of Definition 1.6.1,
and this implies that a Merge of the formMS ,1 can only occur in compositions
Mβ,T/β ◦Mβ,1 that give Internal Merge as in Proposition 1.4.2, but not alone,
since otherwise we would violate such constraints. This is consistent with the
fact that the weight in ϵ in Proposition 1.5.1 also excludes the occurrence of a
MergeMS ,1 by itself rather than in a composition that forms an Internal Merge.

In light of Remark 1.6.7, we can revisit the discussion on the apparent “com-
posite” nature of Internal Merge of §1.4.3.1. The operationMS ,1 used in writ-
ing Internal Merge in the form MS ,T/S ◦MS ,1 does not stand on its own as a
merge operation, because it violates the expected properties of non-increasing
number of components and non-decreasing number of accessible terms. How-
ever, these bad properties disappear when MS ,1 occurs in the combination
MS ,T/S ◦ MS ,1 which satisfies both requirements. One can think of an anal-
ogy, where MS ,1 in the decomposition MS ,T/S ◦ MS ,1 plays a role similar to
the “virtual particles” in the physics terminology, which appear in the compu-
tations of interactions, but do not exist independently, as they have the wrong

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

66 Chapter 1 Mathematical Structure

physical parameters, as they do not obey the correct energy-momentum re-
lation (off mass shell). The decomposition of interactions into exchanges of
virtual particles that happens in quantum field theory does not correspond to
an actual physical decomposition, as the virtual particles are not detectable
inputs/outputs. The situation with the apparent “composite” nature of Inter-
nal Merge is somewhat similar, in the sense that the “virtual” merge operation
MS ,1 only appears as part of computation but does not have an independent
existence as a form of Merge.

The remaining cases of the Merge operation (1.3.7), which are subdominant
in ϵ → 0 in (1.5.1) (hence eliminated by Minimal Search) have a different
behavior with respect to the counting functions of Definition 1.2.2.

In the following list of cases we assume that the admissible cuts extracting
the accessible terms do not happen at the edges immediately below the root of
a component of the workspace. This special case can be handled separately
and can be easily seen to also violate, in these extended forms of Merge, the
empirical constraints “Minimal Yield”, so we do not discuss it explicitly.

We carry out here all the size computations with respect to the coproduct ∆c,
as that gives a more transparent interpretation of the Minimal Yield condition,
in view of what we have seen in Proposition 1.6.4.

Proposition 1.6.8. In the cases of the Sideward/Countercyclic forms of Merge
(1.3.7) of type (2b) (3b) and (3a), we have the following change in the counting
functions of Definition 1.2.2.

Merge Coproduct b0 α σ

(3b) ∆c +1 0 +1
(3b) ∆d +1 −2 −1
(2b) ∆c 0 +1 +1
(2b) ∆d 0 0 0
(3a) ∆c +1 0 +1
(3a) ∆d +1 −2 −1

Thus, all but the type (2b) form are ruled out by the Minimal Yield principle,
in the strong form (for ∆c) or in the weak form (for ∆d).

Proof. In the case of case of Sideward Merge, case (3b) of Section 1.4.1, we
have, for F = ⊔iTi,

F′ = M(Ta,va ,Tb,wb) ⊔ Ta/Ta,va ⊔ Tb/Tb,wb ⊔ F̂(a,b) ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 67

with F̂(a,b) = ⊔i,a,bTi. Thus, the number of connected components increases
by one, because of the new component M(Ta,va ,Tb,wb). By (1.6.5) and (1.6.7)
(1.6.8), the number of accessible terms satisfies

α(M(Ta,va ,Tb,wb)) = α(Ta,va) + α(Tb,wb) + 2

so that we have

α(F′) = α(Ta,va) + α(Tb,wb) + 2 + α(Ta/
dTa,va) + α(Tb/

dTb,wb) + α(F̂(a,b))

= α(Ta) + α(Tb) − 2 + α(F̂(a,b)) = α(F) − 2 ,

in the case of ∆d, and also, in the case of ∆c,

α(F′) = α(Ta,va) + α(Tb,wb) + 2 + α(Ta/
cTa,va) + α(Tb/

cTb,wb) + α(F̂(a,b))

= α(Ta) + α(Tb) + α(F̂(a,b)) = α(F) .

Thus, the number of accessible terms in Acc(F) is preserved in the case of ∆c

and decreases by 2 in the case of ∆d. Thus, σ(F′) = σ(F)− 1 in the case of ∆d

and σ(F′) = σ(F) + 1 for ∆c.
In the case (2b) of Section 1.4.1, we have

F′ = M(Ta,Tb,wb) ⊔ Tb/Tb,wb ⊔ F̂(a,b) ,

where the number of components remains the same, b0(F′) = b0(F), while in
the counting of accessible terms we have, in the case of ∆d

α(F′) = α(M(Ta,Tb,wb)) + α(Tb/
dTb,wb) + α(F̂(a,b))

= α(Ta) + α(Tb,wb) + 2 + α(Tb/
dTb,wb) + α(F̂(a,b))

= α(Ta) + α(Tb) + α(F̂(a,b)) = α(F) ,

so σ(F) is also preserved, while for the case of ∆c

α(F′) = α(Ta) + α(Tb,wb) + 2 + α(Tb/
cTb,wb) + α(F̂(a,b))

= α(Ta) + α(Tb) + 1 + α(F̂(a,b)) = α(F) + 1 .

Finally for the case (3a) of Section 1.4.1, we have

F′ = M(Ta,va ,Ta,wa) ⊔ Ta/(Ta,va ⊔ Ta,wa) ⊔ F̂(a) ,

with F̂(a) = ⊔i,aTi. The number of connected components increases by one,
as the new component M(Ta,va ,Ta,wa) is created. The counting of admissible
terms gives, for ∆d,

α(F′) = α(M(Ta,va ,Ta,wa)) + α(Ta/
d(Ta,va ⊔ Ta,wa)) + α(F̂(a))

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

68 Chapter 1 Mathematical Structure

= α(Ta,va) + α(Ta,wa) + 2 + α(Ta/
d(Ta,va ⊔ Ta,wa)) + α(F̂(a)) .

We are now extracting from the tree Ta a forest Fv = Ta,va ⊔ Ta,wa = πC(Ta)
of accessible terms, corresponding to an admissible cut C on two edges, and
the counting of accessible terms follows the analog of (1.6.7). In Ta/

dπC(Ta)
two edges are contracted, hence the counting of (non-root) vertices decreases
by two, while the root vertex of each of the two components of πC(Ta) is not
counted as accessible term of πC(Ta) while being counted as accessible term
of Ta. This gives an overall discrepancy of counting of 4 between α(πC(Ta)) +
α(Ta/

dπC(Ta)) and α(Ta). Thus we get

α(F′) = α(Ta) − 2 + α(F̂(a)) = α(F) − 2 .

From the relation

α(πC(Ta)) + α(Ta/
dπC(Ta)) + 4 = α(Ta)

we obtain
σ(πC(Ta)) + σ(Ta/

dπC(Ta))) + 2 =

(2 + α(πC(Ta)) + (1 + α(Ta/
dπC(Ta))) + 2 = 1 + α(Ta) = σ(Ta) .

We then have

σ(F′) = σ(M(Ta,va ,Ta,wa) + σ(Ta/
dπC(Ta))) + σ(F̂(a)) =

σ(πC(Ta)) + 1 + σ(Ta/
dπC(Ta))) + σ(F̂(a))

= σ(Ta) − 1 + σ(Ta/
dπC(Ta))) + σ(F̂(a)) = σ(F) − 1 .

In the case of ∆c we similarly have

α(πC(Ta)) + α(Ta/
cπC(Ta)) + 2 = α(Ta),

as the two root vertices of πC(Ta) are not counted as accessible terms in either
component. This gives α(F′) = α(F) and σ(F′) = σ(F) + 1. Note that for
the case (3a) we do not need to consider explicitly cases with Ta,va ⊂ Ta,wa or
Ta,wa ⊂ Ta,va as those do not correspond to admissible cuts of the tree Ta. □

Remark 1.6.9. The Sideward Merge of type (2b) cannot be distinguished,
solely in terms of its effect on the sizes b0, α, σ, from Internal Merge. Indeed,
it is clear that the transformations of workspaces

T ⊔ T ′ 7→ M(Tv,T ′) ⊔ T/Tv

T ⊔ T ′ 7→ M(Tv,T/Tv) ⊔ T ′

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.6 Other linguistic properties 69

have the same effect on the number of connected components b0, the number
of accessible terms α, and the size of Acc′(F) measured by σ. This can be
seen directly in the table of Proposition 1.6.8. We show in §1.6.3 that they
are instead easily distinguished by the “No Complexity Loss” constraint of
Definition 1.6.2.

1.6.3 No Complexity Loss constraint
We now check that the No Complexity Loss constraint of Definition 1.6.2 is
satisfied only by Internal and External Merge and is violated by all other forms
(2b), (3b), (3a) of Sideward/Countercyclic Merge of Section 1.4.1. It is also
violated by the MS ,1, so the same argument of Remark 1.6.7 that MS ,1 cannot
exist in isolation and that Internal Merge is therefore not composite is obtained
from No Complexity Loss.

Proposition 1.6.10. Only Internal and External Merge satisfy the No Com-
plexity Loss constraint of Definition 1.6.2. All other forms (2b), (3b), (3a) as
well as MS ,1 would violate this principle. In particular No Complexity Loss
distinguishes Internal Merge and Sideward Merge of type (2b) eliminating the
latter.

Proof. For External Merge the two components Ti,T j that are merged to the
new component M(Ti,T j) have deg(M(Ti,T j)) = deg(Ti) + deg(T j) which is
greater than or equal to both deg(Ti) and deg(T j). All remaining components
of the workspace not used by Merge maintain the same degree. For Inter-
nal Merge, similarly, deg(Tv,T/Tv) = deg(T). Sideward Merge of type (2b)
that produces modified components of the form M(Tv,T ′) ⊔ T/Tv, so that the
component T ′ of the original workspace contributes to a new component of in-
creased degree deg(M(Tv,T ′)) > deg(T ′)+deg(Tv), but the component T , mea-
suring the component of the new F′ where the root of T is mapped to, as in Def-
inition 1.6.2, now contributes to the component T/Tv with deg(T/Tv) < deg(T)
so it violates the No Complexity Loss constraint. Similarly, in case (3b) that
produces components M(Tv,Tw) ⊔ T/Tv ⊔ T ′/Tw, the root vertices of the old
components T and T ′ both map to components T/Tv and T ′/Tw of lower de-
gree. The case (3a) is analogous, since it produces M(Tv,Tw) ⊔ T/(Tv ⊔ Tw)
and the root vertex of the original component T is mapped to a component of
lower degree, so it does not participate in the formation of a structure of non-
decreasing complexity. The case ofMTv,1 is analogous, as it produces Tv⊔T/Tv

with deg(T/Tv) < deg(T). □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

70 Chapter 1 Mathematical Structure

We have seen that arguments of Minimal Search as cost minimization for
all the operations involved in the definition of Merge (extraction of accessible
terms, cancellation of deeper copies, grafting) as well as Minimal Yield con-
straints on size countings for workspaces and analogous complexity arguments
select Internal and External Merge as the primary operations and discard other
proposed extensions of Merge (Sideward/Countercyciic).

There is a further argument that one can make, however, that identifies a
sense in which External Merge is more complex than Internal Merge. It was
observed in Chomsky’s (32) that External Merge is “unboundedly more com-
plex” than Internal Merge. This is not evident if one thinks in terms of the
search for matching terms inside a fixed workspace, as we have argued for
Minimal Search. However, we can also consider the following setting. Sup-
pose that we fix one of the two syntactic objects S , S ′ of the Merge operation
MS ,S ′ as defined in (1.3.7) and we consider an operation of the form

M
S (T) := M(S ,T) ,

ρS ,S ′ : T 7→ ⊔ ◦ (MS ⊗ id) ◦ δS ′ ◦ ∆(T) ,

where δS ′ (T ⊗ T ′) = S ′ ⊗ T ′ if T ≃ S ′ and zero otherwise. (We will be
discussing a similar form of the Merge operation in Lemma 1.12.1.) This
means that we block one of the terms of Merge and we look at the resulting
operation M(S , ·) as acting on the set of all possible syntactic objects. It is
then clear why External Merge is “unboundedly more complex” than Internal
Merge, as the possible arguments of M(S , ·) that produce Internal Merge are
a finite set (the accessible terms of the chosen S), while the set of possible
arguments that produce External Merge is a countably infinite set consisting of
arbitrary syntactic objects.

1.7 Countercyclicity and extensions of Merge?

We argued in the previous sections that the Merge operation described in (1.3.7)
includes, a priori, possible extensions of Merge beyond External and Inter-
nal Merge, resulting in three different forms of Sideward Merge (one of them
sometimes also regarded as a form of Countercyclic Merge), respectively given
by the cases (2b) and (3b), and the case (3a) of §1.4.1. We have shown that
these additional forms of Merge can be excluded by a Minimal Search proce-
dure, and also on the basis of the effect on measures of size of the workspace
and in terms of complexity.

In this section, we discuss briefly what our model can say about other pro-
posed extensions of Merge that have been considered in the literature, such as

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.7 Countercyclicity and extensions of Merge? 71

Countercyclic and Late Merge, involving operations that grow a tree structure
at internal vertices away from the root, see Figure 1.5.

Figure 1.5
Some proposed extensions of Merge (like Countercyclic Merge and Late Merge) in-
volve the grafting of trees at internal vertices, away from the root vertex.

We do not discuss here in detail such proposed extensions of Merge. Their
viability as linguistic models is criticized in Chomsky’s (26) and elsewhere.
We only provide a general argument for how these proposed extensions of
Merge can be analyzed in terms of the algebraic structure underlying our de-
scription of the Merge operation of (1.3.7), in particular the Hopf algebra of
workspaces described in §1.2 and §1.2.1, and why this view strongly indi-
cates that constructions accounted for by such extensions should be in fact
directly obtainable just in terms of the formulation of Internal/External Merge
of (1.3.7).

We will show that insertions at internal vertices obey their own algebraic
structure, namely a Lie algebra, and that this has a well known explicit rela-
tion to the Hopf algebra structure on the set of workspaces that we have been
discussing in the previous sections. This relation is part of a general dual-
ity structure for Hopf algebras. This duality relation in particular implies that
those instances of Merge extensions involving countercyclic movement and in-
sertion at lower levels in the trees will in fact produce structures that already
exist in what is obtainable in our formulation of the free symmetric Merge, and
should therefore be otherwise obtainable from External/Internal Merge alone.

In order to see this, we first describe the algebraic structure underlying inser-
tion operations of the type illustrated in Figure 1.5.

1.7.1 Premise: Lie algebras and Hopf algebras
We first recall here another important algebraic structure, namely Lie algebras,
and their relation to the notion of Hopf algebra that we have already encoun-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

72 Chapter 1 Mathematical Structure

tered. We discuss in §1.7.2 how this structure relates to the insertion operation
illustrated in Figure 1.5.

A Lie algebra is a vector space L over a field K endowed with a bilin-
ear operation [·, ·] : L ⊗ L → L (Lie bracket) satisfying [L, L] = 0 (hence
[L1, L2] = −[L2, L1] by bilinearity) and the Jacobi identity

[L1, [L2, L3]] + [L2, [L3, L1]] + [L3, [L1, L2]] = 0 (1.7.1)

for all L, L1, L2, L3 in L.

A right pre-Lie structure on a vector space L is a bilinear map

� : L ⊗ L → L

satisfying the identity

(L1 � L2) � L3 − L1 � (L2 � L3) = (L1 � L3) � L2 − L1 � (L3 � L2) (1.7.2)

for all L1, L2, L3 ∈ L. A right pre-Lie structure determines a Lie algebra struc-
ture by setting

[L1, L2] := L1 � L2 − L2 � L1 . (1.7.3)

The pre-Lie identity (1.7.2) ensures that the Jacobi identity (1.7.1) holds for
the bracket of (1.7.3). A left pre-Lie structure is defined analogously and de-
termines a Lie algebra in the same way.

There is a close relation between Lie algebras and Hopf algebras. Namely,
given a Lie algebra L, one can form an associative algebra U(L), called the
universal enveloping algebra of the Lie algebra L. This is obtained as the
quotient U(L) = T (L)/I(L) of the tensor algebraT (L) by the ideal generated
by the relation

L1 ⊗ L2 − L2 ⊗ L1 = [L1, L2] . (1.7.4)

More explicitly, this means that elements of U(L) are polynomials (in non-
commuting variables) in the elements of L, with the commutation relation
(1.7.4) given by the Lie bracket of L. The universal enveloping algebra is in
fact also a Hopf algebra, with the cocommutative coproduct determined by
the property that all the elements L ∈ L are primitive elements, ∆U(L)(L) =
L⊗1+1⊗L. Given a Hopf algebraH , there is a dual Hopf algebraH∨ structure
on the underlying dual vector space, where product and coproduct exchange
roles in the sense that the dual product is induced by the original coproduct
and viceversa. Unit and counit similarly exchange roles. The dual U(L)∨ is
a commutative Hopf algebra, since U(L) is cocommutative. A well known
result in the theory of Hopf algebras, the Milnor–Moore theorem ((143), The-
orem 5.18) shows that a commutative, graded connected Hopf algebraH (see

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.7 Countercyclicity and extensions of Merge? 73

Chapter 4 for details) is isomorphic to H = U(L)∨ for a Lie algebra L. This
Lie algebra also has a characterization as follows.

Let H be a combinatorial Hopf algebra over a field K, in the sense recalled
in §1.2.1. Consider the vector space of linear functionals ϕ : H → K. In
particular, consider those linear functionals that satisfy the relation

L(xy) = L(x)ϵ(y) + ϵ(x)L(y) , (1.7.5)

where ϵ : H → K is the counit of the Hopf algebra. We define a product
operation L1 ⋆ L2 on these functionals, defined by the relation

(L1 ⋆ L2)(x) := (L1 ⊗ L2)(∆(x)) , (1.7.6)

and we set
[L1, L2] := L1 ⋆ L2 − L2 ⋆ L1 . (1.7.7)

Note that the product (1.7.6) on linear functionals onH is dual to the coprod-
uct of H . Similarly, there is a coproduct dual to the product of H and (1.7.5)
corresponds to the condition that L is a primitive element with respect to this
dual coproduct, with the counit ϵ playing the role of unit in the dual. We have
not discussed this yet, but the form of the counit ϵ : H → K in a graded
connected commutative Hopf algebra H , is simply given by an isomorphism
ϵ : H0 → K (with inverse the unit) and with Ker(ϵ) = ⊕k≥1Hk: namely every
x ∈ H not of degree zero, deg(x) ≥ 1, is mapped to zero by the counit. More-
over, a combinatorial Hopf algebra H , with respect to the product operation
is a polynomial algebra in a set B of generators (of H as an algebra), namely
H is the linear span of monomials of the form

∏
i bi with bi ∈ Bℓi of degree

deg(bi) = ℓi. These two facts combine to show that condition (1.7.5) on the
linear functional L : H → K implies that L is supported on the basis elements
(of H as a vector space) that are single elements b ∈ B, rather than products∏

i bi of several such elements.

The coassociativity of the coproduct ∆ of H ensures the associativity of the
dual product of (1.7.6), and this in turn implies that the bracket defined by
(1.7.7) satisfies the Jacobi identity (1.7.1). Thus, the linear functionals satis-
fying (1.7.5), endowed with the bracket (1.7.7) form a Lie algebra, that we
denote by L, associated to the Hopf algebra H , which is the Lie algebra of
primitive elements in the dual Hopf algebraH∨, as described above.

An equivalent, though more technical, description of the Lie algebra associ-
ated as above to a graded, connected, commutative Hopf algebraH is obtained
in the following way. Such commutative Hopf algebras can be described equiv-
alently in terms of an affine group scheme G. This is defined in the following

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

74 Chapter 1 Mathematical Structure

way: for any commutative algebra R, the set of morphisms (of commutative
algebras) G(R) = Hom(H ,R) is not just a set, but it has also the structure of a
group, with multiplication operation

(ϕ1 ⋆ ϕ2)(x) = (ϕ1 ⊗ ϕ2)(∆(x)) .

In other words, the group operation on morphisms in Hom(H ,R) is induced by
the coproduct operation on H . The inverses in the group are similarly deter-
mined by the antipode of the Hopf algebraH . In particular, G can be regarded
as a Lie group whose Lie algebra agrees with the Lie algebra of primitive ele-
ments of the dual Hopf algebra. We will not discuss here the viewpoint based
on this notion of affine group scheme, but we mention it, because we will en-
counter a variation on this idea in Chapter 3, §3.5.

1.7.2 Insertion Lie algebra
We now show that Lie algebras are the natural algebraic structure that accounts
for insertion operations at internal vertices of a tree, of the type involved in
the forms of Countercyclic and Late Merge. More precisely, the insertions
determine a pre-Lie structure.

Definition 1.7.1. Suppose given two (non-planar) binary rooted trees T1,T2 ∈

TSO0 where T1 has nonempty set of edges. For a given edge e ∈ E(T1), we
define an insertion operation where

T1 �e T2

denotes the binary rooted tree obtained by splitting the edges e with the inser-
tion of a new (valence two) vertex v, attaching to v a new edge e′, and attaching
to the other end of e′ the root of T2. We then set

T1 � T2 =
∑

e∈E(T1)

T1 �e T2 , (1.7.8)

where the sum provides the list of all the possible ways in which the tree T2

can be inserted in the tree T1 with the operation described by T1 �e T2.

The insertion T1 �e T2 is exactly the type of insertion operation illustrated in
Figure 1.5, used in the construction of Countercyclic and Late Merge.

Lemma 1.7.2. The insertion operation T1 � T2 of (1.7.8), on the subspace
of V(TSO0) spanned by trees with non-empty set of edges, satisfies the right
pre-Lie identity (1.7.2), hence determines on this subspace the structure of Lie

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.7 Countercyclicity and extensions of Merge? 75

algebra with the Lie bracket

[T1,T2]R = T1 �e T2 − T2 �e T1 . (1.7.9)

We can similarly define a left pre-Lie structure T1 � T2 given by the sum of all
possible insertions of T1 in T2 and bracket [T1,T2]L = T1 �e T2 − T2 �e T1

with [T1,T2]L = −[T1,T2]R.

Proof. Consider the term (T1 � T2) � T3. Here one first performs all the
possible insertions of T2 at the edges of T1, and then the insertions of T3 at
the edges of the resulting tree. There are different possibilities of where the
second insertion happens:

1. at an edge of T2;
2. at an edge of T1 different from the edge used for the insertion of T2;
3. at one of the three new edges produced by the insertion of T2 into T1 (the

two split parts e1, e2 of e and the new e′ from the new vertex to the root of
T2).

In the first case, insertions of T3 at edges of T2 can be performed before the
insertion at the edge of T1, so they are the same terms that give T1 � (T2 �T3).
Thus, the difference (T1�T2)�T3−T1�(T2�T3) consists of the sum of terms
in the cases 2) and 3) of the list above. Now consider similarly the expression
(T1�T3)�T2−T1� (T3�T2). After a similar cancellation of terms one is left
with two cases: the insertion of T2 at an edge of T1 different from the one used
for the insertion of T3 and the insertion of T1 at one of the three new edges
produced by the insertion of T2 in T1. The case of insertions at different edges
matches the same case in the previous list, as the two insertions in this case can
be done in either order without affecting the result. The terms obtained in the
last case match, as one can see in Figure 1.6. □

1.7.3 Insertions Lie algebra of workspaces
LetH denote the Hopf algebra of workspaces, as described in §1.2 and §1.2.1,
with the coproduct (1.2.8) of the form ∆c. The relation between the Lie algebra
L of primitive elements in the dual Hopf algebra and the insertion Lie algebra
described in §1.7.2 is given as follows (see also the discussion in §4.3 of (18)).

Lemma 1.7.3. The insertion Lie algebra of Lemma 1.7.2 is the Lie algebra of
primitive elements in the dual Hopf algebra of the Hopf algebra of workspaces.

Proof. We take as basis elements for the dualH∨ (as a vector space) the delta
functions δF , for F ∈ FSO0 , with δF(F′) = 1 if F = F′ and zero otherwise,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

76 Chapter 1 Mathematical Structure

Figure 1.6
Insertion of T3 (or T2) at one of the edges produced by the insertion of T2 (or T3) in T1.

extended by linearity to V(FSO0). Since the coproduct of H∨ is dual to the
product of H we have that the primitive elements among the δF are given by
the δT for T ∈ TSO0 , since

∆H∨ (δT)(x ⊗ y) = δT (xy) = (δT ⊗ ϵ + ϵ ⊗ δT)(x ⊗ y) ,

with ϵ the counit ofH (unit ofH∨). The product ofH∨ is dual to the coproduct

(δT1 ⋆ δT2) (x) = (δT1 ⊗ δT2)∆(x) =
∑

v

δT1 (Tv)δT2 (T/Tv) .

Thus, the product can be written in the form

δT1 ⋆ δT2 =
∑

T

cT
T1,T2

δT ,

where
cT

T1,T2
= #{v ∈ V(T) |Tv ≃ T1 and T/Tv ≃ T2}

counts the number of matches for the syntactic objects T1 and T2 as, respec-
tively, an accessible term of T and its complementary piece. The Lie algebra
of primitive elements ofH∨ then has as Lie bracket

[δT1 , δT2] = δT1 ⋆ δT2 − δT2 ⋆ δT1

=
∑

T

cT
T1,T2

δT −
∑

T

cT ′
T2,T1

δT ′

=
∑

e∈E(T2)

δT1�eT2 −
∑

e′∈E(T1)

δT2�e′T1 = δT1�T2−T2�T1 ,

so we see that the insertion Lie bracket and the Lie bracket of the Lie algebra
of primitive elements of the dual Hopf algebra agree. Finally notice that the
restriction to the span of trees with nonempty set of edges in Lemma 1.7.2 for

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.7 Countercyclicity and extensions of Merge? 77

the Lie algebra structure corresponds to the quotient by the ideal generated by
the elements 1 − α with α ∈ SO0 in the Hopf algebra of workspaces with the
coproduct ∆c, as discussed in §1.2.1. □

We have shown here that the kind of “countercyclic” insertions described by
the operations T �e T ′ and T �e′ T ′ are naturally accounted for by the “dual
Lie algebra” (meaning the Lie algebra of primitive elements in the dual Hopf
algebra) of the Hopf algebra of workspaces. This identification suggests that
this type of insertions do not represent new operations and genuine extensions
of Merge, but should in fact be equivalently describable in terms of the original
generative process involving only Internal and External Merge. Indeed, the
identification in Lemma 1.7.3 between δT1 ⋆ δT2 − δT2 ⋆ δT1 and the dual of
T1 � T2 − T2 � T1 shows that the insertion T1 � T2 can be seen as a way of
inverting the extraction of accessible terms performed by the coproduct, hence
resulting in a structure T = T1�T2 that is already accounted for in the products
of the Merge operation on workspaces. The argument given here is incomplete,
as it needs to also take into consideration how the structure T = T1 � T2 ∈ SO

behaves with respect to head, phases, and labeling algorithm, which we have
not yet discussed. We will return to discuss these additional data in Chapter 3,
but we discuss here briefly a simple example to illustrate the point.

The kind of linguistic phenomena for which Late Merge is proposed as an
explanation typically involve syntactic objects that occur in a certain position
as accessible terms of a larger structure, but behave as if absent from that posi-
tion, thus suggesting the idea that they are “late-merged” by the kind of inser-
tion described above, into the rest of the structure already formed. An example
is given by a sentence like

[These pictures of Johni] j seemed to himi [– j to be very good] .

This sentence is an instance of “raising of subject” (a case of A-movement).
The apparent problem here is that John and him are coindexed, and the coin-
dexing of these terms, when the first occurs in the base position – j, would
result in a violation of “condition C” of Binding Theory, which requires that
R-expressions (referring expressions) cannot be bound by a coindexed syntac-
tic object. This is interpreted in the Late Merge proposal as an indication that
of John is late-merged into its position by an insertion at the edge above the
substructure These pictures. However, this is not a problem within the Merge
formulation of syntax in SMT, as the subject raising in this sentence is a single
phase and binding conditions B and C do not apply. So this does not require
the introduction of a different form of Merge and indeed the structure obtained

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

78 Chapter 1 Mathematical Structure

via this insertion is already realizable with the original form of Merge, in the
way that the mathematical argument described above also suggests.

1.8 Cancellation of copies

As we have already discussed in §1.2 and §1.2.1, in the form (1.3.7) of the
action of Merge on workspaces, the cancellation of the deeper copies of the
accessible terms used by Merge is implemented by the coproduct ∆ of (1.2.8)
through the quotient terms T/cTv (and the corresponding T/dTv with the can-
cellation actually performed, so as it will result in externalization).

Cancellation of copies is usually posited as an “economy principle” in lin-
guistics, and it is usually assumed that cancellation always happens in the
deeper copies. In our algebraic model, we can say something more, and per-
haps a bit deeper, than this.

A first observation is that, in the formalism we are using, the fact that can-
cellation is implemented in the deeper copy is directly built into the structure
of the coproduct and it does not have to be included as an additional require-
ment, since in the terms Tv ⊗ T/cTv the copy of Tv on the left-hand-side (the
one that contributed to Merge) has lower depth than the copy inside T , which
is cancelled on the right-hand-side.

A second observation is that cancellation of copies is necessary in order to
have a “good,” well-behaved coassociative coproduct ∆c. Indeed, one needs
to quotient out the copy of Tv inside T in the right-hand-side of the coproduct
for coassociativity to work. We have seen the role of the quotients T/cTv (and
more generally T/cFv in the coassociativity property of ∆c in Lemma 1.2.10.
One can see that a coproduct of the form T 7→

∑
v Tv ⊗ T without the cancel-

lation would no longer have the coasociativity property, since we would have
(∆ ⊗ id) ◦∆(T) =

∑
v,w Tv,w ⊗ Tv ⊗ T with Tv,w ⊂ Tv accessible terms of Tv, but

we would have (id⊗∆)◦∆(T) =
∑

u,v Tv⊗Tu⊗T with Tu ⊂ T accessible terms
of T . Those terms where Tu ⊃ Tv are accounted for in (id⊗∆) ◦∆(T) but other
terms are not, so that coassociativity will fail (for all forms ∆c, ∆ρ, ∆d of the
coproduct). Thus, the cancellation of the deeper copies is required for intrinsic
algebraic reasons.

Note moreover that, although we refer to the quotient term T/Tv as “cancel-
lation” of a copy of Tv, nothing is really cancelled for two reasons:

• a copy of Tv remains in the left-channel of the term Tv ⊗T/Tv of the coprod-
uct.

• in the case of the coproducts ∆c a trace of the cancellation of the deeper copy
also remains in the term T/cTv in the right-channel of the coproduct in the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.8 Cancellation of copies 79

form of a label Tv. This trace is removed in the projection Πd,c(T/cTv) =
T/dTv, which accounts for the form that goes to externalization, while Tv

remains for interpretation at the interface with semantics.

The basic structure of the coproduct separates out trees (in all possible ways)
into a subforest Fv and a quotient T/Fv. One can simply then read a subtree Tv

as the “creation of a copy” and the quotient tree as corresponding “cancellation
of the original (deeper) copy” when Internal Merge is applied. The different
forms of quotients T/cTv and T/dTv that we discussed in §1.2 and §1.2.1, ac-
count for the description of Tv given in Elements (37) that “the element is
present in the syntactic object (for CI interpretation), but not pronounced at
the SM interface”. Thus, T/cTv with the explicit remaining leaf with label Tv

represent the form that the conceptual-intensional (CI) interface receives for
interpretation, while its projection T/dTv = Πd,c(T/cTv) is what is received
by the sensory-motor (SM) interface. These two channels of interface are not
unrelated, as we will be discussing extensively in Chapter 3, and the form that
interpolates between these two and accounts for the interaction of these two
channels is provided by the third quotient T/ρTv discussed in §1.2 and §1.2.1,
related to these by two projections T/dTv = Πd,ρ(T/ρTv) = Πρ,c(T/cTv).

Also observe that there are distinct roles in the model we are discussing
here for copies vs. repetitions, a point covered in some detail in Elements.
Repetitions are accounted for in this setting because we define the workspace
as a forest (a disjoint union of trees, that is, of syntactic objects). This allows
for the presence of repetitions, since a forest is not a set but a multiset of
trees. Copies, on the other hand, are only created during the application of the
coproduct, and ultimately play a role only in the operation of Internal Merge.

As noted, it is worth comparing the discussion we have here about copies
and repetitions with §3.2 and §3.4 of Elements (37). It is important to keep
in mind that, in the formulation we are using here, copies and repetitions are
always kept separate.

The workspaces F ∈ FSO0 are forests that have several connected compo-
nents isomorphic to the same tree, the same syntactic object T ∈ TSO0 . These
are just repetitions, never copies. We can view it this way: the disjoint union of
sets can be characterized by a universal property in the category of sets. One
can also obtain a realization of the disjoint union of a family {Ai} of sets as the
set of pairs (x, i) with x ∈ Ai. This means, for example, that in our setting the
forest F = T ⊔T can be seen as F = T ×{0}∪T ×{1}. This way of writing dis-
joint unions (which is cumbersome to use and so not typically followed) has
the advantage that it shows clearly the two repetitions of the same syntactic
object T , where both T ×{i} ≃ T are isomorphic to T , but are not related by the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

80 Chapter 1 Mathematical Structure

identity (are not copies). There are isomorphisms that implement the repetition
relation, through permutationsσ of the set of indices T×{i} → T×{σ(i)}. In the
case of F = T ⊔ T the repetition relation is implemented by the isomorphism
T × {0} → T × {1}.

On the other hand, copies in our formulation are only created by the coprod-
uct ∆ : H → H ⊗H , when accessible terms Tv are extracted from a syntactic
object T in the workspace and deposited in the left-channel of the coproduct
output.

The key algebraic property here is that the coproduct outputs inH ⊗H and
not in H , so copies are kept distinct from repetitions, and the Boolean valued
Form Copy of §3.4 of Elements (37) is determined here only by the distinction
between x ⊗ 1 ∈ H ⊗ H and x ∈ H . As we mentioned above, when the
coproduct outputs an accessible term (a copy) in the leftH factor in the tensor
product H ⊗ H , it simultaneously also outputs a term T/Tv in the right H
factor. This means that we simultaneously have the creation of one copy Tv

and the cancellation of the deeper copy (resulting in T/Tv). Since these two
happen simultaneously on the two parallel channels of the coproduct output,
we never actually see any copy. The two factors of the coproduct output are
reassembled together in the Merge action so that the result is a new workspace
(containing possible repetitions but no copies).

Even though with T/cTv one keeps a trace of the deeper copy for interpreta-
tion at the CI interface, this does not appear as a copy in the new workspace as
it only occurs as label Tv in the new leaf of the quotient T/cTv. This is a key
point in the algebraic properties discussed above, namely when iterating the
coproduct (as in the coassociativity argument) one is no longer extracting from
the cancelled deeper copy Tv (otherwise the coassociativity would be violated):
the fact that the cancelled Tv is now a label in T/cTv means it is indecompos-
able for the coproduct, unline the extracted copy Tv in the left-channel that
continues to be decomposible to further applications of the coproduct.

There is another important point to clarify here, and we can do this explicitly
by considering the example discussed in §3.4 of (37), specifically the examples
in equation (23) and in equation (26) of (37). In (23) one considers a workspace
of the form

WS = [{many, people}, {praised, {many, people}}]

or in our notation F = T1 ⊔ T2 with

T1 =
many people

=
α β

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.8 Cancellation of copies 81

T2 =

praised
many people

=
γ α β

In fact, we can regard the syntactic object T2 as being already the result of an
External Merge operation:

T2 = M(γ,T) with T =
α β

Thus, we can start by considering the workspace

WS ′ = [{many, people}, praised, {many, people}]

or F′ = T1⊔γ⊔T in our notation, from which the previous WS was obtained by
one application of External Merge. In this workspace F′ two of the connected
components, T1 and T are both isomorphic to the same element ofTSO0 namely

T1 � T �
α β

=
many people

When we apply the External Merge MS ,S ′ with S = γ and S ′ =
α β

the

operator δS ,S ′ in our description of the action of Merge searches for isomorphic
copies of S and S ′ among the accessible terms of the workspace. In the case
of F′, it finds two matches for S ′. These two matches are distinct choices, each
of them isomorphic to S ′.

Now consider instead the example discussed in equation (26) of Elements
(37). In this case, we have a workspace consisting of a single component of
the form

WS = [{were, {praised, {many, people}}}]

=

were
praised

many people

=
δ

γ α β

= T

and an application of Internal Merge that yields the resulting workspace

many people were praised

=

α β δ γ

=

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

82 Chapter 1 Mathematical Structure

Πd,c(

many people
were

praised many people

)

in the same way as we discussed already in the example of Internal Merge
discussed in §1.4 above. In particular, in our description of the action of Merge
this resulting workspace comes from the term of the Hopf algebra coproduct
of the form

α β
⊗ T/d

α β
,

with the quotient

T/d
α β

=
δ γ

=
were praised

or in terms of the coproduct ∆c

α β
⊗ T/c

α β

with the quotient

T/c
α β

=

were
praised many people

In this case, the tree
α β

that occurs on the left channel of the coproduct

output as the extracted accessible term and the same tree that occurs in the right
channel of the coproduct output as the cancelled term in the quotient are not
isomorphic objects, they are the same. This is indeed a conceptual key to the
distinction between repetitions and copies in linguistics. It is exactly the same
as the important distinction between isomorphism and identity in mathematics.

1.9 Merge is Markovian

It is usually assumed in the theory of Merge that “the operations of syntax
are Markovian”. This is a reasonable assumption and it is used in the course
of Merge derivations, where at each step the Merge operations have access to
only the current state of the workspace. This is discussed, for instance, in the
Elements text (37) in §3.3.1, §3.3.3, and §3.4.

We show here that the Markovian property of Merge can in fact be proved
and does not need to be taken as an assumption. It is one more instance of prop-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.9 Merge is Markovian 83

erties of the linguistic model that follow directly from the algebraic formalism.
Indeed, the Markovian property can formulated in a more precise mathemati-
cal sense, in terms of the existing notion of Markov chains on combinatorial
Hopf algebras developed in (50), (150), (151). In this section we give here a
proof of the Markovian property of Merge in this sense.

The notion of Markov chains on combinatorial Hopf algebras of (50), (150),
(151) arises from analyzing the properties of the composition ⊔ ◦∆ of coprod-
uct followed by product, as well as the iterated forms (given associativity and
coassociativity)

⊔a ◦ ∆a : H → H⊗a → H

that were considered in §4.5 of (114) as a form of what is known in mathemat-
ics as “Adams operations”. It was shown in (50) that, up to a total rescaling,
these operations determine a Markov chain, when one views their matrix form
as defining the transition probabilities. It was further shown in (150) and (151)
that one can consider more general Markov chains in combinatorial Hopf al-
gebras by modifying the compositions of (iterated) coproducts and products
above using projections onto some of the graded subspaces. These projections
are known as descent operators and were studied in (153).

The general setting for Markov chains in combinatorial Hopf algebras can
be summarized as follows. Let V = ⊕ℓVℓ be a graded vector space with a
basis B = ∪ℓBℓ, such that all the Vℓ are finite dimensional. Let K : V → V
be a linear operator, with the properties:

• the operator K = ⊕ℓKℓ preserves the graded subspaces, Kℓ : Vℓ →Vℓ;
• the matrix KBℓ representing the operator K in the basis Bℓ of Vℓ has non-

negative entries
KBℓ (x, y) ≥ 0 ∀x, y ∈ Bℓ .

• for every input x ∈ Bℓ there is some y ∈ Bℓ such that KBℓ (x, y) > 0.

Then there is an associated Markov chain with set of states Bℓ and transition
matrix

K̃Bℓ (x, y) = c(x)−1KBℓ (x, y) ,

with a “local rescaling” c(x) =
∑

y KBℓ (x, y) > 0, so that K̃Bℓ is a stochastic
matrix, namely

K̃Bℓ (x, y) ≥ 0 ∀x, y ∈ Bℓ and
∑

y

K̃Bℓ (x, y) = 1 ∀x ∈ Bℓ .

Moreover, if KBℓ satisfies the condition

• there is eigenfunction
∑

y KBℓ (x, y)η(y) = η(x) with η(x) > 0 for all x ∈ Bℓ

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

84 Chapter 1 Mathematical Structure

then
K̂Bℓ (x, y) =

η(y)
η(x)

KBℓ (x, y)

is the transition matrix of a Markov chain, namely it is a stochastic matrix

K̂Bℓ (x, y) ≥ 0 ∀x, y ∈ Bℓ and
∑

y

K̂Bℓ (x, y) = 1 ∀x ∈ Bℓ .

Markov chains in combinatorial Hopf algebras are data as above where the
vector spaceV is also a graded connected commutative Hopf algebra (or bial-
gebra) H = (V,⊔,∆), the linear basis Bℓ consists of monomials F = ⊔aTa

with
∑

a deg(Ta) = ℓ, with the Ta in the set of generators of H as a commuta-
tive algebra.

Definition 1.9.1. A weak Hopf algebra Markov chain, on a graded connected
commutative Hopf algebra H with linear basis B is a linear operator K is of
the form

K = ⊔ ◦ Q ◦ ∆ (1.9.1)

for a linear operator Q : H ⊗ H → H ⊗ H , such that K = ⊕ℓKℓ preserve
the grading and the associated matrix Kℓ has the property that, for all x ∈ Bℓ
there exists y ∈ Bℓ with Kℓ(x, y) > 0. A strong Hopf algebra Markov chain is
an operator as above such that there is a global normalization factor ρ = ρ(Kℓ)
such that Kℓ,ρ = ρ−1Kℓ has an eigenfunction

∑
y Kℓ,ρ(x, y)η(y) = η(x) with

η(x) > 0 for all x ∈ Bℓ.

The cases considered in (50), (150), (151) are strong Hopf algebra Markov
chains in the sense of Definition 1.9.1, after a “global rescaling” of the operator.
The eigenfunction η provides a rescaling of the basis B by x 7→ η(x)−1x so that
a global rescaling Kρ of the operator is a Markov chain in the rescaled basis.
We show that the action of Merge on workspaces determines both weak and a
strong Hopf algebra Markov chains.

Proposition 1.9.2. The Merge operation of (1.3.7) defines a weak Hopf alge-
bra Markov chain.

Proof. First observe that the operation ⊔ ◦ ∆, in the case of the Hopf algebra
of workspaces, has the following effect

⊔ ◦ ∆(F) = 2F +
∑

v

Fv ⊔ F/Fv . (1.9.2)

The first term 2F comes from the primitive part F ⊗ 1+ 1⊗ F of the coproduct
after application of the product ⊔. Notice in particular that the sum in (1.9.2)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.9 Merge is Markovian 85

contains all possible terms of the form

Tv ⊔ T/Tv ⊔ F̂ , for F = T ⊔ F̂ ,

for accessible terms Tv, that are used by Internal Merge.
We consider the Merge operators of (1.3.7), of the form

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆ , (1.9.3)

and we assemble them into the single transformation that performs all the
possible Merge operations on a given workspace, namely we take the sum
K :=

∑
S ,S ′MS ,S ′ . While this is written formally as an infinite sum, whenever

it applies to a workspace F it reduces to a finite sum K(F) =
∑

S ,S ′MS ,S ′ (K)
as all but finitely many of the terms in the sum map F to zero. The terms that
remain are exactly those corresponding to all the terms in ∆(F) of the form
F′ ⊗ F′′ where F′ = S ⊔ S ′ has two components. We write Π(2) for the pro-
jection onto the span of the subspace ofH ⊗H generated by basis elements of
the form S ⊔ S ′ ⊗ F′′. We have

K = ⊔ ◦ (B ⊗ id) ◦ Π(2) ◦ ∆ . (1.9.4)

To also include all possible applications of Internal Merge (see §1.4.3 and
§1.4.3.1), we consider the composition K ◦ Ξ with the operator

Ξ := ⊔ ◦ Π(1) ◦ ∆ , (1.9.5)

where Π(1) is the projection onto the subspace of H ⊗ H spanned by basis
elements of the form T ⊗ F′, with T ∈ TSO0 and F′ ∈ FSO0 .

Consider on V(FSO0) = ⊕ℓV(FSO0,ℓ) the grading by number of leaves of
F ∈ FSO0 . The operators K = ⊕ℓKℓ and Ξ = ⊕ℓΞℓ preserve the graded
subspaces,

Kℓ : V(FSO0,ℓ)→V(FSO0,ℓ) and Ξℓ : V(FSO0,ℓ)→V(FSO0,ℓ) .

We write Kℓ(F, F′) for the coefficient of F′ in Kℓ(F). Similarly we write
KΞℓ(F, F′) for the coefficient of F′ in Kℓ(Ξℓ(F)).

The subspaceV(FSO0,1) is spanned by the workspaces consisting of a single
lexical item or syntactic feature in SO0 (a tree consisting of a single leaf node).
Such workspaces cannot be used for structure formation as Merge can only act
trivially, hence we consider only Kℓ and Ξℓ for ℓ ≥ 2.

Given any F ∈ FSO0,ℓ with ℓ ≥ 2, we can find some F′ ∈ FSO0,ℓ such that
Kℓ(F, F′) > 0, since given two leaves α, β ∈ L(F), the coproduct ∆(F) will
contain a term of the form α⊔β⊗ F̂ with F̂ possibly 1, hence F′ = M(α, β)⊔ F̂
has Kℓ(F, F′) > 0. The case of KΞℓ(F, F′) is similar. Thus, given F ∈ FSO0,ℓ

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

86 Chapter 1 Mathematical Structure

with ℓ ≥ 2, we can define

cK ,ℓ(F) :=
∑

F′∈FSO0 ,ℓ

Kℓ(F, F′) and cKΞ,ℓ(F) :=
∑

F′∈FSO0 ,ℓ

KΞℓ(F, F′) .

We have cK ,ℓ(F) > 0 and cKΞ,ℓ(F) > 0 so we can assign to Kℓ and Kℓ ◦ Ξℓ the
transition matrices

K̃ℓ(F, F′) := cK ,ℓ(F)−1Kℓ(F, F′) and K̃Ξℓ(F, F′) := cK ,ℓ(F)−1KΞℓ(F, F′) .
(1.9.6)

These are non-negative and satisfy∑
F′∈FSO0 ,ℓ

K̃ℓ(F, F′) = 1 and
∑

F′∈FSO0 ,ℓ

K̃Ξℓ(F, F′) = 1

hence they define the transition matrices of a Markov chain. This satisfies the
properties of a weak Hopf algebra Markov chain as in Definition 1.9.1. □

Remark 1.9.3. The weak Hopf algebra Markov chain property, which relies
on the fact that every basis element F has KΞℓ(F, F′) > 0 for some F′, would
also be satisfied in the limit ϵ → 0 of the Minimal Search weight function that
selects only External and Internal Merge. However, it would not be satisfied
just by External Merge, as F = T with a single component would have no F′

obtainable from it by External Merge alone.

We now consider the more interesting strong Hopf algebra Markov chain
property of Definition 1.9.1, which ensures that after a rescaling of the basis
elements, a global rescaling of the transformation is a Markov chain, in the
sense that its representing matrix in the rescaled basis is stochastic and defines
the transition probabilities of the Markov chain.

Proposition 1.9.4. Any (multi)set Ω of lexical items and syntactic features in
SO0 with ℓ = #Ω > 2 determines an invariant subspace VΩ of V(FSO0,ℓ) for
the operators Kℓ and KΞℓ. The restriction to such a subspace VΩ defines a
strong Hopf algebra Markov chain.

Proof. First observe that one can obtain an invariant subspace WΩ (slightly
larger than the one we’re interested in) from Ω = α1 ⊔ · · · ⊔ αℓ with αi ∈ SO0

by taking the span of all the possible F ∈ FSO0 with leaves set L(F) = Ω. We
take as subspace VΩ ⊂ WΩ where the basis elements F have non-empty set
of edges. We denote this set by BΩ,ℓ ⊂ Bℓ. We discuss the case of Kℓ. The
argument for KΞℓ is similar. We associate to the restriction KΩ,ℓ of Kℓ toVΩ
(and its matrix representation KBΩ,ℓ) a directed graph GΩ,Kℓ

with vertices the
elements of BΩ,ℓ and with a directed edge from F to F′ iff KBΩ,ℓ (F, F

′) > 0.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.9 Merge is Markovian 87

The restriction KΩ,ℓ is irreducible iff the graph GΩ,Kℓ
is strongly connected,

namely given any two vertices F, F′ there is a directed path in the graph that
connects them. If we know that this is the case, then the Perron–Frobenius
theorem for the irreducible KΩ,ℓ : VΩ → VΩ with all emtries KBℓ (F, F

′) ≥ 0
ensures the existence of a Perron–Frobenius eigenfunction ηΩ,ℓ with∑

F′∈BΩ,ℓ

KBℓ (F, F
′) ηΩ,ℓ(F′) = λΩ,ℓ ηΩ,ℓ(F) ,

with ηΩ,ℓ(F) > 0 for all F ∈ BΩ,ℓ and with Perron–Frobenius eigenvalue λΩ,ℓ >
0. Let K̃Ω,ℓ = λ−1

Ω,ℓKΩ,ℓ be the global rescaling of the operator and K̃Bℓ (F, F
′)

the corresponding matrix elements in the basis BΩ,ℓ. This satisfies∑
F′∈BΩ,ℓ

K̃Bℓ (F, F
′) ηΩ,ℓ(F′) = ηΩ,ℓ(F) .

We then have the strong Hopf algebra Markov chain property: after rescaling
the basis to

B̂Ω,ℓ := {η(F)−1F | F ∈ BΩ,ℓ} ,

the matrix of K̃Ω,ℓ : VΩ → VΩ in the rescaled basis is a stochastic matrix
that gives the transition probabilities of a Markov chain. Thus, we need to
show that the irreducibility condition holds, namely that, given two F, F′ ∈
BΩ,ℓ there is a path of vertices F0 = F, . . . , Fk = F′ with KBℓ (Fi, Fi+1) >

0. It suffices to show this for two trees T,T ′ ∈ BΩ,ℓ as the argument for
forests then follows similarly. These two trees have the same set of leaves
L(T) = L(T ′) = Ω. Each of them is a syntactic object obtained by repeated
application of the magma operationM starting with elements in Ω. If we want
to obtain T from F0 = T ′ using combinations of operationsMS ,S ′ we can start
by identifying (following a bottom-up construction of T) pairs of substructures
of T ′ (consisting of single leaves or larger) that are joined in T . Given two such
accessible terms Tv,Tw ⊂ T ′ such thatM(Tv,Tw) is an accessible term of T , we
take F1 = M(Tv,Tw) ⊔ T ′/(Tv ⊔ Tw). Note that we are using here the fact that
the Merge operations of (1.3.7) include this kind of Sideward/Countercyclic
Merge and not just External/Internal Merge. By repeatedly applying this kind
of operation we arrive at a workspace Fr = M(Tv1 ,Tw1) ⊔ · · · ⊔ M(Tvr ,Twr)
where the Tvi and Twi are accessible terms of the previous quotient term of
T ′ and each M(Tvi ,Twi) is an accessible term of T . Repeated applications
of External Merge then assemble these terms as they occur in T producing
successive Fr+1, . . . , Fk = T , where at each step KBℓ (Fi, Fi+1) > 0. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

88 Chapter 1 Mathematical Structure

Remark 1.9.5. As we have already discussed in §1.4 the Merge operations of
(1.3.7) include also the forms of Sideward Merge and Sideward/Countercyclic
Merge that we described in §1.4.5 and §1.4.6. We know that these opera-
tions are subdominant with respect to the leading terms External and Internal
Merge, when implementing Minimal Search as in §1.5 in terms of weights ac-
counting for a natural cost function as in §1.5.2. We have seen in §1.5.3 that
in the limit ϵ → 0 only External and Internal Merge are retained. However,
what we see here is that the additional forms of Merge play a role in ensur-
ing a strong Markovian property that makes the Merge operations of (1.3.7)
a Hopf algebra Markov chain in the strong sense of (50), (150), (151). With
only External/Internal Merge this property would be lost. Thus, one should
view the selection of External/Internal Merge by Minimal Search as the lead-
ing behavior for small ϵ > 0, with the subdominant terms of Sideward and
Sideward/Countercyclic Merge ensuring the strong Markovian property while
External/Internal Merge primarily perform structure formation and movement.

1.10 The core computational structure of Merge

The description of Merge and its action on workspaces that we presentaed
above follows closely the formulation given in the recent linguistic literature,
as we have noted several times. We discuss here a further simplification of the
structure of Merge, that extracts its core computational structure, as presented
in Chomsky’s work (29).

Let T be the set of binary rooted trees without planar structure (and with-
out labeling of the leaves), and V(T) the free Z-module (or the Q-vector
space) spanned by the set T. The following description is the analog of Defi-
nition 1.1.1 and Remark 1.1.2.

Lemma 1.10.1. The set T is the free non-associative, commutative magma
whose elements are the balanced bracketed expressions in a single variable x,
with the binary Merge operation (α, β) 7→ M(α, β) = {α, β}. Correspondingly,
V(T) is the free commutative non-associative algebra generated by a single
variable x.

Proof. We can identify the binary rooted trees without planar structure with
the balanced bracketed expressions in a single variable x. For example

{{x{xx}}x} ←→

x x x
x
.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.10 The core computational structure of Merge 89

The Merge operationM(α, β) = {α, β} takes two such bracketed expressions α
and β and forms a new one of the form {α, β}, which correspond to attaching
the roots of the two binary trees to a common root,M(T,T ′) = T ∧ T ′. □

Equivalently,V(T) is the free algebra over the quadratic operad freely gen-
erated by the single commutative binary operationM (see (89)).

The generative process for the set T via the Merge operation can be equiva-
lently described as a recursive procedure encoded in the form of a fixed point
equation.

Proposition 1.10.2. Let V(T) = ⊕ℓV(T)ℓ with the grading by length (num-
ber of leaves) as before, with M : V(T)ℓ × V(T)ℓ′ → V(T)ℓ+ℓ′ , where M
is extended by linearity in each variable. Consider formal infinite sums X =∑
ℓ≥1 Xℓ with Xℓ ∈ V(T)ℓ and the recursive equation

X = M(X, X) . (1.10.1)

Then the generative process for T via the Merge operation is equivalent to
the recursive construction of a solution of (1.10.1) with the initial condition
X1 = x.

Proof. We have M(
∑
ℓ Xℓ,

∑
ℓ′ Xℓ′) :=

∑
ℓ,ℓ′M(Xℓ, Xℓ′). In particular, the term

of degree n inM(X, X) is given by

M(X, X)n =

n−1∑
j=1

M(X j, Xn− j) ,

so that the fixed point equation (1.10.1) reduces to the recursive relation

Xn =

n−1∑
j=1

M(X j, Xn− j) .

starting with X1 = x, the recursion produces X2 = {xx}, X3 = {x{xx}}+{{xx}x} =
2{x{xx}}, X4 = 2{x{x{xx}}} + {{xx}{xx}}, and so on. These first terms Xn list
all the possible non-planar binary rooted trees with n leaves, with multiplici-
ties that account for the different planar structures. Given a non-planar binary
rooted tree T with n leaves, we can always write it as T = M(T ′,T ′′) where
T ′,T ′′ are the two binary rooted trees with roots at the two internal vertices of
T connected to the root of T , with j = #L(T ′) and n − j = #L(T ′′), for some
j ∈ {1, . . . , n−1}. Since the Merge product is commutative, it does not matter in
which order we list T ′ and T ′′. Thus, each T ∈ Tn can be mapped uniquely to
an unordered pair {T ′,T ′′} and conversely, any pair of trees T ′,T ′′ with num-
bers of leaves ℓ′ and ℓ′′, respectively, determines uniquely a tree M(T ′,T ′′)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

90 Chapter 1 Mathematical Structure

with ℓ′ + ℓ′′ leaves. Thus, inductively, if each X j for 1 ≤ j < n consists of a list
(formal sum) of all the possible non-planar binary rooted tress with j leaves,
then Xn also consists of a sum of all the possible non-planar binary rooted tress
with n leaves. One sees similarly that the integer coefficients in the sum count
different planar structures (planar embeddings). □

As we discuss further in §1.17, this demonstrates that the generative pro-
cess for the core computational structure of Merge in the Minimalist Model
of syntax is in fact the most fundamental basic case of the Dyson–Schwinger
equations in physics. We provide a quick summary here of what we will dis-
cuss in more detail in §1.17.

In general, the Dyson–Schwinger equation implements in perturbative quan-
tum field theory the construction of solutions for the equations of motion. It
is a way of encoding the variational principle of least action for the equa-
tions of motion in classical physics in a form suitable for quantum fields, via
a recursive method of solution that can be performed order by order in the
perturbative expansion. There are two main conceptual aspects to single out
here. One is the fact that the construction of solutions of Dyson–Schwinger
equations becomes a combinatorial problem, in terms of Feynman graphs and
their associated trees, expressible as a solution to a fixed point equation, of
which (1.10.1) is the most fundamental example. The general version of such
a combinatorial Dyson–Schwinger equation takes the form of a (possible n-
ary) Merge operation, given by the grafting operator B of Definition 1.3.2, and
a polynomial fixed point equation in a Hopf algebra, that takes the general form
X = B(P(X)), for a polynomial P, and a variable X =

∑
ℓ Xℓ, in (a completion

of) a Hopf algebra of rooted trees. This equation is then solved recursively, as
in the fundamental case of (1.10.1).

The other aspect is the usual requirement that for classical solutions of the
equations of motion: the action functional is stationary under infinitesimal
variations. This is transformed in the case of quantum fields into correspond-
ing equations for the quantum correlation functions. In the formulation of
perturbative quantum field theory in terms of Hopf algebras, these in turn arise
from the combinatorial solution, which is entirely determined in terms of the
underlying Hopf-algebraic structure, together with the evaluation of a (renor-
malized) Feynman rule, to obtain the actual physical solution from the combi-
natorial one.

As we discuss further in §1.17, the first observation identifies the generative
process of syntactic objects through Merge with the basic case of the struc-
ture of generative processes of fundamental physics. The second observation
suggests that the optimality that the core computational structure of Merge

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.11 Constraints on Merge: the n-arity question 91

ought to satisfy is of the same conceptual nature as the least action principle of
physics, when the latter manifests itself in a combinatorial form. In this way,
Minimalism’s fundamental call for the imposition similar “least effort” princi-
ples (sometimes called “Third Factor” principles) shares a deep commonality,
it appears, with physics.

The procedure we described in this section, that encodes the generative pro-
cess of free symmetric Merge into a formal series X =

∑
ℓ≥1 Xℓ satisfying the

fixed point equation M(X, X) = X, is somewhat reminiscent of the more fa-
miliar Chomsky–Schützenberger results of (36), where the generative process
of an unambiguous context-free language is encoded through a power series
L(x) =

∑
k ak xk with coefficients ak counting the number of words of length

k in the language, satisfying a polynomial relation P(x, L(x)) = 0 for some
polynomial P with rational coefficients. These two settings share a common
underlying idea of encoding a generative grammar into a series subject to a
specific type of polynomial equation. The main differences between the case
discussed here and the Chomsky–Schützenberger setting of (36) are these:

• the result of (36) requires unambiguous context-free grammars, while here
we work with the generative process of free symmetric Merge rather than
with the theory of formal languages;

• in (36) the important information captured by the infinite series L(x) is in the
coefficients ak, while in the case of Merge it is in the terms Xℓ, of degree ℓ
in the Hopf algebra grading (and the coefficients only give multiplicities that
detect the different counting of planar and non-planar trees);

• in the Merge case the recursive solution of the polynomial (quadratic) fixed
point equation determines all the Xℓ as (formal sums of) the objects gener-
ated by Merge (the syntactic objects), while in (36) the polynomial equation
satisfied by L(x) is not meant to be solved for L(x): it simply establishes the
fact that L(x) lies in the special class of power series that are algebraic over
Q(x).

1.11 Constraints on Merge: the n-arity question

An important question regarding the Merge operation is whether the same gen-
erative power would be achievable with a similar operation that is n-ary, for
some n ≥ 3, rather than binary. This is discussed in §3.3.1 of Elements (37),
where it is argued that principles of simplicity and least effort favor a binary
over an n-ary Merge. We show here that there are also intrinsic computational
properties that rule out the n-ary case, for n ≥ 3.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

92 Chapter 1 Mathematical Structure

Riny Huijbregts presented in (94) strong empirical linguistic evidence for
why a ternary Merge would be inadequate, in the sense that such a ternary op-
eration would produce both undergeneration and overgeneration with respect
to binary Merge.

• Undergeneration refers to syntactic constructions that can be derived through
the binary Merge but would not be generated by a ternary Merge.

• Overgeneration refers to generation of ungrammatical sentences that would
be generated by a ternary Merge, but not by binary Merge.

While the undergeneration problem could in principle by bypassed by hypothe-
sizing the simultaneous presence of a binary and a ternary Merge (but a princi-
ple of least effort would then rule out this if just a single binary Merge suffices),
the overgeneration problem cannot be similarly dealt with.

Our goal in this section is to explain why any n-ary Merge operation, for
any n ≥ 3, would necessarily lead to both undergeneration and overgeneration
(with respect to the binary Merge), as a simple consequence of the algebraic
structure described in the previous sections.

In particular, within this formulation one can see that undergeneration and
overgeneration have two somewhat different origins.

• Undergeneration depends only on the magma of syntactic objects.
• Overgeneration involves the action of Merge on workspaces.

1.11.1 The n-ary Merge magma
Here we assume the existence of a hypothetical n-ary Merge, for some n ≥ 3,
and we discuss how the structure of the magma of syntactic objects changes
with respect to the binary case. We assume the same initial set SO0 of lexical
terms and syntactic features.

Definition 1.11.1. An n-magma consists of a set X together with an n-ary
operation

Mn : X × · · · ×︸ ︷︷ ︸
n-times

X → X , (x1, . . . , xn) 7→ Mn(x1, . . . , xn) .

We say that (X,Mn) is an n-magma over a set Y, if all elements of X are ob-
tained by iterated application ofMn starting with n-tuples of elements in Y.

We write {x1, . . . , xn} := Mn(x1, . . . , xn) for the element of X that is obtained
by applyingMn to the n-tuple (x1, . . . , xn). In particular, the set X consists of a
subset X1 consisting of all elements of the form {y1, . . . , yn} := Mn(y1, . . . , yn)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.11 Constraints on Merge: the n-arity question 93

with all the yi ∈ Y , a set X2n−1 consisting of all elements of the form

Mn(y1, . . . , yi−1,Mn(ai,1, . . . , ai,n), yi+1, . . . , yn) =

{y1, . . . , yi−1, {ai,1, . . . , ai,n}, yi+1, . . . , yn}

for i = 1, . . . , n and with all the yi, ai, j ∈ Y , a set X3n−2 consisting of all elements
of the form

{y1, . . . , yi−1, {ai,1, . . . , ai,n}, yi+1, . . . , y j−1, {b j,1, . . . , b j,n}, y j+1, . . . yn} and

{y1, . . . , yi−1, {ai,1, . . . , ai, j−1, {b j,1, . . . , b j,n}, ai, j+1, ai,n}, yi+1, . . . , yn} ,

with i , j, i, j = 1, . . . , n, and all the yi, ai,k, b j,k ∈ Y , and so on, so that we have

X =
⊔
k≥1

Xk(n−1)+1 . (1.11.1)

We refer to the subset Xk(n−1)+1 as the set of elements of length k(n − 1) + 1 in
the n-magma.

The n-magma is associative if all the elements of length k(n − 1) + 1 are
identified, that is, if bracketing is irrelevant. It is commutative if elements
{x1, . . . , xn} with entries that differ by a permutation in the symmetric group S n

are identified, that is, if every set within brackets is unordered.

We then have the following description of the set of syntactic objects pro-
duced by a hypothetical n-ary MergeMn.

Figure 1.7
Examples of syntactic objects produced by a binary, ternary, or 5-ary Merge.

Definition 1.11.2. The set SO(n) of n-ary syntactic objects is the free, non-
associative, commutative n-magma on the set SO0,

SO(n) = Magma(n)
na,c(SO0,Mn) , (1.11.2)

with
SO(n) =

⊔
k≥1

SO
(n)
k(n−1)+1 . (1.11.3)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

94 Chapter 1 Mathematical Structure

Remark 1.11.3. We can identify the elements of SO(n) with rooted n-ary trees
(see Figure 1.7),

SO(n) ≃ T
(n)
SO0

, (1.11.4)

namely trees where all the non-leaf vertices have n descendants, without a
planar structure, and with leaves labeled by elements of the set SO0. (Note
that, as in the binary case, what we call here n-ary trees are full n-ary trees.)

The set SO(n)
k(n−1)+1 is the set of rooted n-ary trees (with no assigned planarity)

with k(n − 1) + 1 leaves, and therefore with k non-leaf vertices. The number
k of non-leaf vertices is the number of applications of Mn in the process of
generating elements of SO(n), where each non-leaf vertex is the graphical rep-
resentation of a Merge operation.

1.11.2 Undergeneration
Given the structure (1.11.3) of the set of n-ary syntactic objects, we can show
that there are two different forms of undergeneration (with respect to the binary
Merge), and that both of them inevitably occur for any n-ary Merge with n ≥ 3.
The two different forms of undergeneration correspond, respectively, to the
following two phenomena:

• Certain lengths (number of leaves, length of resulting sentence) are not achiev-
able through an n-ary Merge construction for any given n ≥ 3 (only binary
Merge can achieve all lengths);

• Certain syntactic parsing ambiguities are not accountable for, in cases where
only one parsing is possible with an n-ary Merge construction while different
inequivalent parsings are available with binary Merge.

The first form of undergeneration can be seen as follows.

Lemma 1.11.4. Only strings of elements of SO0 of length k(n − 1) + 1, for
some k ≥ 1, can be achieved through an n-ary Merge. In particular, only the
binary Merge can achieve all lengths.

Proof. The number of leaves of an n-ary tree with k non-leaf vertices is k(n −
1)+ 1. Thus, the only possible strings of elements of SO0 that can be obtained
through k successive applications of an n-ary Merge Mn are of length k(n −
1) + 1, as in the decomposition (1.11.3) of the set of n-ary syntactic objects.
Only in the case n = 2 does the set {k(n−1)+1}k≥1 contain all positive integers
greater than or equal to 2. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.11 Constraints on Merge: the n-arity question 95

Known empirical linguistic examples of this kind of undergeneration in-
clude, for instance, the fact that sentences like “it rains” are in SO2 while
we have SO(3)

2 = ∅, hence they are not realizable by a ternary MergeM3

The second form of undergeneration can be seen through counting and com-
paring the sizes of the sets SOk(n−1)+1 and SO(n)

k(n−1)+1, for n ≥ 3. The counting
formula for rooted trees are simpler in the case of trees with an assigned pla-
nar structure, rather than for abstract trees with no assigned planarity. Thus,
we count the resulting trees after the externalization step that introduces planar
structures.

Let Tpl
SO0
= ⊔ℓT

pl
SO0,ℓ

and T(n),pl
SO0

= ⊔kT
(n),pl
SO0,k(n−1)+1 denote, respectively, the

sets of binary and of n-ary rooted trees with a choice of planar embedding.

Lemma 1.11.5. For any given n ≥ 3, and for ℓ = k(n − 1) + 1, for any k ≥ 2,
we have

#Tpl
SO0,ℓ

> #T(n),pl
SO0,ℓ

.

Proof. The number of planar rooted binary trees with ℓ = r + 1 leaves (hence
r non-leaf vertices) is given by the Catalan number

Cr =
1

r + 1

(
2r
r

)
.

Thus, for ℓ = k(n − 1) + 1, we have the counting

Ck(n−1) =
1

(n − 1)k + 1

(
2k(n − 1)

k

)
.

The number of planar rooted n-ary trees with (n − 1)k + 1 leaves (hence k
non-leaf vertices) is correspondingly given by the Fuss–Catalan numbers

C(n)
k =

1
(n − 1)k + 1

(
nk
k

)
.

The different assignments of labels at the leaves contribute in both cases a
factor S (n−1)k+1, where S := #SO0. When we compare the counting we see
that

S (n−1)k+1(Ck(n−1) −C(n)
k) =

S (n−1)k+1

(n − 1)k + 1

((
2k(n − 1)

k

)
−

(
nk
k

))
> 0 (1.11.5)

since 2k(n − 1) > nk for n ≥ 3. □

Thus, at the level of planar trees, counting detects an undergeneration that is
present at all levels k ≥ 1 of the construction of the sets of syntactic objects.
This phenomenon shows that there are always strings of elements of SO0 of
length k(n − 1) + 1 that have ambiguous parsings when realized in terms of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

96 Chapter 1 Mathematical Structure

binary Merge, while the same ambiguity cannot be accounted for with an n-
ary Merge.

As a simple example of this type of undergeneration, the two different pars-
ings of the ambiguous sentence “I saw someone with a telescope” depend on
the difference between the two binary trees

δ
α β γ

δ
α β γ

that would disappear entirely if the terms α, β, γ, δ are assembled through a
4-ary Merge to form the tree

δ α β γ

where the ambiguity would no longer be detectable, as only a single 4-ary
parsing is possible.

1.11.3 The structure of a hypothetical n-ary Merge
Given the set SO(n) of syntactic objects associated to a hypothetical n-ary
Merge, obtained as in (1.11.3), we can consider the same type of action of
Merge on workspaces that we have introduced above for a binary Merge. We
will see in §1.11.4 below that, when the same structure is implemented through
an n-ary Merge with n ≥ 3, it inevitably leads to overgeneration.

As in the binary case, we introduce the set of workspaces as finite collections
(multisets) of syntactic objects, which in the n-ary case are elements of the
set SO(n) ≃ T

(n)
SO0

of n-ary non-planar rooted trees. We again consider the
vector space V(F(n)

SO0
), where F(n)

SO0
is the set of finite forests with connected

components in T(n)
SO0

. In order to write the extraction of accessible terms and
the cancellation of copies in the form of a coproduct, and the Merge pairing
on accessible terms, we consider the relevant algebraic structure on V(F(n)

SO0
),

namely the product given by disjoint union ⊔ and the coproduct as in (1.2.8).

Remark 1.11.6. In defining a coproduct of the form (1.2.8) for an n-ary tree,
one no longer has the option of taking a quotient of the form T/dTv, because
after removal of the subtree Tv, contractions of edges in the resulting tree T∖Tv

will produce vertices with either fewer or more than n descendants. Unlike
with binary trees there is no unique maximal n-ary tree obtainable from the
deletion of the subtree Tv. In order to have a quotient T/Tv that is itself an n-
ary tree, one can use the quotient construction T/cTv obtained by contracting
Tv to its root vertex, which will carry a label Tv, as in the binary case. We can

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.11 Constraints on Merge: the n-arity question 97

also still consider a quotient of the from T/ρTv, using admissible cuts of the
n-ary trees, where the extracted πC(T) is an n-ary tree and the remaining term
ρC(T) = T/ρπC(T) is an “at most n-ary” tree, which can have vertices of lower
valence.

We consider the coproduct onV(F(n)
SO0

) given by

∆c(T) =
∑

v

Fv ⊗ T/cFv ,

where Fv = πC(T) is the forest given by the collection of accessible terms
obtained as the result of an admissible cut on T , and

∆c(F) = ⊔a∆
c(Ta) for F = ⊔aTa .

We can assume that the form of the action of Merge on workspaces will be of
the same form as in the binary case of (1.3.7). Thus, we can write the desired
form for the n-ary Merge action on workspaces as follows.

Given a collection S = (S i)n
i=1 of n-ary syntactic objects S i ∈ T

(n)
SO0

, we also
define an operator

δS 1,...,S n : V(F(n)
SO0

) ⊗V(F(n)
SO0

)→V(F(n)
SO0

) ⊗V(F(n)
SO0

)

in the same way as the δS ,S ′ defined in the binary case. We set

δS 1,...,S n = γS 1,...,S n ⊗ id ,

where
γS 1,...,S n : V(F(n)

SO0
)→V(F(n)

SO0
)

γS 1,...,S n (F) =

 F F = S 1 ⊔ · · · ⊔ S n

0 otherwise.

Thus, the operator δS 1,...,S n selects terms Fv ⊗ T/cFv of the coproduct, where

Fv = Tv1 ⊔ · · · ⊔ Tvn ≃ S 1 ⊔ · · · ⊔ S n .

which means that up to a permutation σ of indices Tσ(i) ≃ S i. We then obtain
the action of the hypothetical n-ary Merge on workspaces in the form

Definition 1.11.7. The action of n-ary Merge on workspaces consists of a col-
lection of operators

{MS 1,...,S n }S ′i∈T
(n)
SO0

, MS 1,...,S n : V(F(n)
SO0

)→V(F(n)
SO0

) ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

98 Chapter 1 Mathematical Structure

parametrized by n-tuples (S i)n
i=1 of n-ary syntactic objects. These operators

act onV(F(n)
SO0

) by

MS 1,...,S n = ⊔ ◦ (B ⊗ id) ◦ δS 1,...,S n ◦ ∆
c , (1.11.6)

with the same grafting operation B as in Definition 1.3.2.

Note that the n-ary analog of Lemma 1.3.3 also holds, so that (1.11.6) is
obtained analogously.

This action of Merge on workspaces has the same structure as in the binary
case, namely, for each of the n input of the n-ary Merge Mn a search is made
over the workspace by extracting accessible terms and comparing them with
the corresponding n-ary syntactic object S i. Non-matching terms are left un-
changed in the new workspace, while the n-ary Merge operation is applied
to n-tuples of matching terms among the extracted accessible terms for each
Merge input. The new workspace then has these Merge outputs along with the
terms coming from the quotient part of the coproducts, where cancellation of
the deeper copies of the accessible terms used by Merge is performed.

The analog of (1.4.1) for Internal Merge would take the form

MS 1,...,S n,T/(S 1⊔···⊔S n) = Mn ◦iMS i,1,...,1 (1.11.7)

in a hypothetical n-ary case (where as in the binary case the MS i,1,...,1 do not
exist as independent Merge forms and only take place in composition).

One can envision other possible generalizations of a binary Merge action on
workspaces to the n-ary case, using a coproduct with higher arity instead of ∆.
We will not discuss them here, since (1.11.6) is the simplest direct generaliza-
tion of (1.3.7), and it suffices to show the inevitability of overgeneration (that
would occur for the same reasons in other such generalizations as well).

1.11.4 Overgeneration
We can now view the overgeneration phenomenon as a different type of com-
parison between the sets SO and SO(n), with respect to the undergeneration
discussed above. Unlike undergeneration, overgeneration depends not only on
the structure of the set SO(n) of syntactic objects, but also on the action of on
workspaces as described above.

Indeed, consider the following empirical linguistic example of overgener-
ation by a hypothetical ternary Merge. We assume a workspace given by a
ternary forest of the form

F = {α, β, γ} ⊔ δ ⊔ η ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.11 Constraints on Merge: the n-arity question 99

with α, β, γ, δ, η ∈ SO(3) ≃ T
(3)
SO0

Consider the action of a hypothetical ternary
Merge on workspaces described by (1.11.6) with n = 3 and with S = (S 1, S 2, S 3)
given by S 1 = α, S 2 = β, and S 3 = {α, β, γ} gives the internal Merge

MS 1,S 2,S 3 (F) = {α, β, {α, β, γ}} ⊔ δ ⊔ η .

Similarly, the same action with S 1 = δ, S 2 = η, and S 3 = {α, β, γ} gives the
external Merge

MS 1,S 2,S 3 (F) = {δ, η, {α, β, γ}} .

These ternary Merge operations are responsible for generating ungrammatical
sentences such as6 peanuts monkeys children will throw (as opposed to children
will throw monkeys peanuts), resulting from

{peanuts,monkeys, {children,will, {throw,monkeys, peanuts}}} (1.11.8)

In the example of (1.11.8) one sees that α and β are accessible terms of
{α, β, γ}, hence with a ternary Merge one can form {α, β, {α, β, γ}}. On the
other hand, in the case of binary Merge, {α, β} is not an accessible term of
{{α, γ}, β}, hence the analogous Merge construction is not possible with binary
Merge. Thus, ternary Merge overgenerates with respect to binary Merge, by
allowing for expression not allowed by binary Merge (and non grammatical,
as in the example above).

This example indicates that the illustrated overgeneration phenomenon is
caused by the existence of accessible terms for an n-ary Merge that are not
accessible terms for the binary Merge. We can explain that more in detail in
the following way, to show that this is in fact a general phenomenon and not a
peculiarity of the example described above.

In the case of an arbitrary hypothetical n-ary Merge with n ≥ 3, the overgen-
eration phenomenon is caused by a simple fact.

Lemma 1.11.8. Suppose given a set L of ℓ = k(n − 1) + 1 items in SO0,
where we assume that k ≥ 3. Let T (n) be an n-ary tree in T(n)

SO0
with leaves set

L(T (n)) = L. There always exist a collection of n disjoint accessible terms S i

of T (n) with the property that the set L′ ⊂ L given by L′ = L(S 1) ⊔ · · · ⊔ L(S n)
cannot be the set of leaves L′ = L(T1) ⊔ L(T2) of two accessible terms Ti of a
binary tree T (2) with the same set L = L(T (2)) of leaves.

6 This example was communicated to us by Riny Huijbregts. For a more detailed discussion of
this and other examples, see (94).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

100 Chapter 1 Mathematical Structure

Proof. It is enough to exhibit one such example. For larger values of k ex-
amples with larger accessible terms are possible, with a similar construction.
Since n ≥ 3 and k ≥ 3 we have k ≥ 3 > (2n−1)/(n−1) and 2n < k(n−1)+1, so
that we can choose 2n points among the k(n− 1)+ 1 leaves in L(T (n)) = L. We
chose them as follows: first choose a planar embedding of the tree T (n), which
in turn fixes a linear ordering of the set L(T (n)) of leaves, ℓ1, . . . , ℓk(n−1)+1. We
can position the leaves in this planar embedding so that they all lie on the x-
axis in this order. Choose as accessible terms of T (n) the first n odd numbered
leaves ℓ1, ℓ3, . . . , ℓ2n−1. Now suppose that there exist a binary tree T (2) with the
same set L = L(T (2)) of leaves and two disjoint non-empty accessible terms
T1,T2 of T (2) such that L(T1) ⊔ L(T2) = L′ = L(S 1) ⊔ · · · ⊔ L(S n). Consider
the first three leaves ℓ1, ℓ2, ℓ3 in the set L with the ordering obtained above
from a planar embedding of T (n). We know ℓ1 and ℓ3 are in L′. Take the paths
from ℓ1 to the root of T (2) and from ℓ2 to the root of T (2). Let v be the internal
(non-leaf) vertex of T (2) where the paths first meet (and then continue as the
same path from there to the root). If this vertex is the root then the subtree
of T (2) containing ℓ1 and ℓ3 is all of T (2), hence we cannot have two disjoint
non-empty accessible terms T1,T2 of T (2) with L(T1) ⊔ L(T2) = L′. Thus, v is
not the root of T (2). If ℓ1 and ℓ3 belong to the same accessible term, say T1,
then the accessible term Tv ⊂ T1. Now look at the leaf ℓ2. It does not belong
to L′, so in particular it should not be in L(T1). But the path from ℓ2 to the root
has to meet either the path from ℓ1 to v or the path from ℓ3 to v (by the Jordan
curve theorem in the plane, since it starts inside the region bounded by these
two paths and the x-axis and it ends at the root that is outside of this region).
This implies that ℓ2 in fact is a leaf of Tv, hence a leaf of T2, giving rise to a
contradiction. If ℓ1 and ℓ3 do not belong to the same accessible term Ti, we
can repeat the same argument with two leaves ℓ2k−1, ℓ2 j−1 that belong to the
same accessible term. There will be at least one such pair as there are n ≥ 3
leaves in L′ by construction so at least two must be in the same component of
T1 ⊔ T2. □

An immediate consequence of this fact is that an n-ary Merge always over-
generates with respect to a binary Merge. We see that considering construc-
tions obtained via Internal Merge.

Corollary 1.11.9. For any n-ary syntactic object T (n) ∈ SOn, with set of leaves
L = L(T (n)), there exists a choice S 1, . . . , S n−1 of disjoint accessible terms of
T (n) such that the subset L′ = L(S 1) ⊔ · · · ⊔ L(S n−1) ⊂ L cannot be realized as
the set of leaves L′ = L(Tv) of an accessible term Tv of a binary tree T (2) with
L(T (2)) = L. Therefore the ordered set of leaves of any planar embedding of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 101

the n-ary Internal Merge

Mn(S 1, . . . , S n,T (n)/(S 1 ⊔ · · · ⊔ S n))

cannot be realized as the ordered set of leaves of a planar embedding of a
binary external Merge

M(Tv,T (2)/Tv)

with L(T (2)) = L and L(Tv) = L(S 1) ⊔ · · · ⊔ L(S n−1).

1.12 A model of externalization

In this section we discuss an algebraic model of Externalization. This is the
process that interfaces the core computational mechanism of syntax, based on
free symmetric Merge, with the Sensory-Motor system that externalizes lan-
guage in the form of a time-ordered string of words, in the form of speech,
sign, writing. The key feature of this step is that the syntactic objects produced
by free symmetric Merge, that we have identified with abstract (non-planar)
binary rooted trees, acquire a planar embedding and this planar embedding
corresponds to a linear ordering of the leaves of the tree, namely to a particular
ordering of the words in a sentence. While at the level of the core computa-
tional system of syntax only structural hierarchical relations exist, at the level
of externalization proximity relations in the ordering also become relevant.
Manifestly, externalization is language dependent, in the sense that different
word order constraints are followed in different languages, depending on cor-
responding syntactic parameters.

Given our mathematical model of free symmetric Merge, building a compat-
ible mathematical model of Externalization revolves around formalizing the
assignment of planar structures to abstract binary rooted trees. As we will dis-
cuss in this section, there are some important algebraic properties related to this
operation of “planarization” that fix the structure that Externalization can take.
In particular, the algebra accounts for two main properties of Externalization
that we will discuss later in more detail:

1. Merge can act either before or after Externalization but not both simul-
taneously and compatibly. (In the setting of Elements (37), Merge acts
before Externalization.)

2. Externalization is language dependent, with constraints determined by
syntactic parameters.

We discuss the general structure in §1.12.1 before getting into more technical
details about this.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

102 Chapter 1 Mathematical Structure

1.12.1 Externalization: a preliminary discussion
Our mathematical model of externalization is summarized by a diagram of the
following form that we now explain:

T
pl
SO0

constraints

""Π projection
}}

TSO0

σL section --

T
pl
SO0,L

(1.12.1)

We will give further details about this diagram in the rest of this section and in
§1.13.1. We outline here just the main ideas.

When one considers the difference between the abstract (non-planar embed-
ded) binary rooted trees produced by free symmetric Merge and the planar
binary rooted trees that one should obtain through the process of External-
ization, in algebraic terms this difference can be described by two different
magma structures:

On the one hand, we have the commutative non-associative free magma of
syntactic objects

SO = Magmana,c(SO0,M) = TSO0

that we have already discussed, that is the generative process of the free sym-
metric Merge. On the other hand, for planar trees, we have a similar algebraic
structure:

SOnc = Magmana,nc(SO0,M
nc) = Tpl

SO0
.

This is the free noncommutative non-associative magma over the same set SO0

of lexical items, with a binary operation asymmetric Merge

M
nc(T π

1 ,T
π
2) =

T π
1 T π

2
,

T π
2 T π

1
= Mnc(T π

2 ,T
π
1) ,

where we use the notation T π for the trees here as a reminder that they are
endowed with the choice π of some planar embedding. We write Tpl

SO0
for

the set of planar binary rooted trees with leaves labeled by elements of the
set SO0. We will return to discuss these magma structures in more detail in
§1.13.1.

As we will show more explicitly in Lemma 1.13.1, there is a natural pro-
jection map Π : Tpl

SO0
= SOnc ↠ SO = TSO0 , that just forgets the planar

embedding of the trees Π : T π 7→ T . This projection map has very good prop-
erties: it is a morphism of magmas, it is everywhere defined, and it is canonical
in the sense that it does not depend on any auxiliary choice to be defined. In

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 103

Lemma 1.13.1 we will also give an explicit proof of why a map with the same
properties, going in the opposite direction, from TSO0 to Tpl

SO0
, cannot exist.

The problem with this projection map, however, is that it goes in the wrong
direction, with respect to Externalization. So the first question to answer in
order to develop a good mathematical model of Externalization is how to
get around this problem, or if you wish, how to take that one way street
T

pl
SO0
→ TSO0 in the opposite direction. This can be done by taking a sec-

tion of the projection Π. A section of a projection is a choice of an element in
each fiber (preimage set) Π−1(T) over a point T ∈ TSO0 in the target space of
the projection. If one writes σ(T) ∈ Π−1(T) for the chosen element of the fiber,
one obtains a map σ : TSO0 → T

pl
SO0

with the property that the composition
Π ◦ σ = id is the identity on TSO0 . This relation Π ◦ σ = id is the defining
property of a section of the projection Π.

So one can take the one way streetΠ : Tpl
SO0

↠ TSO0 in the opposite direction
using a section σ of the projection, but one pays a fine for doing this, and the
fine is the loss of some of the “nice” properties of the map Π. In particular,
the section σ of the projection Π will have two properties that determine some
important aspects of Externalization:

• unlike the projection Π, its section σ is not a morphism of magmas;
• constructing a section of the projection is non-canonical, (meaning that it is

non-unique and it depends on choices).

These two properties capture two important linguistic properties of External-
ization that have sometimes been raised:

• Merge can only act either before Externalization (as free symmetric Merge
of SMT) or after assignment of planar structures (as asymmetric Merge in
older forms of Minimalism that we will discuss in Chapter 2), but it cannot
simultaneously and compatibly act in both ways.

• Externalization is language dependent: different languages, with different
syntactic parameters, have Externalization realized by different sections of
the same projection Π.

To emphasize the second property, we write the section as

σL : TSO0 → T
pl
SO0

,

where the subscript L stands for the dependence of this section on a particular
language L.

This explains the left-hand-side of the diagram (1.12.1), where one uses a
section σL to “climb” the projection Π in the opposite way, assigning a planar
structures to trees in a language-dependent way. Here the language dependence

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

104 Chapter 1 Mathematical Structure

is determined by the fact that the choice of planar structure has to be compatible
with whatever syntactic parameters dictate constraints on word order.

It remains to explain what the right-hand-side of the diagram (1.12.1) repre-
sents. When we look at the image σL(TSO0) ⊂ Tpl

SO0
, we find for each syntactic

object T ∈ SO produced by free symmetric Merge a corresponding planar tree
(hence a corresponding linearly ordered sequence of the lexical items attached
to the leaves) constructed so that it does not violate any of the word order con-
straints of the given language L. However, among the planar trees contained
in σL(TSO0) there will still be many that may violate other syntactic param-
eters of the language L that are not specifically about word order. Note that
identifying explicitly which syntactic parameters disentangle from word order
constrains is not a simple question. For example, for a simple case of a syn-
tactic parameter that appears unrelated to word order consider ProDrop, that
allows subjects of sentences to remain unexpressed. While in principle this
is a property that does not prescribe word order constraints, relations between
ProDrop and word order structures may occur, see (55). It is a difficult general
question to identify relations between syntactic parameters. Nonetheless, as
a first approximation, let us assume that one can isolate a subset of syntactic
parameters that suffices to determine all the word order constraints, so that any
word order relation implicitly present in other parameters would be already
determined by this subset and any remaining parameter would therefore only
impose further constraints that do not affect word order.

So one still needs to eliminate those trees in σL(TSO0) that violate other con-
straints imposed by syntactic parameters that are not just about word order.
Additionally, as we will be discussing, one needs to eliminate constructions
that cannot be labelled: these are additional constraints that come from addi-
tional data of head, phase theory, etc. Eliminating these unwanted elements,
or equivalently imposing all the constraints coming from syntactic parameters,
means that we are taking a quotient of σL(TSO0) (the operation that eliminates
an unwanted part of the structure) and that quotient is the other arrow on the
right-hand-side of the diagram (1.12.1), that lands into a language-dependent
collection Tpl

SO0,L
, which are the actual results of Externalization.

We will expand on this basic idea, in a more detailed form, in the rest of this
section.

1.12.2 Externalization as correspondence
Our description of the action of Merge on workspaces suggests a possible way
of thinking about the process of externalization, that accounts for the fact that
the core computational structure of free symmetric Merge needs to be followed

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 105

by a procedure (called an “externalization procedure”) that models interaction
with the sensory-motor system (see (7)). It is in this externalization process
that additional constraints are imposed, such as the presence of a linear order-
ing on sentences (in the form of planar embeddings of binary rooted trees), as
well as constraints coming from any other universal grammar principles (called
“First Factor” principles in Elements (37)). One also needs to account for the
observed syntactic diversity across different human languages (syntactic pa-
rameters), see for instance (56).

We can look first at the step of externalization that introduces planar struc-
tures, hence a linear ordering on the leaves of the trees, that is, an ordering
on the resulting sentence. At first it may seem, intuitively, that introducing a
linear ordering is a way of imposing a constraint and should therefore give rise
to some kind of quotient map. In fact the quotient map runs in the opposite
direction, as the map that identifies the abstract (non-planar) tree behind all its
different planar embeddings. It can also be described as the quotient that maps
non-commuting variables (where order matters) to corresponding commuting
variables (where it does not).

The part of the externalization process that fixes a planar structures consists
in fact of the choice of a section of this projection morphism, as we discussed
above. In particular, this section depends on choices. Indeed, this is not sur-
prising, as this simply says that the choice of planar embeddings cannot be
universal, and is in fact language-dependent: it involves specific word order
constraints, as is familiar in linguistic theory. Thus, the construction of this
section of the projection is the first instance where one can see the role of
syntactic parameters in fixing the “visible” externalized language, in this case
specifically in the form of word order parameters.

We denote, as before, by TSO0 and FSO0 the sets of binary rooted trees (re-
spectively, forests) with leaves labels in SO0, and we denote by Tpl

SO0
and Fpl

SO0

the corresponding sets of planar binary rooted trees (respectively, forests) with
leaves labels in SO0.

As we will be discussing more extensively in §1.13.1, the free non-associative
commutative magma of syntactic objects, or equivalently of abstract (non-
planar) binary rooted trees, has a counterpart for planar trees. These are
equivalently described as ordered words in the alphabet SO0 with matching
parentheses, for example

(α, (β, γ)) =
α β γ

,
β γ α

= ((β, γ), α)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

106 Chapter 1 Mathematical Structure

where now the planar embedding of the tree matters, so the two cases (α, (β, γ))
and ((β, γ), α) above are now different objects. The set Tpl

SO0
also has a magma

structure
T

pl
SO0
= SOnc = Magma(SO0,M

nc) , (1.12.2)

the free non-associative non-commutative magma of planar syntactic objects
generated by the set SO0.

Equivalently, we can describe the magma SOnc through its Malcev represen-
tation. This is defined in the following way: consider a new variable c and
use it to mark the opening parenthesis in the strings describing the objects of
SOnc. The position of the closing parenthesis is determined, so for example,
instead of (α, ((β, γ), δ))) one can just unambiguously write cαc2βγδ, see (88).
The magma operationMnc in the Malcev representation takes the form

M
nc(α, β) = cα β .

When we identify, as above, the set of ordered words in SO0 with matched
parentheses and the set of binary rooted trees with a choice of planar embed-
ding, Tpl

SO0
= SOnc, we see that, in terms of the Malcev representation, the

variable c marks the opening parenthesis that corresponds to an internal vertex
of the planar tree in Tpl

SO0
.

As we will discuss in §1.13.1, there is a surjective morphism of magmas

Π : Tpl
SO0
→ TSO0

that identifies all the planar trees that have the same underlying abstract tree.

An assignment of a planar structure can then be seen as a section σL of the
projection Π,

T
pl
SO0 Π

// TSO0 ,

σL
vv

(1.12.3)

namely a map satisfying Π ◦ σL = id, where the section is dependent on a
particular language L and exists as a map of sets, but not as a morphism of
magmas (this will be explained in more detail in §1.13.1). These properties
express the fact that assignment of a linear ordering of sentences is not directly
generated by Merge itself, but requires an additional mechanism (which is part
of the externalization procedure), and cannot be implemented in a universal
language-independent way; see the discussion in §1.12.7.

As we have seen in the previous sections, the computational mechanism de-
scribed by the action of the free symmetric Merge on workspaces encodes the
fundamental computational structure of syntax, which is independent of the
variation of syntactic structures across different languages. Where this vari-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 107

ation actually occurs is only in the externalization process we are describing
here. At the level of the syntactic objects, given by the trees in Tpl

SO0
, and of the

workspaces, given by the forests in Fpl
SO0

, the externalization that corresponds
to a particular language L introduces quotient maps

ΠL : Tpl
SO0

↠ Tpl,L
SO0

ΠL : Fpl
SO0

↠ Fpl,L
SO0

,
(1.12.4)

where Tpl,L
SO0

and Fpl,L
SO0

are the set of planar binary rooted trees (respectively,
forests) with leaves labels in SO0, that are possible syntactic trees for the given
language L. This quotient map very significantly reduces the combinatorial ex-
plosion of Merge, as only a small fraction of all the possible binary rooted trees
generated by the Merge magma are realizable as syntactic trees of a specific
given language. (We discuss in §1.12.7 below the role of syntactic parameters
in determining the quotient map (1.12.4). We will also discuss in §1.13.3 and
§1.14 the role of head and phases in distinguishing possible objects.)

As we will discuss more in §1.12.7, we see here two distinct roles for syntac-
tic parameters in the model of externalization process we propose: the influ-
ence the choice of the section σL through constraints on word order, and they
contribute to the quotient map ΠL that significantly cuts down the combinato-
rial explosion of Merge.

Thus we obtain in this way the two-step process described in the diagram
(1.12.1). This type of two-step procedure, which we use for going from the set
TSO0 to the set Tpl,L

SO0
, passing through the set Tpl

SO0
(and similarly for forests) is

an example of the general notion of correspondence that is used in mathematics
as a useful generalization of the notion of function.

1.12.3 Correspondences
We recall here the main idea behind the mathematical notion of correspon-
dence and how it generalizes the concept of function and mapping, and we
discuss a more category-theoretic way of interpreting correspondences. We
refer the reader to the background material covered in §4 for a review of the
notions of category and 2-category that we mention here.

The notion of correspondence is a natural generalization of the concept of
function or map, and has already played a crucial role in contemporary mathe-
matics. It is generally understood that correspondences provide a better notion
of morphisms than functions, for example by including the possibility of mul-
tivalued functions as well as more general relations. In the case of a category
of geometric spaces (or the underlying category of sets) one typically replaces

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

108 Chapter 1 Mathematical Structure

the usual notion of a function f : X → Y with correspondences that are of the
form

Z

��
X Y .

(1.12.5)

The case of a function is recovered as the special case where Z = G(f) ⊂ X×Y
is the graph of the function G(f) = {(x, y) | y = f (x)}, with the two projection
maps to X and Y . Correspondences, however, are more general than functions.
Given a correspondence Z, one can transfer structures (e.g. vector bundles,
spaces of functions, etc.) from X to Y , by pulling them back to Z and then
pushing them forward to Y via the two maps of the correspondence.

Thus, in this setting, given a category C that has such “pullbacks,” one can
view correspondences as 1-morphisms in a 2-category of spans in C. (For the
notion of 2-category see Definition 4.1.4, in the review material in Chapter 4.)
This is the 2-category Spans(C) that has:

• objects given by the objects of C;
• 1-morphisms given byC-diagrams of the form (1.12.5), with the composition

given by the pullback

Z ×Y Z′

{{ ##
Z

�� ##

Z′

{{ !!
X Y X′ ;

• 2-morphisms between spans X ← Z1 → Y and X ← Z2 → Y are morphisms
Z1 → Z2 in C that give a commutative diagram

Z1

��

�� ��
X Y

Z2

__ ??

Since correspondences are usually described in this way as spans in the case
of geometric spaces, they are usually described dually as cospans in the case

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 109

of algebras, namely as diagrams of the following form

E

A

??

A′ .

aa

This construction further extends to the typical case where correspondences of
algebras are defined as bimodules. However, one can also consider the case of
correspondences (or co-correspondences) given by spans of algebras

E

�� !!
A A′ .

(and co-spans of spaces), with the composition

(A′
g
← E′ → A′) ◦ (A ← E

f
→ A′′)

given by the pullback, that is, the restricted direct sum

E ⊕A′ E
′ = {(e, e′) | f (e) = g(e′)}.

This is the kind of correspondences that we see in the description of the ex-
ternalization of Merge outlined above. In order to formulate it in terms of this
formalism, we can pass from the maps Π, σL,ΠL of sets and magmas, to corre-
sponding maps of vector spaces, algebras, and modules. We will develop this
viewpoint in the rest of this section.

Since this description is more technical, and will not be directly needed in
the following, the readers can simply refer to the description of externalization
given above in terms of the diagram of maps (1.12.1), which is all that we will
need in the following parts of the book, and skip the rest of this discussion in
§1.12.4, §1.12.5, §1.12.6, jumping directly to §1.12.7.

1.12.4 Magma and non-associative algebra
The action of Merge on workspaces described in (1.3.7) and Definition 1.3.4
can be also interpreted as a representation of a non-associative algebra in the
following way. (As elsewhere in this book, all vector spaces and algebras are
taken over the field Q.)

First observe that the magma structure on SO = TSO0 of (1.1.2) gives to
the vector space V(TSO0) the structure of a non-associative commutative al-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

110 Chapter 1 Mathematical Structure

gebra, see (87), (88), where the binary Merge operation M gives the product
operation.

Note that the coproduct (1.2.8) does not induce a bialgebra structure on
V(TSO0) with respect to this product, because it does not satisfy the required
compatibility requirement:

∆ ◦M , (M ⊗M) ◦ τ ◦ (∆ ⊗ ∆) ,

This is unlike the compatibility of ⊔ and ∆ onV(FSO0) in Lemma 1.2.12. The
reason is because ∆(M(T,T ′)) has only terms of the form

M(Tv,T ′)⊗T/Tv, M(T,T ′w)⊗T ′/T ′w, Tv⊗M(T/Tv,T ′), T ′w⊗M(T,T ′/T ′w),

while the right-hand-side applied to T ⊗ T ′ also has all terms of the form

M(Tv,T ′w) ⊗M(T/Tv,T ′/T ′w) .

However, a modified form of the coproduct (1.2.8) does yield V(TSO0) the
structure of a non-associative, commutative, co-commutative, co-associative
Hopf algebra (see (87), (88)), with

∆(T) =
∑

L⊂L(T)

T |L ⊗ T |Lc , (1.12.6)

where, for a subset L ⊂ L(T) (with Lc = L(T) ∖ L) we write T |L to denote
the binary rooted tree obtained by removing all the leaves in Lc and then per-
forming the edge contractions needed to obtain a binary tree. The difference
between this coproduct and (1.2.8) lies in the fact that the coproduct of (1.12.6)
would correspond to a notion of accessible terms that includes all possible sub-
sets of the set of leaves of the corresponding trees, not just those of the form
L = L(Tv). This structure, however, would not correspond to the linguistic
properties of Merge, because for example it would produce cancellations not
only of the deeper copies but also in the copies extracted by Internal Merge.
Thus, this is not the right Hopf algebra structure to consider in our setting.

However, here we only need to consider the non-associative commutative
algebra structure Ana,c = (V(TSO0),M), without the comultiplication. The
remark above on the coproduct is only included for completeness.

1.12.5 Merge representation
We describe here the range of the Merge operationsMS ,S ′ acting on onV(TSO0)
in terms of a representation of a non-associative algebra.

The notion of representation and module over a non-associative algebra is
much weaker than its associative counterpart. IfA is a non-associative algebra

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 111

and V is a vector space, an A-module structure on V is simply given by a
linear map

ρ : A → End(V) .

This map is not a morphism of algebras when A is non-associative. We can
equivalently view ρ as a linear map ρ : A × V → V. We say that a vector
space V is a module over a non-associative algebra A if it is endowed with a
representation ofA onV in the sense described here above.

Lemma 1.12.1. The vector spaceV(FSO0) is a module over the algebraAna,c

through the representation given by the maps

ρ(T)(F) = ⊔ ◦ (MT ⊗ 1) ◦ ∆ (F) = ⊔a(M(T,Ta,v) ⊔ Ta/Ta,v), (1.12.7)

where F = ⊔aTa andMT (Ta) := M(T,Ta).

It then suffices to show that the representation (1.12.7) is enough to deter-
mine the Merge operators MS .S ′ as described in (1.3.7) in Definition 1.3.4. In
other words, we want to show that every new workspace obtained through the
action of Merge described in (1.3.7) can also be obtained through (1.12.1). The
following observation indeed shows that the same terms that can be obtained
via Internal and External Merges can be also obtained through the procedure
described by (1.12.7) in the representation of Lemma 1.12.1. Note that this
does not mean that (1.12.7) is the same as (1.3.7): it simply means that when
we consider all the ρ(T), their image will recover the image of the operators
MS ,S ′ of (1.3.7), ⋃

T

ρ(T)(V(FSO0)) =
⋃
S ,S ′
MS ,S ′ (V(FSO0)) ,

with the union here meant as the common span as vector spaces.

Lemma 1.12.2. The representation (1.12.7) suffices to determined the Merge
operations (1.3.7) on workspaces inV(FSO0).

Proof. First observe that, in (1.12.1), the operatorMT ⊗ 1 selects the terms of
∆(F) of the form Tv ⊗ F/Tv = Tv ⊗ (Ti/Tv ⊔ F̂), for F = ⊔aTa and F̂ = ⊔a,iTa.
It then produces from each such terms a new forest of the form M(T,Tv) ⊔
Ti/Tv⊔ F̂. Each such term can also be obtained from (1.3.7) by applyingMS ,S ′

with S ≃ T and S ′ ≃ Tv to a workshop F′ of the form F′ = T ⊔ F, (1.3.7),
withMS ,S ′ selecting the term T ⊔ Tv ⊗ Ti/Tv ⊔ F̂ in ∆(F′). Note that the form
of Merge obtained can be one of the cases (2b), (3a), (3b): we do not worry
about it here as we know that they can be excluded by Minimal Search, and

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

112 Chapter 1 Mathematical Structure

it is simpler here to work with the full expression (1.3.7), without worrying
about the various sub-cases. Conversely, a workspace of the form

MS ,S ′ (F) = M(S , S ′) ⊔ Ti/S ⊔ T j/S ′ ⊔ F̂

with F̂ = ⊔a,i, jTa, is contained in the range ρ(S)(T j ⊔ F̂). □

In the case of planar binary rooted trees, and the free nonassociative non-
commutative magma SOnc = T

pl
SO0

described above, one similarly obtains a
non-associative and non-commutative algebra

Ana,nc = (V(Tpl
SO0

),Mnc) .

Lemma 1.12.3. The morphism of magmas Π : Tpl
SO0
→ TSO0 and a projection

(map of sets) σL : TSO0 → T
pl
SO0

with Π◦σL = id on TSO0 induces a morphism
of algebras

Π : Ana,nc = (Tpl
SO0

,Mnc)→ Ana,c = (TSO0 ,M) , (1.12.8)

and a linear map of vector spaces

σL : V(TSO0)→V(Tpl
SO0

) (1.12.9)

satisfying Π ◦ σL = id onV(TSO0).

Proof. Consider the projection map Π : Tpl
SO0
→ TSO0 that assigns to planar-

embedded tree an underlying abstract tree while dropping the planar embed-
ding, that is, lumping together all the different planar embeddings of the same
abstract tree. This map induces, via extension by linearity, a map of vector
spaces Π : V(Tpl

SO0
) ↠ V(TSO0).

The algebraAna,nc is the free non-associative non-commutative algebra gen-
erated by the set SO0 with a non-associative non-commutative product, which
we denote by Mnc. Unlike the non-associative commutative Merge product
M of Ana,c, we have in general Mnc(α, β) , Mnc(β, α), hence we can iden-
tifyAna,nc with the algebra associated to the non-associative non-commutative
magma SOnc = Magma(SO0,M

nc). The quotient map is exactly Π that iden-
tifies different planar embeddings of the same underlying abstract tree, hence
the linear map Π described above is in fact also a morphism of algebras

Π : Ana,nc → Ana,c

namely the morphism that kills the commutators and has as its kernel the ideal
generated by the elementsMnc(T,T ′) −Mnc(T ′,T). Elements in this ideal are
by construction formal differences between pairs of trees that differ in planar

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 113

embeddings at one (or more) of the internal vertices, since every application of
Mnc corresponds to an internal vertex of the resulting planar tree.

The first step of externalization, described above as the construction of a
section σL of the projection Π (as a map of sets, not a morphism of magmas),
induces a section (that we still call σL) of the projection Π : Ana,nc → Ana,c.
Such a section cannot be a morphism of algebras, as that would not map a
commutative to a non-commutative algebra (see §1.13.1 for why Ana,nc does
not have a commutative subalgebra that Ana,c can map to). So the section σL

determines a map σL : V(TSO0)→V(Tpl
SO0

) that is just a linear map of vector
spaces, with Π ◦ σL = id onV(TSO0). □

Proposition 1.12.4. There is a corresponding quotient map on workspaces

V(Fpl
SO0

) ↠ V(FSO0) .

The representation (1.12.7) extends to a representation

ρpl : Ana,nc → End(V(Fpl
SO0

))

so that the following diagram commutes

Ana,nc ⊗V(Fpl
SO0

)
ρpl

//

Π⊗Π

��

V(Fpl
SO0

)

Π

��
Ana,c ⊗V(FSO0)

ρ // V(FSO0) .

(1.12.10)

Proof. As in the case of Lemma 1.12.3 above, in Fpl
SO0

forests are now planarly
embedded, hence the components Ta form an ordered set, which we describe
by writing F = ⊔nc

a Ta, where ⊔nc means that the order of the Ta matters,
namely ⊔nc is the union as planarly embedded trees, in a sequential order com-
patible with an ordering of the union of their leaves. By defining ρnc as

ρnc(T)(F) = ⊔nc ◦ (MT,nc ⊗ 1) ◦ ∆ (F) = ⊔nc
a (Mnc(T,Ta,v) ⊔ Ta/Ta,v)

with F = ⊔nc
a Ta and MT,nc(Ta) := Mnc(T,Ta), one obtains compatibility as

expressed by the commutativity of the diagram in the statement. □

1.12.6 Externalization correspondence and algebras
In order to formulate the quotient map ΠL of (1.12.4) at the level of the alge-
bra Ana,nc and its action ρpl on the space V(Fpl

SO0
) of workspaces with planar

structure, we need to use the notion of partial algebra, which is a vector space

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

114 Chapter 1 Mathematical Structure

induced with a partially defined bilinear multiplication. Other widely used
mathematical examples of partial algebras include the span of paths in a di-
rected graph with the composition product.

Lemma 1.12.5. The projection map of vector spacesΠL : V(Tpl
SO0

) ↠ V(Tpl,L
SO0

)
induced by the quotient map of (1.12.4) determines a non-associative non-
commutative partial algebra Ana,nc,L, with an induced action ρpl,L of Ana,nc,L

onV(Fpl,L
SO0

), with a commutative diagram

Ana,nc,L ⊗V(Fpl,L
SO0

)
ρpl,L

// V(Fpl,L
SO0

)

Ana,nc ⊗V(Fpl
SO0

)
ρpl

//

ΠL

OO

V(Fpl
SO0

) .

ΠL

OO
(1.12.11)

Proof. As a vector space, V(Tpl,L
SO0

) is spanned by those trees in Tpl
SO0

that are
realizable as syntactic trees of the given language L, as such it can be viewed
either as a quotient space, under the projection Π determined by (1.12.4), or
as a subspace ofV(Tpl

SO0
). This subspaceV(Tpl,L

SO0
) is not a priori a subalgebra

with respect to the Merge productMnc. However, it is a partial algebra, where
the induced Merge Mnc,L acts as Mnc on the domain given by the set of pairs
T,T ′ ∈ V(Tpl,L

SO0
) with the property that Mnc(T,T ′) ∈ V(Tpl,L

SO0
). This gives a

non-associative, non-commutative partial algebraAna,nc,L = (V(Tpl,L
SO0

),Mnc,L).
The vector space V(Fpl,L

SO0
) can similarly be regarded both as a quotient of

V(Fpl
SO0

) under the quotient map ΠL or as a subspace. We can consider on
V(Fpl,L

SO0
) a coproduct induced by the coproduct ∆ of V(Fpl

SO0
), determined by

setting
∆L(T) =

∑
v∈Vint(T):Tv,T/Tv∈T

pl,L

Tv ⊗ (T/Tv) .

The induced action ofAna,nc,L onV(Fpl,L
SO0

) is given by

ρpl,L(T)(F) = ΠL ◦ (MT,nc ⊗ 1) ◦ ∆L(F) ,

and satisfies by construction the stated compatibility. □

We encounter here a first instance of a phenomenon that we will be dis-
cussing more extensively in Chapter 2, namely the fact that, if one tries to have
Merge act after externalization, then one necessarily has to deal everywhere
with partially defined operations. As we will see in Chapter 2, this is indeed
the situation with earlier models of Minimalism (such as Stabler’s computa-
tional minimalism). The partially defined nature of the Merge operation in this

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 115

setting causes a compounding problem of domain checking when iterations of
Merge are considered in the course of derivation, significantly increasing the
computational complexity.

We can now see that the combination of the procedure, described by the
section σL of the projection Π, for introducing a linear ordering of sentences,
along with the quotient procedure that eliminates trees that are not realizable
as syntactic trees of a specific language, describes the externalization process
in the form of a correspondence, in the sense outlined in §1.12.3 above.

Remark 1.12.6. Externalization is a correspondence given by the span of al-
gebras (or partial algebras) and associated modules

Ana,nc,L ⊗V(Fpl,L
SO0

)
ρpl,L

// V(Fpl,L
SO0

)

Ana,nc ⊗V(Fpl
SO0

)
ρpl

//

Π⊗Π

��

ΠL⊗ΠL

66

V(Fpl
SO0

)

Π

��

ΠL

77

Ana,c ⊗V(FSO0)
ρ // V(FSO0) .

(1.12.12)

1.12.7 The role of syntactic parameters
In the Minimalist Model, where the core structure of syntax is described by the
Merge operation of binary set formation, syntactic parameters, that account
for syntactic variation across languages, become part of Externalization. The
notion of syntactic parameters was originally introduced in the context of the
earlier Principles and Parameters model, (34), (35). A recent extensive study of
syntactic parameters can be found in (164). Here we explore some the formal
consequences of our model with respect to parameters,

For simplicity, we can assume that syntactic parameters are binary variables.
This may not account for phenomena such as some kind of entailment relations
between parameters, observed for example in (120), but it is still, to a large
extent, accurate. We can describe the set of syntactic parameters as a subset
P ⊂ FN

2 , where N is a (large) number of binary variables that record various
syntactic features of languages, and the locus P ⊂ FN

2 accounts for the set
of “possible languages” (see (144)), that can be viewed as regions of possible
values of parameters that are realizable by actual human languages.

It is sometimes argued (see for instance (144)) that the class of possible lan-
guages is a more suitable object of study than the set of syntactic parameters.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

116 Chapter 1 Mathematical Structure

On the other hand, from a mathematical perspective, the use of binary variables
describing syntactic parameters provides an ambient geometric space where
the a set of possible or impossible languages may be describable in algebraic
and geometric terms, as discussed for instance in (148), (175). This has the
advantage of being able to adopt several mathematical tools and techniques
available in those contexts. So we restrict our discussion here to the syntactic
parameters perspective.

The set P incorporates all the possible relations between parameters. One
knows a significant number of relations is expected, for example through the
geometric and topological data analysis techniques applied to databases of syn-
tactic features, see for instance (66), (148), (160), (175). The exact nature of
these relations is not known, but one can hypothesize that P may be realiz-
able as an algebraic set (or algebraic variety) over F2, embedded in the affine
space FN

2 . Regardless of any specific assumption on the geometry of the set
P, we have that a language L determines a corresponding point πL ∈ P, which
is a vector πL ∈ FN

2 that lists as entries the binary values of the N syntactic
parameters for that particular language.

In the description of externalization proposed in §1.12.6, one expects that
syntactic parameters will be involved in determining both the section σL of
(1.12.3) and the projection ΠL of (1.12.4).

Since the first part of externalization, that corresponds to the section σL of
(1.12.3), only depends on syntactic parameters that govern word order, while
the projection ΠL of (1.12.4) depends on all other parameters, we can single
out a subset of M < N parameters that affect word-order. We denote by q :
FN

2 → FM
2 the corresponding projection map that only keeps the word-order

parameters, and we denote by P̄ = q(P) the image under this projection of
the locus of parameters, with π̄ = q(π), for π ∈ P. The parameters q(πL)i,
i = 1, . . . ,M of a point q(πL) in this space P̄ ⊂ FM

2 cut out a subset of Tpl
SO0

that
consists of those planar structures for trees in TSO0 that are compatible with
the word-order properties of the given language L. These define the range of
the section σL, and similarly for workspaces Fpl

SO0
.

On the other hand, given the set of all planar binary trees and forests in
T

pl
SO0

and Fpl
SO0

, respectively, the syntactic parameters specified by the point
πL ∈ P have the effect of selecting which syntactic trees are realizable in the
given language L, thus determining the sets Tpl,L

SO0
and Fpl,L

SO0
. We can give the

following geometric description of this procedure, which has the advantage
that it allows for the possible use of tools from algebraic geometry to model
more closely the externalization process. We give below some example of
questions that can be naturally formulated in this mathematical framework.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.12 A model of externalization 117

As discussed in the vector spacesV(Tpl
SO0

) andV(Fpl
SO0

) are graded by num-
ber of leaves (sentence length),

V(Tpl
SO0

) = ⊕ℓV(Tpl
SO0

)ℓ and V(Fpl
SO0

) = ⊕ℓV(Fpl
SO0

)ℓ , (1.12.13)

with finite dimensional graded pieces.

Proposition 1.12.7. Let L denote the set of languages L ∈ L. Let Gr(d, n)
denote the Grassmannian, the parameterizing space for d-dimensional linear
subspaces in an n-dimensional vector space. The identification of the spaces
V(Tpl,L

SO0
) and V(Fpl,L

SO0
) by specifying the syntactic parameters πL ∈ FN

2 for a
language L is described by a collection of maps

Ei,ℓ : P → Gr(dπi,ℓ, dℓ) , (1.12.14)

where for π = (πi)N
i=1 ∈ P, the image Ei,ℓ(π) ⊂ V(Tpl

SO0
)ℓ is the subspace

spanned by the trees that are compatible with the constraints imposed by the
value of the ith syntactic parameter πi, with dℓ = dimV(Tpl

SO0
)ℓ. Thus, a point

π ∈ P determines a subspace Eℓ(π) = ∩iEi,ℓ(π), and similarly for V(Fpl
SO0

).
The assignment π : L → P of syntactic parameters to languages L 7→ πL in
turn determinesV(Tpl,L

SO0
) as

V(Tpl,L
SO0

) = ⊕ℓEi,ℓ(πL) , (1.12.15)

and similarly forV(Fpl,L
SO0

).

Proof. As in Lemma 1.12.5, we can viewV(Tpl,L
SO0

) andV(Fpl,L
SO0

) as subspaces
(rather than quotient spaces) of V(Tpl

SO0
) and V(Fpl

SO0
), respectively. Each

syntactic parameter πi of a point π = (πi)N
i=1 ∈ P ⊂ FN

2 determines a subspace
V(Tpl

SO0
)πi ⊂ V(Tpl

SO0
) (respectively, V(Fpl

SO0
)πi ⊂ V(Fpl

SO0
), such that, for

π = πL for some language L ∈ L
N⋂

i=1

V(Tpl
SO0

)πL,i = V(Tpl,L
SO0

) , (1.12.16)

and similarly for the V(Fpl
SO0

)πL,i . Given the graded structure (1.12.13), we
can consider the procedure (1.12.16) of cutting out the subspacesV(Tpl,L

SO0
) and

V(Fpl,L
SO0

) step by step by degrees. For a given ℓ ∈ N, there are integers cπi,ℓ,
i = 1, . . . ,N that specify the codimensions of the subspaces

V(Tpl
SO0

)πi,ℓ ⊂ V(Tpl
SO0

)ℓ .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

118 Chapter 1 Mathematical Structure

If dℓ = dimV(Tpl
SO0

)ℓ with dπi,ℓ = dℓ − cπi,ℓ the dimensions, we then have maps

Ei,ℓ : P → Gr(dπi,ℓ, dℓ)

to the Grassmannian of dπi,ℓ-dimensional subspaces inside the dℓ-dimensional
spaceV(Tpl

SO0
)ℓ, so that

Ei,ℓ(πL) = V(Tpl
SO0

)πL,i ∈ Gr(dπL,i,ℓ, dℓ) ,

and similarly forV(Fpl
SO0

)ℓ. Similarly, if dL,ℓ = dimV(Tpl,L
SO0

)ℓ is the dimension
of the resulting intersection (which need not be transversal due to relations be-
tween syntactic parameters), the vector πL ∈ FN

2 of parameters for the language
L determines a map

Eℓ ◦ π : L →
⋃

d

Gr(d, dℓ) Eℓ(πL) = V(Tpl,L
SO0

)ℓ ∈ Gr(dL,ℓ, dℓ) ,

withV(Tpl,L
SO0

) = ⊕ℓEℓ(πL). □

There are natural geometric questions that this viewpoint suggests. For in-
stance, when comparing the syntax of different languages L, L′ ∈ L, one can
consider the resulting comparison between the systems of subspacesV(Tpl,L

SO0
) =

⊕ℓEℓ(πL) and V(Tpl,L′

SO0
) = ⊕ℓEℓ(πL′). Syntactic proximity can be viewed in

terms of the geometric position of these subspaces. For example, mathemati-
cally a special case of pairs E, E′ of infinite dimensional subspaces inside an
infinite dimensional space V is given by the Fredholm pairs, where the in-
tersection E ∩ E′ is finite dimensional and the span of the union E ∪ E′ has
finite codimension. These would represent the situation of maximal differen-
tiation. Moreover, there are models of semantics based on the geometry of
Grassmannians, (126), and one can consider in this context the possibility of
algebro-geometric models of a syntactic-semantic interface.

We will not discuss these questions further in this book, but we will return
to describe a more geometrically explicit relation between externalization and
the syntactic-semantic interface in Chapter 3, section 3.4.4.

1.13 Externalization and planarization

In the new formulation of Minimalism, as we discussed above, Merge occurs
in the free symmetric form described by the free commutative non-associative
magma Magmana,c(SO0,M) of (1.1.2) that constructively defines syntactic ob-
jects, which are binary rooted trees with no assignment of planar structure.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.13 Externalization and planarization 119

In this formulation of Minimalism, the assignment of planar structure to trees
happens after the action of Merge has taken place, in a further process of ex-
ternalization.

This is in contrast with older versions of Minimalism (including the case
of Stabler’s formulation that we will discuss in Chapter 2), where Merge is
applied directly on planar trees.

There are suggestions, such as Richard Kayne’s LCA (Linear Correspon-
dence Axiom) ((102), (103)), proposing the replacement of Externalization
with a more implicit (and unique) choice of planar embeddings for trees. Irre-
spective of the tenability of this proposal on linguistic grounds, we discuss in
this section some difficulties with its implementation, that arise at the formal
algebraic level.

First: a comment about terminology. In the linguistics literature it is cus-
tomary to use the term linearization for the choice of a linear ordering for the
leaves of a binary rooted tree. Since this creates a terminology conflict with the
more common mathematical use of the word “linearization,” and the choice of
a linear ordering of the leaves is equivalent to the choice of a planar embed-
ding of the tree, we will adopt instead here the terminology planarization (of
trees) instead of linearization (of the set of leaves). Thus, we will refer to the
LCA proposal as a “planarization” rather than as a “linearization algorithm”
as usually described. We trust this will not be a cause of confusion for the
readers.

1.13.1 Commutative and non-commutative magmas
The first important observation to note is that the Merge operation can take
place either before (as in the new Minimalism) or after the assignment of pla-
nar structure to trees (as in the old Minimalism), but not both at the same
time, with consistency. This is the same observation that we already made for
the externalization procedure. What we mean by this is the following simple
mathematical observation.

Just as we consider the free commutative non-associative magma

Magmana,c(SO0,M)

of the new Minimalism, we can similarly consider, as in §1.12, the free non-
commutative non-associative magma

SOnc := Magmana,nc(SO0,M
nc)

over the same set SO0.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

120 Chapter 1 Mathematical Structure

As we have discussed already in the context of externalization in §1.12, the
elements of the free non-commutative non-associative magma SOnc are the
planar binary rooted trees with leaves labeled by the set SO0. We write the
elements of SOnc as T π, where T is an abstract (non-planarly embedded) bi-
nary rooted tree and π is a planar embedding of T . The non-commutative
non-associative magma operation is given by

M
nc(T π1

1 ,T
π2
2) =

T π1
1 T π2

2

=: T π ,

where now the trees T π1
1 and T π2

2 are planar and the above tree T π is assigned
the planar embedding π where T π1

1 is to the left of T π2
2 .

In particular in the free non-commutative non-associative magma SOnc we
have Mnc(T π1

1 ,T
π2
2) , Mnc(T π2

2 ,T
π1
1), unlike the case of the free commutative

non-associative magmaM of SO. We now explain more in detail the following
fact, that we have already mentioned in §1.12.

Lemma 1.13.1. There is a morphism of magmas SOnc → SO that simply
“forgets” the planar structure of trees, so that T π 7→ T. On the other hand,
there is no morphism of magmas that goes in the opposite direction, from SO
to SOnc.

Proof. The forgetful morphism SOnc → SO It is well defined as a morphism
of magmas since the two different planar treesMnc(T π1

1 ,T
π2
2) andMnc(T π2

2 ,T
π1
1)

have the same underlying abstract (non-planar) treeM(T1,T2).
On the other hand, if a morphism of magmasSO toSOnc existed, then its im-

age would necessarily be a commutative sub-magma of SOnc, but SOnc does
not contain any nontrivial commutative sub-magma. This can be seen eas-
ily as, if a tree T π is contained in a commutative sub-magma of SOnc, then
Mnc(T π,T π) also is, but Mnc(Mnc(T π,T π),T π)) , Mnc(T π,Mnc(T π,T π)) con-
tradicting the fact that the sub-magma is commutative. □

This fact has the immediate consequence that we stated above, namely that if
free symmetric Merge takes place before any assignment of planar structure to
trees, then it cannot also consistently apply after a choice of planarization. In
other words, if σ is any choice of a section of the projection SOnc → SO (that
is, an assignment of planarization) then one cannot have compatible Merge
operations satisfying Mnc(σ(T1), σ(T2)) = σ(M(T1,T2)). Merge can act on
abstract trees as in the New Minimalism or on planar trees as in the Old Mini-
malism, but these two views are mutually exclusive.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.13 Externalization and planarization 121

1.13.2 Planarization versus Externalization
Proposals such as Kayne’s LCA planarization of trees, as in (102), (103) (see
also Chapter 7 of (91) and (111) for a short summary), suggest the replacement
of Externalization with a different way of constructing planarization. This re-
lies on the idea that the abstract trees are endowed with additional data (re-
lated to heads, maximal projections, and c-command relations) that permit a
canonical choice of planar structure. We discuss two different mathematical
difficulties inherent in this proposal.

First, let us assume that indeed this additional data on the abstract syntactic
tree suffices to endow it with a unique canonical choice of linearization. (We
will discuss the difficulties with this assumptions below.) In this case, we
would have a map, which we call σLCA that assigns to an abstract binary rooted
tree T a corresponding, uniquely defined non-planar tree σLCA(T) = T πLCA ,
with πLCA the linear ordering constructed by the LCA algorithm.

By our previous observations on morphisms of magmas in Lemma 1.13.1,
we will necessarily have in general that

M
nc(σLCA(T1), σLCA(T2)) , σLCA(M(T1,T2)) ,

so that σLCA cannot be compatible with asymmetric Merge of planar trees.

The only way to make this compatible with Merge would be to define Merge
on the image of σLCA, not as the asymmetric Merge of planar trees but as

M
LCA(σLCA(T1), σLCA(T2)) := σLCA(M(T1,T2)) ,

with MLCA only defined on the image of σLCA and not on all of SOnc like
Mnc. This, however, simply creates an isomorphic copy of the commutative
magma Magmana,c(SO0,M) (by a choice of a particular representative in each
equivalence class of the projection SOnc → SO). This would imply that ap-
plication of the planarization σLCA has no effect, in terms of the properties of
Merge, with respect to working directly with free symmetric Merge on abstract
non-planar trees.

As in Externalization, the alternative is to not require any compatibility be-
tween σLCA and Merge: in other words, even if the LCA replaces Externaliza-
tion, Merge still only occurs in the form of free symmetric Merge, at the level
of the abstract non-planar trees, and not after planarization.

We now look more specifically at the proposals for how planarization σLCA

should be obtained, to highlight a different kind of difficulty.

Definition 1.13.2. In an (abstract) binary rooted tree T , two vertices v1, v2 are
sisters if there is a vertex v of T above (closer to the root) and connected to

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

122 Chapter 1 Mathematical Structure

both v1 and v2. A vertex v of T dominates another vertex w if v is on the
unique path from the root of T to w. A vertex v in T c-commands another
vertex w if neither dominates the other and the lowest vertex that dominates
v also dominates w. A vertex v asymmetrically c-commands a vertex w if v
c-commands w and v,w are not sisters. If in the tree T every subtree Tv has a
well defined head, a maximal projection is a subtree Tv of T that is not strictly
contained in any larger Tw with the same head.

Asymmetric c-command defines a partial ordering of the leaves of T . In or-
der to extend this partial ordering relation, instead of using directly the asym-
metric c-command relation to define the order structure, one uses maximal
projections. Namely, one requires that a leaf ℓ precedes another leaf ℓ′ if and
only if either ℓ asymmetrically c-commands ℓ′ or a maximal projection domi-
nating ℓ c-commands ℓ′.

Even with this extension using maximal projections, there are issues in mak-
ing this a total ordering, as discussed for instance in Chapter 7 of (91) and in
(111).

In the case of the LCA, the problem arises from the fact that a result of Merge
need not have the heads of the two merged trees in an asymmetric c-command
relation. This implies that, even with the introduction of heads and maximal
projections, the assumption that all trees have a head-marked leaf cannot al-
ways be satisfied, hence one cannot obtain a total ordering of the leaves (a
unique choice of planar embedding). Partial corrections to this problem in the
LCA are suggested using movement (see (91) pp.230–231), or by introduc-
ing “null heads” in the structure; or by morphological reanalysis that hides
certain items from LCA. In any case, the fundamental difficulty in construct-
ing a planarization algorithm based on heads and maximal projections can be
formalized as follows.

Definition 1.13.3. We define a head function on an (abstract) binary rooted
tree T as a function hT : Vo(T)→ L(T) from the set Vo(T) of non-leaf vertices
of T to the set L(T) of leaves of T , with the property that if Tv ⊆ Tw and
hT (w) ∈ L(Tv) ⊆ L(Tw), then hT (w) = hT (v). We write h(T) for the value of hT

at the root of T .

This general definition is designed to abstract the properties of the head in
the syntactic sense. We will discuss this further in the next section.

Lemma 1.13.4. There are exactly 2#Vo(T) possible head functions on an ab-
stract binary rooted tree T , with Vo(T) the set of non-leaf vertices of T .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.13 Externalization and planarization 123

Proof. Consider pairs (T, hT) and (T ′, hT ′) of trees with given head functions.
There are exactly two choices of a head function on the MergeM(T,T ′), cor-
responding to whether h(T) or h(T ′) is equal to h(M(T,T ′)). Since the trees
T,T ′ are not planar andMwe use symmetric Merge, there is no consistent way
of making one rather than the other choice of hM(T,T ′), at each application of
M. This implies that, on a given binary rooted tree T there are 2#Vo(T) possible
head functions. We can think of any such choice as the assignment, at each
vertex v ∈ Vo(T) of a marking to either one or the other of the two edges exit-
ing v in the direction away from the root (or a choice of black/white coloring
on those two edges). □

Lemma 1.13.5. The set of all possible head functions hT on an abstract binary
rooted tree T can be identified with the set of all possible choices of a planar
embedding of T .

Proof. By thinking of hT as an assignment of a marking to one of the two
edges below each vertex, the head function hT determines a planar embedding
of T by putting under each vertex the marked edge to the left. Thus, the prob-
lem of constructing planar embeddings of abstract binary rooted trees can be
transformed into the problem of constructing head functions. □

The LCA algorithm aims at obtaining a special assignment T 7→ hT of head
functions hT to abstract binary rooted trees T that is somehow determined
uniquely by the properties of the labeling set SO0 of the leaves of the trees.
Let us denote by λ(ℓ) the label in SO0 assigned to the leaf ℓ ∈ L(T).

This is where the main difficulty arises. For instance, if the labeling set
SO0 happens to be a totally ordered set (which is not a realistic linguistic
assumption), as long at two trees (T, hT) and (T ′, hT ′) have head functions with
labels λ(h(T)) , λ(h(T ′)), there is always a preferred choice of head function
onM(T,T ′), which is the one in which the two subtrees T and T ′ are ordered
according to the ordering of the labels λ(h(T)) and λ(h(T ′)) in SO0. However,
this excludes the case where the leaves h(T) and h(T ′) may have the same
label in SO0. So even under the unrealistically strong assumption that labels
are taken from a totally ordered set, a planarization algorithm based on the
construction of a head function cannot be defined on all the syntactic objects
in SO.

At the level of the underlying algebraic structure, the issue with planarization
is therefore twofold. It does not provide an alternative to Merge acting on the
non-planar trees, for the reasons mentioned above regarding maps of magmas.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

124 Chapter 1 Mathematical Structure

At the same time, a choice of planar embedding that is independent of syntac-
tic parameters and is based only on heads of trees would require a canonical
construction of head functions from properties of the labeling set SO0, but this
cannot be done consistently on the entire set of syntactic objects SO produced
by free symmetric MergeM.

1.13.3 Abstract head functions
In a syntactic tree, as is familiar, in general the syntactic category of the head
determines the category of the phrase (verb for Verb Phrase, etc.; (here we
use the traditional terminology of “verb phrase” even though this is actually
described by a set). Moreover, the syntactic head determines the “type” of
objects described; hence it can be regarded as part of the mechanism that in-
terfaces syntax with semantics.

In Definition 1.13.3 we showed that one can define an abstract head function
on binary rooted trees T (with no assigned planar structure). We refine the
definition in the following way.

Definition 1.13.6. A head function is a function h defined on a subdomain
Dom(h) ⊂ TSO0 , that assigns to a T ∈ Dom(h) a map h : T 7→ hT ,

hT : Vo(T)→ L(T) (1.13.1)

from the set Vo(T) of non-leaf vertices of T to the set L(T) of leaves of T ,
satisfying the properties of Definition 1.13.3, namely with the property that if
Tv ⊆ Tw and hT (w) ∈ L(Tv) ⊆ L(Tw), then hT (w) = hT (v). We write h(T) for
the value of hT at the root of T .

This notion summarizes the main properties of the syntactic head, though of
course one can have many more abstract head functions that do not correspond
to the actual syntactic head.

To see this note that our notion of head function of Definition 1.13.6 can
be directly derived from the formulation of the notion of head and projection
given by Chomsky in §4 of (21). The equivalence of these formulations follows
immediately by observing that in §4 of (21) the syntactic head is characterized
by the following inductive properties:

1. For T = M(α, β), with α, β ∈ SO0, the head h(T) should be one or the
other of the two items α, β. The item that becomes the head h(T) is said to
project.

2. In further projections the head is obtained as the “head from which they
ultimately project, restricting the term head to terminal elements”.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.13 Externalization and planarization 125

3. Under Merge operations T = M(T1,T2) one of the two syntactic objects
T1,T2 ∈ SO projects and its head becomes the head h(T). The label of the
structure T formed by Merge is the head of the constituent that projects.

Lemma 1.13.7. The three properties listed above are equivalent to Defini-
tion 1.13.6.

Proof. First observe that the three properties from §4 of (21) listed above de-
termine a function hT : Vo(T) → L(T) from the set Vo(T) of non-leaf vertices
of T to the set L(T) of leaves of T . The function is defined by “following the
head” determined by the three listed properties. In other words, the root vertex
of the tree carries a label, which by the listed requirements is obtained as “the
head from which it ultimately projects”, which is assumed to be “a terminal
element”. This means that we are assigning to the root vertex a label h(T)
that is one of the items in SO0 attached to the leaves L(T). Similarly, for any
other internal vertex v of T , one can view the subtree (accessible term) Tv as
the Merge of two subtrees Tv = M(Tv1 ,Tv2) where Tvi are the two subtrees
with roots at the vertices below v. The same listed properties then ensures that
we are mapping v to a leaf ℓ(v) ∈ L(Tv) which agrees with either the head of
Tv1 or the head of Tv2 . Moreover, this also ensures that the property of Defi-
nition 1.13.6 is satisfied by the function hT : Vo(T) → L(T) obtained in this
way. Indeed, suppose given Tv ⊆ Tw. If the function determined by the three
properties above satisfies hT (w) ∈ L(Tv) then it means that it is Tv that projects,
according to the definition of (21), hence hT (w) = hT (v). This shows that the
definition of head in §4 of (21) implies the one given in Definition 1.13.6.

Conversely, suppose that we have an abstract head function as in Defini-
tion 1.13.6. We can see that it has to satisfy the three properties of §4 of
(21) in the following way. The first property is immediate from the fact that
hT : Vo(T) → L(T) is a function, which means that, if we consider any sub-
tree of T consisting of two leaves with a common vertex above them, that
is Tv = M(α, β), then hT (v) has to be either α or β. To see that the second
and third properties also hold, consider first the full tree T . Since this is a
binary rooted tree it is uniquely describable in the form T = M(T1,T1) for
two other binary rooted trees T1,T2. Since the function hT takes values in the
set L(T) = L(T1) ⊔ L(T2), the head h(T) is in either L(T1) or in L(T2). Sup-
pose it is in L(T1). The other case is analogous. Then by Definition 1.13.6 we
have h(T) = h(T1), where we write h(Tv) := hT (v). Continuing in the same
way for each successive nodes, with the corresponding unique decompositions
Tv = M(Tv,1,Tv,2), we obtain, for each internal vertex a path to a leaf, which
follows the head, and provides the “head from which it ultimately projects” as

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

126 Chapter 1 Mathematical Structure

desired in the second property listed above, while at each step the third prop-
erty holds. □

Remark 1.13.8. There are two important remarks to make regarding the two
equivalent formulations of Definition 1.13.6 and Lemma 1.13.7. As we dis-
cussed in §4.2 of (132), a consistent definition (compatible with the Merge
operation) of a head function h does not extend to the entire SO but is defined
on some domain Dom(h) ⊂ SO, so the identification between the descriptions
of Definition 1.13.6 and of §4 of (21) also holds on such domain. Moreover, as
we also discussed in §4.2 of (132), on a given T ∈ SO there are 2#Vo(T) choices
of a head function (which are in bijective correspondence with the choices of
a planar structure for T). This is why we are saying above that, on a given T ,
there are more abstract head functions than just the one that corresponds to the
syntactic head (when the latter is well defined). This does not matter as for
most of the arguments we are using that involve a head function h, the formal
property of Definition 1.13.6 is the only characterization required. In terms
of explicit linguistics examples, one can think of the usual syntactic head as
presented in (21).

As shown in §1.13, it follows directly from the definition that assigning a
head function hT to a tree T is equivalent to assigning a planar embedding πhT

(every head function determines a planar embedding and conversely).

Thus, we can equivalently think of an assignment

h : T 7→ hT (1.13.2)

of a head function to every tree T ∈ TSO0 as a function

h : Dom(h) ⊂ TSO0 → Σ
∗[SO0] (1.13.3)

to the set of all finite ordered sequences, of arbitrary length, in the alphabet
SO0, given by

h(T) = L(T πhT) ,

where T πhT is the planar embedding of T determined by the head function, and
L(T πhT) is its ordered set of leaves. Since it is equivalent to describe h(T) as
the ordered set L(T πhT) or as a single leaf (the head) in L(T), we will switch
between these two descriptions without changing the notation.

We have shown in (132) that one does not have a well-defined head func-
tion on the entire TSO0 , hence we write here h as defined on some domain
Dom(h) ⊂ TSO0 . The obstacle to the extension of a head function to the entire
set TSO0 derives from the well-known issue of exocentric constructions (e.g.,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.14 Phase Theory 127

in the traditional division of sentences into Subjects and Predicates), namely
cases of syntactic objects T ∈ SO = TSO0 that are obtained as the result of
External Merge T = M(T ′,T ′′) where even if a head function is well defined
on T ′ and T ′′, there is no good way of comparing h(T ′) and h(T ′′) to decide
which one should become the head of T = M(T ′,T ′′). Abstract heads are thus
partially defined functions.

It is interesting to observe here that this fact makes abstract heads amenable
to treatment according to the renormalization model used in the theory of com-
putation, where the source of “meaningless infinities” arises from what lies
outside of the domain where a function is computable, (122), (123). We will
indeed use this approach in Chapter 3 to construct a very simple illustrative
model of our proposed view of the syntax-semantics interface, see §3.2.

1.14 Phase Theory

The notion of an abstract head function, that we discussed in §1.13.3 also
allows us to formulate, within our general formalism, the notion of phases,
which we discuss in this section, as well as the main aspects of the labeling al-
gorithm for syntactic objects as introduced in (23) and (24). The latter replaces,
under “Bare Phrase Structure” in the Minimalism model, the usual labels NP,
VP etc. We will discuss labeling in §1.15 below. We first focus here on the
notion of phases.

Phase theory is designed to reduce the computational complexity of the gen-
erative process based on the action of Merge on workspaces, by identifying
substructures that, once generated, are no longer modified by further compu-
tation. Phase theory aims at identifying, in an optimal way, syntactic objects
with this property. This is motivated by the general principle of economy of
computation (also referred to as “third factor principle”). We follow here the
definition of phases and interior and edge of phases given by Chomsky in (23),
which we present in a form compatible with our terminology and notation.

If a syntactic object T has a syntactic head hT , then this determines the syn-
tactic category of T (its “projection”), and it also determines a complement,
namely all the elements that the head h(T) must combine with. One says in
this case that the complement is selected by the head. In addition to head
and complement, a phrase can contain other elements, modifiers, that are not
selected by the head.

Interior and edge of phases are described in (23) in the following way:

• “If H is a phase head with complement Z, then Z is the interior of the phase”;
• “the edge is H along with anything merged to {H,Z}.”

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

128 Chapter 1 Mathematical Structure

• “It is the interior that is subject to no further modification. Elements of the
edge – H and a sister of {H,Z} (and a sister of the resulting SO, etc.) – can
be modified in the next higher phase”

We describe here how this formulation fits in our mathematical setting.

In the original formulation, as in (22), phases can be identified in terms
of heads and the notion of maximal projection, which we recalled in Defi-
nition 1.13.2. The use of maximal projection is superseded by the current
formulation of the labeling algorithm as in (23) and (24). However, it is useful
here, within our formulation, to maintain a notion equivalent to that of maximal
projection, which we formulate geometrically as follows.

Figure 1.8
Decomposition of a syntactic object T ∈ Dom(h) into phases Φk, with interiors Φ◦k and
edges ∂Φk, with the paths γℓ obtained by following the > and < marks at vertices.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.14 Phase Theory 129

Lemma 1.14.1. Let hT : Vo(T) → L(T) be a head function in the sense of
Definition 1.13.3. Then hT determines a partition of the vertices of T into sets
V(T) = ⊔ℓVℓ indexed by the leaves ℓ ∈ L(T), where all vertices v ∈ Vℓ have
the property that hT (v) = ℓ. The vertices of Vℓ form a path γℓ that extends from
the leaf ℓ to the vertex vℓ of the maximal projection.

Proof. For any given v ∈ Vo(T) let γhT (v),v denote the unique path in T from
v to the leaf hT (v). Let w0, . . . ,wn−1 be the vertices on this path with w0 =

hT (v) and wn−1 = v. By the property of the head function, all accessible terms
Twi , for vertices wi on this path, have the same head hT (wi) = hT (v). The
path extends with this property up to a maximal length corresponding to the
maximal projection of the head. Given any leaf ℓ ∈ L(T) one therefore has a
path γℓ in T that connects ℓ to the maximal projection vℓ of ℓ, such that, for all
vertices w ∈ γℓ the head is hT (w) = ℓ, with nℓ the length of the path. Every
vertex v ∈ V(T) is on one (and exactly one) of the paths γℓ, which therefor
define a partition of the set of vertices. On the other hand, not all edges of T
lie on some path γℓ. □

We say that a path γℓ as in Lemma 1.14.1 is non-trivial if it contains at least
one interval (non-leaf) vertex of T , and trivial when γℓ = {ℓ}.

The head function hT assigns a head hT (v) to all the substructures given by
the accessible terms Tv ⊂ T . For Phase Theory, one needs, in addition to the
head hT (v), the identification of the complement of the head. We can extend the
definition of an abstract head function to a notion of complemented abstract
head function that identifies both the head and a complement. (In the case
where the head function is the actual syntactic head, the complement is given
by all the elements that the head must combine with.)

Definition 1.14.2. A complemented abstract head function hT,Z is a function

hT,Z : Vo(T)→ L(T) × (Acc(T) ∪ {1})

from the set of non-leaf vertices of T , with 1 = ∅ the empty tree,

hT,Z(v) = (hT (v),Zv) ,

where v 7→ hT (v) is an abstract head function as in Definition 1.13.3, and Zv is
a (possibly empty) Zv ⊂ TshT (v) , with shT (v) the sister vertex of hT (v) in T .

The cases where Zv = ∅ are cases where TshT (v) is a modifier of the head hT (v)

rather than the head’s complement. If Zv ⊂ TshT (v) is nonempty, then TshT (v)

consists of the complement Zv of the head together with modifiers of Zv. (The

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

130 Chapter 1 Mathematical Structure

modifiers of the complement or of the head are structures that the head does
not necessarily have to combine with.)

Note that here “modifiers” are just constructed by External and Internal
Merge, like all structures: we simply refer in this way to constructions (like
the phase Φ3 in Figure 1.8), where the new structure added to the phase main-
tains the same head. (In the figure, this happens going from Tv to Tw′ , that still
has hT (w′) = hT (v): we then say that the added structure mhv is a “modifier of
the head”.)

We illustrate the algorithm for identifying phases in a syntactic object T ∈
Dom(h) ⊂ TSO0 with a head function hT , by first showing how it works in the
example of Figure 1.8.

• The head function hT determines a choice of one the two edges below each
non-leaf vertex: the choice is indicated in the figure by the marks > and < at
the vertices. These in turn determine the paths γℓ of Lemma 1.14.1.

• The leaves ℓ ∈ L(T) such that γℓ contains interior (non-leaf) vertices are
circled in Figure 1.8 and have labels hT , hw, hv, hu.

• For each of these leaves there is a phase, Φk, k = 1, . . . , 4 in the figure.
• The phase Φ2 has head hu, interior Φ◦2 = Zhu and edge ∂Φ2 consisting of the

vertices hu and u.
• The phaseΦ3 has head hv and complement Zhv with modifier mZhu

, the acces-
sible term Tu′ = {mZhu

,Zhv } = M(mZhu
,Zhv) is the interior Φ◦3, while the edge

∂Φ3 consists of the head hv, the modifier mhv of the head and the vertices v
and w′.

• The phase Φ4 has head hw, interior Φ◦4 given by Tw′ and edge ∂Φ4 given by
hw and w.

• In the case of the phase Φ1 with head hT , the phase interior Φ◦1 is given by
Tv′ (so Tv′ is inaccessible for further computation) while Tw and its head hw,
Tu and its head hu, the head hT and its modifier mhT are all in the edge ∂Φ1

so they remain accessible for further computation.
• The phase structure of the syntactic object T identifies the interior Tv′ of

hT , the interior Zhu of hu, and the interior Tw′ of hw, as well as all of their
accessible terms, as unavailable for further computation. (This includes hv

and its complement and modifiers.)

Thus, we obtain a general strategy for identifying phases of a syntactic object
T ∈ Dom(h) ⊂ TSO0 with a head function hT that extends to a complemented
head function hT,Z , as in Definition 1.14.2.

Definition 1.14.3. Phase algorithm:

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.14 Phase Theory 131

1. Consider the partition of the vertices of T into the paths γℓ of Lemma 1.14.1.
2. The set LΦ(T) of phases of T is given by

LΦ(T) = {ℓ ∈ L(T) | #V(γℓ) > 1} , (1.14.1)

the set of ℓ ∈ L(T) such that γℓ contains interior (non-leaf) vertices. Let
vℓ be the end-vertex of the path γℓ (the maximal projection). We write Φℓ
for the phase associated to ℓ ∈ LΦ(T),

Φℓ = {Tv ∈ Acc′(T) |Tv ⊆ Tvℓ } . (1.14.2)

3. For each ℓ ∈ LΦ(T), let v be the mother vertex above ℓ on the path γℓ
and let sℓ be the sister vertex of ℓ under v. If the complement Zℓ ⊂ Tsℓ ,
determined by the complemented head hT,Z , is nonempty, the interior of
the phase Φℓ is given by the accessible term Tsℓ and all of its accessible
terms

Φ◦ℓ := {Tv ∈ Acc(T) |Tv ⊆ Tsℓ } . (1.14.3)

If the complement Zℓ ⊂ Tsℓ is empty, then we set Φ◦ℓ = ∅.
4. For Zℓ , ∅, the edge ∂Φℓ of the phase Φℓ is given by

∂Φℓ := {Tv ∈ Acc′(T) |Tw ⊆ Tvℓ and Tw ⊈ Tsℓ } , (1.14.4)

all the accessible terms of Tvℓ that are not in the interior of the phase. For
Zℓ = ∅, we set ∂Φℓ = Φℓ.

There is a partial ordering on the set LΦ(T) of phases induced by inclusion:
ℓ ≺ ℓ′ if Φℓ ⊂ Φℓ′ . We say in this case that Φℓ is a lower phase and Φℓ′ a
higher phase. The highest phase of T is the phase ΦhT , which corresponds
to the path γhT that contains the root vertex of T . We also define the set of
inaccessible terms of the phase Φℓ as

Υℓ :=

Tv ∈ Acc(T) |Tv ∈
⋃
ℓ′≺ℓ

Φ◦ℓ′

 , (1.14.5)

namely all the terms that are in the interior of any of the lower phases. The set
given by the complement Φℓ∖Υℓ is the set of terms available for computation
in the phase Φℓ.

Remark 1.14.4. In the above description we are counting, as in (23) the head
as part of the edge of the phase. On the other hand, there are reasons in the
current theory of Merge for excluding head movement, which would indicate
that the head itself should also not remain accessible. A more restrictive phase
theory would then also include the heads of the lower phases in the set Υℓ.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

132 Chapter 1 Mathematical Structure

As we discussed above, phases are a way of identifying terms that are or are
not “available for further computation” in the process of structure formation,
given respectively by the edge and the interior. We formulate this condition
more in detail, to explain the meaning of the sets Υℓ defined in (1.14.5).

Consider again the example of Figure 1.8. The structure T shown in the
figure has been built in steps by Merge starting from the lexical items at the
leaves. Suppose that the substructure Tu is the first one built. The head hu is
merged to its complement Zu and this forms the phase Φ2. So this structure
Tu has a single phase. At this point there are two ways in which computation
can continue. Either some other structure in the workspace is merged with
External Merge to this structure Tu, in which case the vertex u in the edge
∂Φ2 is involved, or some accessible term of Tu is used by Internal Merge to
modify Tu and obtain a new structure T ′ = M(Tu,a,T/Tu,a). This action of
Internal Merge has the effect of taking an accessible term Tu,a ⊂ Tu that is
in the interior of the phase Φ◦2 = Zu and move it to the edge of the phase (of
the resulting object T ′). Note that accessible terms Tu,a ∈ Φ

◦
2 are available for

this kind of Internal Merge computation, that acts within the phase Φ2, before
any additional structure is merged to it by External Merge, and can be moved
to the edge of the phase by such Internal Merge operation, where it remains
available for further computation. Similarly, when phase Φ3 is formed, with
Tw′ a component of the resulting workspace, the accessible terms Tw′,a ⊂ Φ

◦
3

are accessible to Internal Merge that can move them to the edge ∂Φ3 of the
resulting object. After hw is merged via External Merge to Tw′ , forming the
new structure Tw and the phaseΦ4, the accessible terms inΦ◦4∖Φ

◦
3 are available

to Internal Merge acting within the phase Φ4, but the terms in Φ◦3 (or what
remains in Φ◦3 after Internal Merge in the previous phase Φ3 has moved some
terms to the edge ∂Φ3) are now inaccessible to Internal Merge acting on Φ4.
Similarly, once the entire structure T is formed, and we are considering the
highest phase Φ1, Internal Merge can access terms in Φ◦1 and move them to
the edge ∂Φ1, but it cannot access the terms in Φ◦2, Φ◦3, and Φ◦4, as these are
all unavailable for computation. If T is then used to build a new phase, by
External Merge with some other objects in the workspace, the terms in Φ◦1 will
become inaccessible to Internal Merge in this new phase, unless they have been
moved by IM in Φ1 to the edge of the phase.

This means that the statement that accessible terms in the interior of the
phase are unavailable for further computation means, in a more expanded form,
the following two statements:

• At the stage of derivation of T where Φℓ is the highest phase, the accessible
terms in Φ◦ℓ are accessible to Internal Merge, that moves them to the edge

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.14 Phase Theory 133

∂Φℓ of the resulting syntactic object, where they remain accessible for further
computation in the higher phases.

• When a new higher phase Φℓ′ ⊃ Φℓ is formed by External Merge of Φℓ
with other objects in the workspace, all the accessible terms that are in the
interiors of the lower phases Φ◦ℓ and Φ◦ℓ′′ for all ℓ′′ ≺ ℓ are inaccessible to
Internal Merge acting in the phase Φℓ′ .

We see then that the setΥℓ defined in (1.14.5) describes the set of terms that are
unavailable for further computation in Phase Φℓ (before any further structure
is added to Φℓ).

Now we can turn into a mathematical statement the description above of
terms that are or are not available for computation in different phases. Saying
that certain accessible terms of T are unavailable for further computation is
equivalent to saying that those terms are not extracted by the coproduct, as
the Hopf algebra coproduct is exactly what selects accessible terms and makes
them available for computation. Thus, the way to interpret phase theory in
our setting is as a restriction of the form of the coproduct of the Hopf algebra
of workspaces. Indeed, one can see already in very simple examples that the
coproducts ∆ω of (1.2.8) that we discussed in the previous section produce a
large number of terms available for the Merge action, which has the problem
of a combinatorial explosion in the size of the computation. Thus, we can
view the main idea of Phase Theory as an algorithm designed to significantly
reduce the number of terms that can be extracted by the coproduct. This means
modifying the coproduct in the following way.

Definition 1.14.5. Consider the subspace Vh(FSO)) ⊂ V(FSO) spanned by
forests F = ⊔aTa with all the components Ta ∈ Dom(h) ⊂ TSO. The Phase
coproduct ∆c

Φ
: Vh(FSO))→Vh(FSO)) ⊗Vh(FSO)) is given by

∆c
Φ(T) =

∑
v∈ΦhT ∖ΥhT

Fv ⊗ T/ωFv , (1.14.6)

for T ∈ Dom(h), where we write v ∈ ΦhT ∖ΥhT for v = (v1, . . . , vn) to mean that
Tvi ∈ ΦhT ∖ ΥhT for all i = 1, . . . , n. We set ∆c

Φ
(F) = ⊔a∆

c
Φ

(Ta) for F = ⊔aTa.

Lemma 1.14.6. The coproduct ∆c
Φ

: Vh(FSO)) → Vh(FSO)) ⊗ Vh(FSO)) is
well defined and coassociative.

Proof. We need to check that, if T ∈ Dom(h) then both the term Fv = Tv1 ⊔

· · · ⊔ Tvn in the left-channel of the coproduct and the term T/Fv in the right-
channel are also in Dom(h). Each component Tvi of Fv is an accessible term
of T hence hT induced a head function hTvi

= hT |Tvi
. Since we are using the

coproduct ∆ω with ω = c, the quotient term T/cFv has each of the components

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

134 Chapter 1 Mathematical Structure

Tvi in T replaced by a single leaf vertex ℓvi with label Tvi . Thus, the head
function hT induces a head function on T/cFv where, for w ∈ V(T/cFv),

hT/cFv (w) =

 ℓvi if hT (w) ∈ L(Tvi)
hT (w) otherwise.

This shows that ∆c
Φ

indeed maps Vh(FSO)) to Vh(FSO)) ⊗ Vh(FSO)). The
coassociativity follow from the same argument given for ∆c in Lemma 1.2.10.
We need to check that this is still the case if the extracted terms Tvi are only in
ΦhT ∖ ΥhT . It suffices to observe that the terms in the coproduct ∆c

Φ
(T) can be

bijectively mapped to the terms in the coproduct ∆c(T/cπC(T)) where πC(T)
is the admissible cut that cuts each edge above each vertex sℓ. The bijection
consists of replacing the labels Tsℓ at the new leaves of T/cπC(T) with the
restored Tsℓ . Thus, the coassociativity identity

(∆c ⊗ id) ◦ ∆c(T/cπC(T)) = (id ⊗ ∆c) ◦ ∆c(T/cπC(T))

for T/cπC(T) gives the coassiciativity identity

(∆c
Φ ⊗ id) ◦ ∆c

Φ(T) = (id ⊗ ∆c
Φ) ◦ ∆c

Φ(T) .

□

1.15 Labeling algorithm

The linguistic model of Minimalism adopts what is referred to as bare phrase
structure, and avoids the conventional notions from X-bar theory and older
formulations of “labels” for phrases such as VP, NP, S, etc. To replace these,
Chomsky introduced in (23) and (24) a notion of labeling and a labeling algo-
rithm. This is based on the idea that in Bare Phrase Structure (see (21)) no new
specifications are introduced beyond what is in the lexical items at the leaves.
We discuss here how this is formulated in our notation and terminology.

We discussed in §1.13.2 and §1.13.3 above the fact that a head function
is only defined on some domain Dom(h) ⊂ SO and not on the entire set of
syntactic objects. In particular, the domain of definition Dom(h) is in general
not a submagma of the magma SO of syntactic objects, namely, there may
be pairs of syntactic objects T1,T2 ∈ Dom(h), on which h determines a head
function, hT1 , hT2 respectively, but such that T = M(T1,T2) < Dom(h). This is
indeed the case when the abstract head function h is the actual syntactic head.

Despite the fact that head functions do not extend to the entire SO and that
they are not always compatible with the magma operationM of SO, it is possi-
ble to obtain a good labeling algorithm for the objects in Dom(h) and also for

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.15 Labeling algorithm 135

some objects in SO that are of the form T = M(T1,T2), with T1,T2 ∈ Dom(h),
which are not themselves in Dom(h).

A labeling algorithm is designed to make these objects interpretable at the
syntax-semantics interface, and can be described as an assignment of labels at
the non-leaf vertices of the tree, determined by the lexical items and syntactic
features assigned to the leaves, and the head function. The labeling algorithm
we discuss here is the one originally derived by Chomsky in (23) and (24).
A somewhat different form of the labeling algorithm is presented in Rizzi’s
(162). We will follow here the formulation of Chomsky’s (23) and (24). As
we already noted (see §1.1.3) we follow here the “tree notation” for syntactic
objects, because it is the common use in mathematics, rather than the “set no-
tation” adopted in (23) and (24), hence the labeling algorithm will be described
here in terms of an assignment of labels to the internal (non-leaf) vertices of the
tree, This is equivalent to the set notation formulation, through identifications
of the form

α

α β

←→
α α β

←→ {α, {α, β}} .

The discussion in §1.14, and in particular Lemma 1.14.1 immediately sug-
gests a labeling algorithm for all T ∈ Dom(h) ⊂ TSO0 , where labeling of
internal vertices is performed by the head function hT . The labeling algorithm,
however, can perform labeling also on certain syntactic objects T ∈ TSO0 that
do not belong to Dom(h), provided that the head function h satisfies the fol-
lowing condition with respect to the action of Internal Merge.

Definition 1.15.1. We say that a head function h is raising if

• For any T ∈ Dom(h) and any accessible term Tv ⊂ T with

h(T) = h(T/dTv) ,

the Internal Merge satisfies

M(Tv,T/cTv) ∈ Dom(h)

with h(M(Tv,T/cTv)) = h(T/dTv).
• for any T ∈ TSO0 and any accessible term Tv ⊂ T with Internal Merge

M(Tv,T/cTv) ∈ Dom(h)

and T/dTv ∈ Dom(h), we have

h(M(Tv,T/cTv)) = h(T/dTv) .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

136 Chapter 1 Mathematical Structure

The notion defined here of raising head function can be related to Moro’s
dynamical asymmetry, (145). It reflects the expected linguistic properties: for
instance, in a syntactic object of the form

T = M(T1,T2)

obtained by External Merge of the objects Ti, i = 1, 2, assume that one of the
Ti, say T1, raises through Internal Merge, which in our setting corresponds to
having Internal MergeM(T1,T/cT1) ∈ Dom(h), then the structure

T/cT1 = T1 T2

has head h(T/cT1) = h(T2) = h(T/dT2). Thus, if T1 and T2 are in Dom(h) and
one knows thatM(T1,T/cT1) ∈ Dom(h) (respectively,M(T2,T/cT2)) then one
can conclude that also T ∈ Dom(h) with h(T) = h(T2) = h(T/cT2) (respec-
tively, h(T) = h(T1)).

We can then describe the labeling algorithm in the following way.

Definition 1.15.2. Let h be a raising head function, as in Definition 1.15.1.

• If T ∈ Dom(h) ⊂ TSO0 , we label every internal (non-leaf) vertex v ∈ Vo(T)
by the corresponding head hT (v) ∈ L(T).

• For T1,T2 ∈ Dom(h) and T = M(T1,T2) their External Merge, if the Internal
Merge M(T1,T/cT1) ∈ Dom(h), then we label the root vertex of T with
h(T2), while all other vertices are labelled by the head function on T1 or T2.
The case whereM(T2,T/cT2) ∈ Dom(h) is analogous, with label h(T1) at the
root vertex of T .

• If T has an accessible term Tv with T/dTv ∈ Dom(h), and Internal Merge

M(Tv,T/cTv) ∈ Dom(h)

we label the root of T by h(T/dTv).
• If none of the above is satisfied but the heads h(T1) and h(T2) in L(T) carry

labels in SO0 that share the same syntactic feature, then the root vertex of
T can be labelled by that syntactic feature. Note that in this last case T <
Dom(h), as this labeling does not define a head function on T . So the labeling
can be extended to some cases where T < Dom(h).

This algorithm can in principle still leave remaining objects T < Dom(h) that
cannot be labelled by the last case. These cases where the labeling algorithm
fails should be regarded as part of the objects that will be eliminated during
the externalization procedure by the quotient map ΠL, and will be similarly

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.16 Form Set 137

eliminated also at the syntax-semantics interface, as non-parsable objects. (We
will discuss these interface channels further in Chapter 3).

1.16 Form Set

We discuss here another operation that plays a role in the current version of
Minimalism in generative linguistics, namely the FormSet operation. It was
introduced in Chomsky’s (28) and further discussed in (31) and in (63).

When we introduced the action of Merge on workspaces, written in the form
of (1.3.7),

MS ,S ′ (F) = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆(F) ,

the operator δS ,S ′ selects terms of the form S ⊔ S ′ ⊗ F′ in the coproduct

∆(F) = 1 ⊗ F + F ⊗ 1 +
∑

v

Fv ⊗ F/Fv .

The grafting operator B then acts on S ⊔ S ′ producingM(S , S ′) = B(S ⊔ S ′).
If we allow different possible choices of the syntactic objects S , S ′, we can
simply write

M = ⊔ ◦ (B ⊗ id) ◦ δ(2) ◦ ∆ ,

where δ(2) = γ(2) ⊗ id where γ(2)(F) = F if F = T1 ⊔ T2 has two components,
and zero otherwise. This just says that we restrict the grafting operator B to
grafting only two components. Note that, as we saw in Proposition 1.4.2, while
External Merge uses only terms of the coproduct with two components in the
left-channel, Internal Merge requires also the use of terms with one component,
through theMS ,1 operation.

All the remaining terms with k ≥ 3 components (the part of the coproduct we
referred to as∆(k) in (1.2.10)) are not used by Merge, but are necessarily present
for structural reasons (the coassociativity of the coproduct). The fact that these
terms are necessary for algebraic reasons suggests that they should play a role,
and should encode another part of the structure of the theory of Minimalism.
We show there that they do exactly that, as they are responsible for the FormSet
operation. Our first observation here is that the primitive part of the coproduct
on workspaces performs all the possible partitions of the workspace.

Recall that, as we have seen (see (1.1.1) and the surrounding discussion)
the grafting operator B is originally defined as acting on any arbitrary forest
F = ⊔n

a=1Ta by
B(F) =

T1 T2 · · · Tn

.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

138 Chapter 1 Mathematical Structure

Here again the tree is not endowed with any choice of planar embedding, so
the order of the Ti does not matter. It is then clear that there is another family
of operations that one can consider on workspaces, given by

⊔ ◦ (B ⊗ id) ◦ δ(k) ◦ ∆ for k ≥ 3 ,

where

δ(k) = γ(k)⊗id with γ(k)(F) =

 F #I = k
0 otherwise

for F = ⊔a∈ITa . (1.16.1)

These operations apply the grafting B only to terms of the coproduct where the
left channel F = T1 ⊔ · · · ⊔ Tk has exactly k components.

We know a priori that operations of this form have to be available by alge-
braic consistency: once the Merge operation described as above is available,
then these other operations are also defined, as they follow essentially the same
structure. The question is what is then their linguistic meaning. As we will dis-
cuss below, this type of operation are exactly the FormSet operation introduced
in Chomsky’s (28), for a suitable form of the coproduct ∆. Thus, we give the
following definition.

Definition 1.16.1. As in Lemma 1.2.11, let F̃SO0 denote the set of all forests
(not necessarily binary) with leaves labels in the set SO0. Then FormSet is a
family of operators

FS(k) : V(FSO0)→V(F̃SO0) with k ≥ 3

of the form
FS(k) = ⊔ ◦ (B ⊗ id) ◦ δ(k) ◦ ∆P , (1.16.2)

where δ(k) is as in (1.16.1) and ∆P is the coproduct

∆P : V(FSO0)→V(FSO0) ⊗V(FSO0)

uniquely identified by the properties

1. ∆P(T) = 1 ⊗ T + T ⊗ 1 for all T ∈ TSO0 ;
2. ∆(F) = ⊔a∆(Ta) for all F = ⊔aTa.

The range of FS(k) inV(F̃SO0) is contained in a subspaceV(F̃R
SO0

) with

F̃
R
SO0
= {F ∈ F̃SO0 | πCR (F) ∈ FSO0 } , (1.16.3)

where πCR is the admissible cut that cuts the edges connected to the root of each
component of F. Namely, F̃R

SO0
consists of forests where each component is

either a binary tree or a tree that may have higher valence only at the root vertex

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.16 Form Set 139

and is binary everywhere below the root. We refer to the set F̃R
SO0

of (1.16.3)
as the set of extended workspaces.

Remark 1.16.2. In (1.16.2) we use the coproduct ∆P onV(FSO0) in which all
trees are primitive elements (the coproduct ∆P(T) is the primitive part P(T) as
in (1.2.9) of the coproduct ∆ of (1.2.8)). As we discussed in the Introduction,
this is the simplest possible way of introducing a “decomposition” operation
on workspaces. In the case of the construction of Merge we opted for the more
complicated form (1.2.8) of the coproduct in order to make the extraction of
accessible terms available for Internal Merge. However, in the case of FormSet,
the analogous extraction operation does not seem to be required on empirical
grounds, so the simplified form of the coproduct suffices. It remains as an open
question whether there are linguistic phenomena that require an extension of
the FormSet operation FS(k) to the nonprimitive terms of the coproduct ∆.
These would be an analog for the FormSet operation of the Sideward forms of
Merge that we discussed in §1.4.

Remark 1.16.3. Note that in (28), (31) and (63), the operation FS(k) would
be written in the “set notation” as

B : T1 ⊔ · · · ⊔ Tk 7→ {T1, . . . ,Tk} ,

while we write it here in the “tree notation” as

B : T1 ⊔ · · · ⊔ Tk 7→

T1 T2 · · · Tn

that is normally used in mathematical physics for the grafting operator B, but
these notations are completely equivalent (as we already discussed in §1.1.3).

In particular, this means that there is a natural interpretation for the objects
of the set F̃R

SO0
.

Remark 1.16.4. We should interpret forests F ∈ F̃R
SO0

as a workspace πCR (F) =
⊔a∈ITa in our usual set FSO0 of workspaces, where a certain subcollection of
components F′ = ⊔b∈J⊂ITa partakes of a common structure, which we repre-
sent by writing F = B(F′) ⊔ F̂ ∈ F̃R

SO0
with F̂ = ⊔a<JTa.

Two main types of applications of this FormSet operation are:

• unbounded unstructured sequences: these include examples of the form (see
(28) and (63)):

B(John ⊔ Bill ⊔my friends ⊔ the actor who won the Oscar) ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

140 Chapter 1 Mathematical Structure

B(ran ⊔ danced ⊔ took a vacation) ,

• assignment of diagonals (a combination of FormSet and FormCopy in the
terminology of (28)): this will be discussed in §3.8.2 and it accounts for
structure building processes leading to examples of the form (see (63))

B(
long hallway

⊔

narrow hallway
⊔

dark hallway
)

⇓

hallway ⊗ B(
long hallway

⊔

narrow hallway
⊔

dark hallway
)

⇓

long, narrow, dark hallway

1.16.1 FormSet and workspaces
To further elaborate on the observation of Remark 1.16.4, when we incorporate
in our model the FormSet operation, we view workspaces not just as collections
of syntactic objects (as forests F ∈ FSO0) but we introduce the possibility
of grouping together a subcollection of the components of F. Thus, instead
of working with the set FSO0 of workspaces, we work with the set F̃R

SO0
of

extended workspaces, where grouping together subcollections of components
is taken into account.

If we make this modification to the set of workspaces, to account for the
structures created by FormSet, we need to ensure that the action of Merge on
workspaces, with both Internal and External Merge, as we constructed it based
on the operation (1.3.7), continues to make sense on the extended workspaces.
Since Merge requires the form (1.2.8) of the coproduct, instead of the simpler
form ∆P used by FormSet, we need to ensure that the original coproduct (1.2.8)
and the associated Hopf algebra structure can be formulated also for extended
workspaces without any significant changes.

As in the case of workspaces, we form the linear span V(F̃R
SO0

). The same
product given by the disjoint union⊔ givesV(F̃R

SO0
) the structure of associative

and commutative algebra, but the coproduct structure needs to be adjusted.

Lemma 1.16.5. The coproducts ∆ω of (1.2.8) extend to coproducts on ex-
tended workspaces by setting

∆ω(F) = F ⊗ 1 + 1 ⊗ F +
∑

C

πC(F) ⊗ F/ωπC(F) , (1.16.4)

where the sum is over those admissible cuts C that do not cut any of the edges
adjacent to a root vertex of valence k ≥ 3.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.16 Form Set 141

The same arguments that we used in Lemma 1.2.10, Lemma 1.2.11, and
Lemma 1.2.12 to describe the properties of the coproducts ∆ω of (1.2.8) also
show that the same properties remain valid for the coproduct of (1.16.4). The
restriction on the choice of admissible cuts ensures that the grafting edges in-
troduced by the operator B in the FormSet action are not regarded as part of
the structure that Merge acts on. In other words, this restriction means that,
while accessible terms that are inside the components collected by FormSet
into a common structure remain accessible to Merge for further computation,
the structure itself that FormSet has constructed is not undone by Merge.

We should also point out that, in our formulation, the FormSet operation
does not include the operation that assembles collections of syntactic objects
into workspaces. So in this way it differs slightly from the formulation given
in Chomsky’s (28). Indeed, for us the formation of workspaces is just the prod-
uct structure ⊔ of the Hopf algebra, while FormSet is an operation of structure
formation that acts on workspaces. The reason why it is reasonable to keep
these two operations distinct lies in the fact that the workspace is just a “transi-
tory” structure that defines the locus where the steps of a derivation that build
the final resulting sentence structure are taking place. On the other hand, the
grouping together of components via FormSet creates a structure that remains
in the ultimate form of the resulting sentence (as in the examples discussed
above and in the other examples reported in (28) and (63)). Our formalism
automatically maintains these two roles distinct.

1.16.2 FormSet is not an n-ary Merge
We have discussed in §1.11 the properties of a hypothetical n-ary Merge and
ruled it out on account that it both undergenerates and overgenerates with re-
spect to the binary Merge. Since both the FormSet operation FS(k) and a k-ary
Merge Mk involve the grafting B of a collection of k trees to the same root, it
may at first appear that the FormSet operationFS(k) is itself a form of k-ary
Merge. We show here that this is not the case, since FS(k) andMk satisfy very
different algebraic properties, so they are not directly comparable operations.

The main significant difference between FS(k) and Mk is in the kind of ob-
jects that are grafted together (the kind of structures that are formed):

• the k-ary MergeMk grafts together objects T1, . . . ,Tk ∈ SO
(k) = T

(k)
SO0

, where
all the Ti are k-ary rooted trees;

• the FormSet operation FS(k) grafts together objects T1, . . . ,Tk ∈ SO = TSO0

that are binary rooted trees (namely, ordinary syntactic objects generated by
the binary Merge).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

142 Chapter 1 Mathematical Structure

Another difference is in the fact that their action on workspaces has a different
structure:

• the k-ary Merge maps k-ary workspaces (forests in F(k)
SO0

where all the com-
ponents are k-ary trees) to new k-ary workspaces;

• the FormSet operation FS(k) maps binary workspaces to binary extended
workspaces, where the extended structure (the grouping of components) is
k-ary but all the components involved and their accessible terms are binary.

Finally, another significant difference is the way the grafting edges behave with
respect to the Merge action:

• the structure building of a k-ary Merge can be disassembled by the extraction
of accessible terms (as needed by Internal Merge);

• the structure building performed by the FormSet operation FS(k) is not un-
done by Merge: the structure built acts as a single object for the purpose
of Merge and the edges that realize the k-ary grouping are not available for
cutting in the extraction of accessible terms (individual components of the
grouping are not extracted once the grouping is formed).

We can leave it as a question whether there are empirical reasons for this last
property of the FormSet operations FS(k) to be relaxed.

In the rest of the book, for simplicity, we will only use our original setting
with the workspaces F ∈ TSO0 , without keeping track of extended workspaces
and FormSet. For most of what we will be discussing this extension is not
needed, so we will adopt the use of the more essential and minimal structure.
Only in §3.8.2 we will need to return to this extended setting where the group-
ing together of workspace components by FormSet plays a role.

1.17 Merge and fundamental combinatorial recursions in physics

In classical physics, a “least action principle” governs the solutions of equa-
tions of motion of physical systems, in the form of minimization (or stationar-
ity) of the action functional, namely a minimization with respect to energy. The
equations of motion are then expressed as the Euler–Lagrange equations that
describe the stationarity of the action functional under infinitesimal variation.
In quantum physics, and more precisely in quantum field theory, the classical
equations of motion become equations in the quantum correlation functions of
the fields (see (155), §9.6). More precisely, the Euler–Lagrange equations are
satisfied by the Green functions of the quantum field theory, up to terms that
reflect the noncommutativity of field operators. The resulting quantum equa-
tions of motion are known in physics as Dyson–Schwinger equations. They

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.17 Merge and fundamental combinatorial recursions in physics 143

represent the optimization process of the least action principle, implemented
at the quantum level.

Quantum physics, in the form of perturbative quantum field theory, is gov-
erned by a combinatorial generative process that determines the terms of the
perturbative expansion. The combinatorial objects involved are the Feynman
graphs of the theory, and the generative process can be described either by for-
mal languages (in the form of graph grammars, see (134)) or in a more efficient
way in terms of Hopf algebras (the Connes–Kreimer Hopf algebras of Feyn-
man graphs and of rooted trees, see (42), (43)). We provide a more detailed
discussion of these viewpoints in §4.6.

These two different descriptions of the generative process that produces the
Feynman graphs of quantum field theory can be compared to what happens
with older formulations of the Minimalist Model in generative linguistics,
where one can give both a formal languages description (see (186)) and a de-
scription in terms of (internal/external) Merge operators, where the latter is
computationally significantly more efficient (see (6)).

We discuss in the next chapter (based on (132)) how to compare older ver-
sions of the Minimalist Model to the new version of (25), (26) that we analyzed
in this chapter, at the level of the Hopf algebra structure, and how one sees in
those terms the advantage of the more recent formulation.

Here the main point we want to stress is that, in the setting of quantum
physics, the best description of the generative process of the hierarchy of Feyn-
man graphs organized by the increasing loop number in the asymptotic expan-
sion, is also determined by a Hopf algebra. There are two main advantages of
this algebraic formalism in physics:

1. The algebraic structure governs the construction of the quantum solutions
of the equations of motion, through the Dyson–Schwinger equations re-
called above, so that solutions can be constructed through a combinatorial
recursive procedure.

2. The Hopf algebra formalism also transparently explains the renormaliza-
tion process in physics (namely the elimination of infinities, that is, the
consistent extraction of finite (meaningful) values from divergent Feyn-
man integrals).

We will discuss more in detail here the role of the algebraic formalism in
quantum field theory in the recursive construction of solutions to the Dyson–
Schwinger equations, as this is the aspect that is more closely related to the
properties of Merge that we discussed in the previous sections. We will re-
turn to discuss the relevance of the algebraic formulation of renormalization in

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

144 Chapter 1 Mathematical Structure

Chapter 3 where we introduce our algebraic model of syntax-semantics inter-
face.

1.17.1 The recursive construction of Dyson–Schwinger equations
In the physics of renormalization in quantum field theory, the generative pro-
cess for the hierarchical structure of Feynman graphs, is described equivalently
by the Connes–Kreimer Hopf algebra of Feynman graphs mentioned above
(42), or by a Hopf algebra of planar rooted trees (not necessarily binary), where
the tree structure describes the way in which subgraphs are nested inside Feyn-
man graphs (see (59), (108)). When formulated in terms of the Hopf algebra of
trees, one can obtain a recursive construction of the solutions of the equations
of motion of the quantum system, the Dyson–Schwinger equations, in terms
of the combinatorics of trees, see (5), (58), (190).

This happens in the following way, as we outlined briefly in §1.3 and §1.10.
The Hopf algebra H of planar rooted trees and forests has product given by
disjoint union and coproduct given by the coproduct ∆ = ∆ρ that we already
discussed,

∆(T) =
∑

C

πC(T) ⊗ ρC(T) ,

where the left-hand-side πC(T) of the coproduct is a forest obtained by cutting
subtrees of T using an “admissible cut” and the right-hand-side ρC(T) is the
tree that remains attached to the root when the cut is performed. Note that this
is one of the forms of the coproduct that we also used in (1.2.8).

One defines an operators B : H → H , as in Definition 1.3.2. Namely, B
acts on a forest T1⊔· · ·⊔Tm by creating a new rooted tree T where all the roots
vr1 , . . . , vrm of the trees T1, . . . ,Tm are attached to a single new root vertex,

B(T1 · · · · · Tm) = T =
T1 T2 · · · Tn

.

As we observed in §1.3 and §1.10, this has exactly the structure of a Merge
operator (though not necessarily binary, as it can take an arbitrary number of
input trees) and of the FormSet operations. The operatorB satisfies the identity

∆(B(X)) = B(X) ⊗ 1 + (Id ⊗ B) ◦ ∆(X), (1.17.1)

for all X ∈ H . This identity is the Hochschild 1-cocycle condition (see (42),
(5), (59)).

The combinatorial Dyson–Schwinger equation then takes the form of a fixed
point equation

X = B(P(X)), (1.17.2)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

1.17 Merge and fundamental combinatorial recursions in physics 145

where X =
∑

k≥1 xk is a formal series of elements xk ∈ Hk in the graded pieces
of the Hopf algebra, and P(t) =

∑
k≥0 aktk with a0 = 1 is a formal power series

(or polynomial). The simplest and most fundamental such equation is the case
where P is quadratic, P(X) = X2, which is the form that we have encountered in
(1.10.1), which governs the generative process of the core structure of Merge,
discussed in §1.10. The equation (1.17.2) has a unique solution X =

∑
k≥1 xk

((5), (59)) that can be written in the recursive form

xn+1 =

n∑
k=1

∑
j1+···+ jk=n

akB(x j1 · · · x jk), (1.17.3)

with initial step x1 = B(1). It is shown in (5), (59) that the cocycle property
(1.17.1) of the operator B is required to ensure that the coordinates xn of the
solution of a Dyson–Schwinger equation determine a Hopf subalgebra, though
the construction of the solution (1.17.3) itself does not require the cocycle
condition (1.17.1). In the case of the linguistic Merge the basic combinatorial
structure is the same, with the recursion (1.17.3) corresponding to the core
generative process of Merge, as we described in §1.10.

For a short overview of how these kinds of combinatorial Dyson–Schwinger
equations recover the physical equations of motion in quantum field theory,
see (188). For a more detailed treatment of combinatorial Dyson–Schwinger
equations see (190). A discussion of the use of Dyson–Schwinger equation
in the context of the theory of computation is given in (47), following the
approach to Renormalization and Computation developed by Manin in (122),
(123).

As we mentioned at the beginning of this section, the usual classical Euler–
Lagrange equations of motion express an optimality process governed by a
least action principle, and the quantum equations of motion given by the recur-
sively solved Dyson–Schwinger equations, reflect this form of optimization in
the quantum setting. In this sense, the core computational structure of syn-
tax defined by the Merge operator can also be seen as being optimal and most
fundamental, as this reflects the structure of the physical Dyson–Schwinger
equation (for the appropriate Hopf algebra) and for the most basic (quadratic)
form of the recursion.

One can ask whether there are any other characterizations of syntactic Merge
that involve optimality. Optimization is usually done with respect to some real-
valued cost functional (energy/action in the case of physical systems). There
are also other ways of thinking about optimization that do not require an evalu-
ation via a function with values that are real numbers. For example, it is possi-
ble to formulate optimization processes in a purely categorical framework (see

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

146 Chapter 1 Mathematical Structure

for instance (129)), and an optimality property for the syntactic Merge may
similarly take some more abstract categorical form. On the other hand it is
also possible to consider minimization conditions with respect to other types
of “action functionals” that replace energy in the case of computational sys-
tems. For example, it is argued by Manin in (124) that complexity provides
a suitable replacement for energy in the context of the theory of computation.
We leave these open questions to future investigation.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2 Minimalism Old and New: a Hopf Algebra Comparison

2.1 Introduction

The Minimalist Program of generative linguistics, introduced by Chomsky in
the ’90s, (20), underwent a significant simplifying reformulation in more re-
cent work (23), (25), (26), (27) (see also (7), (8), (107)). In this chapter we will
examine this transition in light of the algebraic model presented in Chapter 1.

To recap: In this previous chapter we showed that the newest formulation
of Merge has a very natural mathematical description in terms of magmas and
Hopf algebras. This mathematical formulation lets one derive several desirable
linguistic properties of Merge directly, as consequences of the mathematical
setting. We also showed that this mathematical formulation of Merge has the
same structure as the mathematical theory underlying fundamental interactions
in physics, such as the renormalization process of quantum field theory and the
recursive solution of equations of motion via combinatorial Dyson-Schwinger
equations. An analogous recursive generative process of hierarchies of graphs
plays a crucial role in both cases, as Feynman graphs in the physical case and
as syntactic trees in the linguistic case.

In the present chapter, we demonstrate how this same mathematical formal-
ism based on Hopf algebras can be used to compare the new formulation of
Merge with older forms of the Minimalist Model. Advantages of the new
formulation have been analyzed in linguistic terms in (25), (26), (30), for in-
stance. What we argue here is that one can also see some advantages of this
“New Minimalism” in terms of the underlying mathematical structure, demon-
strating how to use the algebraic structure that we have introduced.

More precisely, we first consider Stabler’s formalization of the earlier ver-
sion of Minimalism, “Computational Minimalism”, (180), that is, before Chom-
sky’s reformulation of Minimalism in, e.g., in (23), (25). We choose this ac-
count for comparison because it is the most clearly formulated version of the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

148 Chapter 2 Hopf Algebra Comparison

earlier ideas. Further, among the older versions of Minimalism it is one that
tends to be more widely known to mathematicians (as well as to theoretical
computer scientists), through its relation to formal languages. Indeed, mathe-
maticians familiar with the theory of formal languages are usually aware of the
fact that Stabler’s formulation of Minimalism is describable in terms of a class
of minimalist grammars (MG), that are equivalent to the multiple context-free
grammars, a class of strictly context-sensitive formal languages that include
all the context-free and regular languages, as well as other classes such as the
tree-adjoining grammars, see (186). The MG grammars can also be character-
ized in terms of linear context free rewrite systems (LCFRS), (142), and the
so-called mildly context-sensitive languages.

However, as shown by Berwick in (6), this equivalence between Stabler’s
computational minimalism and multiple context-free grammars hides an im-
portant difference in terms of “succinctness gap”. Namely, computational
minimalism is exponentially more succinct than otherwise equivalent multi-
ple context free grammars, (see (6) and (180)). As shown in (6), a similar gap
exists between transformational generative grammar and generalized phrase
structure grammar. Another problem with thinking in terms of formal lan-
guages is that they are designed to describe languages as strings (ordered sets)
produced as ordered sequences of transitions in an automaton that computes
the language. This time-ordered description of languages hides its more in-
trinsic and fundamental description in terms of hierarchical structures (binary
rooted trees without an assigned planar embedding, in mathematical terms).
Indeed, the current form of Minimalism not only provides a more efficient en-
coding of the generative process of syntax, but it also proposes a model where
the core computational structure of syntax is entirely based on hierarchical
structures rather than on linear order. The latter (equivalently, planar embed-
dings of trees) is superimposed to this core computational structure, in a later
externalization phase, as we discussed in Chapter 1.

The goal of the present chapter is to elaborate on the difference between this
“older” version of Minimalism and its most recent version. We also want to
stress the point that, while formal languages have long been considered the
mathematical theory of choice for application to generative linguistics, it is in
fact neither the only one nor the most appropriate. As we argued in the previ-
ous chapter, the algebraic formalism of Hopf algebras can be a suitable math-
ematical tool for theoretical linguistics, and a useful way to move beyond the
traditional thinking in terms of formal languages. Thus, in the present chapter,
we will use this Hopf algebras viewpoint to make comparisons between older

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.1 Introduction 149

forms of minimalism like Stabler’s and the current form based on free sym-
metric Merge, and to demonstrate the utility of the our algebraic perspective.

Consequently, we analyze Stabler’s formulation of Minimalism from the
point of view of Hopf algebra structures, that we have shown in the previous
chapter to be an appropriate algebraic language for the formulation of Merge
in Minimalism. We show here that, in the older setting, Internal and External
Merge correspond to very different types of mathematical structures. Exter-
nal Merge is expressible in terms of the notion of “operated algebra,” while
Internal Merge can be described in terms of right-ideal coideals in a Hopf al-
gebra, and corresponding quotient right-module coalgebras. While these are
both interesting mathematical structures, the very different form of Internal and
External Merge makes it difficult to reconcile them as two forms of a single un-
derlying basic Merge operation. This is unsatisfactory, because linguistically
one expects Internal and External Merge to be manifestations of the same fun-
damental computational principle. We also show that the need for keeping
track of labels and projection in the “Old” Minimalism creates a problem with
several algebraic operations being partially defined, as well as the checking of
domains along a sequence of derivations. This problem is resolved in the new
approach Minimalism where this is separated from the generative process of
Merge and included only in the subsequent Externalization phase.

As we will see in more detail in the rest of this chapter, the main sources of
difficulties in an algebraic formulation of the Old Minimalism are summarized
as follows.

1. Working only with trees instead of workspaces (forests) complicates the
algebraic structure: the natural “composition” operation (product), which
in the New Minimalism just combines syntactic objects into workspaces,
here requires grafting trees together into another tree, which is a more in-
volved operation of less evident interpretation. One of the consequences is
that the decomposition operation (coproduct) compatible with this product
is then less transparently related to the extraction of substructures needed
by Internal Merge;

2. Applying the structure formation of Merge directly to planar trees (rather
than before planarization) further complicates the product structure, mak-
ing it necessarily noncommutative.

3. Incorporating labeling within the Merge operation (instead of a labeling
algorithm taking place after the Merge action, as in the New Minimal-
ism) makes Merge only partially defined and the compounding problem
of domain checking, over iterations of Merge, significantly increases the
computational complexity.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

150 Chapter 2 Hopf Algebra Comparison

4. There is no unifying description of the operations of External and Internal
Merge, which present different algebraic properties.

We then show that the mathematical formulation of the approach that we in-
troduced in the previous chapter completely bypasses this problem, by directly
presenting a unified framework for both Internal and External Merge.

2.2 Old Minimalism and the Loday–Ronco Hopf algebra

In this section we first recall some mathematical structures, in particular the
Loday–Ronco Hopf algebra of planar binary rooted trees, and their associated
explicit form of product and coproduct. (The readers can consult the additional
material in §4.2, where we recall the basic definition and properties of Hopf
algebras.) In §2.2.2 we introduce the specific case of binary planar rooted
trees, with the product and coproduct described in §2.2.4.

As mentioned above, the fundamental combinatorial objects involved in the
older formulations of Minimalism differ, from the algebraic perspective, from
the more recent formulation in two important ways:

• considering planar trees, namely rooted trees endowed with a particular
choice of a planar embedding, instead of abstract (non-planar) trees;

• working only with trees (syntactic objects) instead of forests (action of Merge
on workspaces).

Fixing the embedding is equivalent to fixing an ordering of the leaves of the
tree, which corresponds linguistically to considering a linear order on sen-
tences. While this is assumed in older versions of Minimalism, the newer
version eliminates the assignment of planar structures at the level of the funda-
mental computational mechanism of Merge, relegating the linear ordering to a
later externalization procedure that interfaces the fundamental computational
mechanism of Merge (where ordering is not assumed) to the Sensory-Motor
system, where ordering is imposed in the externalization of language into
speech, sign, or writing. The difference between imposing an a priori choice of
planar embeddings on trees or not, together with the difference between work-
ing only with trees (syntactic objects) rather than with forests (workspaces)
together lead to significantly different mathematical formulations of the result-
ing Hopf algebras and Merge operations.

Another very significant difference between older versions of Minimalism
and the newer formulation is the calculus of labels of syntactic features as-
sociated to trees, and how such labels determine and are determined by the
transformations implemented by Internal and External Merge. We introduce

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 151

labeling in §2.2.6. For a discussion of labels and projection in the different
versions of Minimalism see (23). This should be compared with our discus-
sion of the labeling algorithm in the New Minimalism in §1.15.

We demonstrate in §2.2.7 how in older formulations of Minimalism, the
conditions on planarity and labels impose conditions on the applicability of
Merge operations, for both External and Internal Merge. This makes the op-
erations only partially defined on specific domains, reflecting conditions on
matching/related labels and on projection. We discuss the specific case of Ex-
ternal Merge in §2.2.8 and of Internal Merge in §2.2.9.

In §2.2.10 and §2.2.11 we describe the mathematical structure underlying the
formulation of Internal Merge in the older versions of Minimalism. In §2.2.10
we show that the issue of labels and domains requires a modification of the
Loday–Ronco coproduct, while in §2.2.11 we show that a similar modification
is required for the product, and that the problem of heads and projection results
in the fact that the domain of Internal Merge is a right ideal but not a left ideal
with respect to the product, which is a coalgebra with respect to the modified
coproduct.

Moreover, in §2.2.12 we show that the presence of domains that make Merge
partially defined, due to labeling conditions, creates an additional mathemat-
ical complication related to the iterated application of Merge, viewed as the
composition of partially defined operations.

We observe in §2.2.14 that a significant difference with respect to the Hopf
algebra formulation of the new Minimalism we described in Chapter 1 arises
in comparison with the analogous structure in fundamental physics. In the case
of the old Minimalism discussed here Internal Merge has an intrinsically asym-
metric structure, due to the constraints coming from labeling and projection,
and from the imposition of working with trees with planar structures. Because
of this, instead of finding Hopf ideals as in the setting of theoretical physics,
one can only obtain right-ideal coideals, which correspond to a much weaker
form of “generalized quotients” in Hopf algebra theory.

We then discuss in more detail the mathematical structure of the old formu-
lation of External Merge in §2.2.15 and §2.2.16. We show that these exhibit a
very different mathematical structure with respect to Internal Merge. It can be
described in terms of the notion of “operated algebra,” where again one needs
to extend the notion to a partially defined version because of the conditions on
domains coming from the labels and projection problem.

In §2.5, we discuss comparison between the New Minimalism and other
linguistic models, including tree adjoining grammars (TAGs), and some tensor
models.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

152 Chapter 2 Hopf Algebra Comparison

2.2.1 Preliminaries on Hopf algebras of rooted trees
We begin by reviewing the main constructions of Hopf algebras of rooted trees,
focusing on the Loday–Ronco Hopf algebra, which is based on planar binary
rooted trees. This is the appropriate machinery for formalizing the original
version of Minimalism within our algebraic context.

Associative algebras can be regarded as the natural algebraic structure that
describes linear strings of letters in a given alphabet with the operation of con-
catenation of words. On the other hand, in linguistics the emphasis is put
preferably on the syntactic trees that provide sentence structure rather than on
the strings of words produced by a given grammar. This is considered one of
the fundamental aspects of human language. When dealing with trees instead
of strings as the main objects, the appropriate algebraic formalism is no longer
associative algebras, but Hopf algebras and more generally operads. These
are mathematical structures essentially designed for the parsing of hierarchical
compositional rules, by encoding (in a coproduct operation) all the possible
“correct parsings,” that is, all available decompositions of an element into its
possible building blocks.

As we have already seen, heuristically, the main properties that a Hopf alge-
bra H describes can be summarized as follows. As we will see in the specific
example of trees below, as a vector spaceH consists of formal linear combina-
tions of a specific class of objects (planar binary rooted trees, Feynman graphs,
etc.). Operations will be defined on these generators and extended by linear-
ity. The multiplication structure is a combination operation and the coproduct
structure is a decomposition operation that lists all the possible different de-
compositions (parsings). The antipode is like a group inverse and it establishes
compatibility between multiplication and comultiplication, unit and counit.

We have already encountered Hopf algebras in our formulation of free sym-
metric Merge and the action on workspaces in the previous chapter. We will
now discuss a different Hopf algebra, one that is associated with the older for-
mulations of Minimalism.

In the supplementary material in Chapter 4, we recall in §4.2 the general
definition of Hopf algebra, and we discuss basic facts that we will be using in
this chapter. As in the case of the Hopf algebra of workspaces that we used in
Chapter 1, the Hopf algebra we will discuss here is graded connected, hence
the antipode can be inductively constructed (as discussed in §4.2). Thus, in
the following we will focus only on the bialgebra structure and not discuss the
antipode map explicitly.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 153

2.2.2 Binary rooted trees and admissible cuts
We recall in §4.3 below some general facts about binary rooted trees. Here we
consider the case of planar binary rooted trees, as the older formulations of
Minimalism assume this kind of assignment of planar structures (an ordering
of the terminal leaves on trees).

We use here the same notion of admissible cut on rooted trees, that we in-
troduced in Definition 1.2.6. The definition here is the same, but it applies to
planar trees rather than to abstract (non-planar) trees, hence both the extracted
forest πC(T) and the remaining tree ρC(T) are here regarded as planar, with the
planar embedding induced by that of T .

Definition 2.2.1. An admissible cut C on a planar rooted tree T is an operation
that

1. selects a number of edges of T with the property that every oriented path
in T from the root to one of the leaves contains at most one of the selected
edges

2. removes the selected edges.

The result of an admissible cut is a disjoint union of a planar tree ρC(T) that
contains the root vertex and a planar forest πC(T), that is, a disjoint union
πC(T) = ⊔pl

i Ti of planar trees, where each Ti has a unique source vertex (no
incoming edges), which we select as root vertex of Ti, and where the order of
the Ti in πC(T) is fixed by the planar embedding (which makes the product ⊔pl

non-commutative)
C(T) = ρC(T) ∪ πC(T). (2.2.1)

An elementary admissible cut (or simply elementary cut) is a cut C consisting
of a single edge.

2.2.3 The Loday–Ronco Hopf algebra of binary rooted trees
We can note right away that this algebraic structure is different from that we
considered in the previous chapter and in Chapter 1. Since older forms of
Minimalism incorporate linear ordering, it is necessary to work with binary
rooted trees with an assigned choice of planar embedding (linear ordering of
the leaves). Moreover, since they do not include workspaces, it is necessary to
work only with trees and not with forests. This has immediate consequences
on the type of algebraic structure that we need to work with, as the possible
forms of product and coproduct operations are affected by the presence of this
linear ordering and by the absence of forests. Thus, the main differences with
respect to our setting in the previous chapter and in Chapter 1 is that in the new

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

154 Chapter 2 Hopf Algebra Comparison

Minimalism, Merge acts on workspaces (a Hopf algebra of binary forests with
no planar embeddings), while in the old Stabler Minimalism, Merge acts on (a
Hopf algebra of) planar binary rooted trees.

Consider the vector space Vk spanned by the planar binary rooted trees T
with k internal vertices (equivalently, with k+ 1 leaves). As we can recall from
§4.3, its dimension is given as in (4.3.1).

Definition 2.2.2. Let V = ⊕k≥0Vk, with V0 = Q. Let DV denote the set of
possible vertex labels. For a given label d ∈ DV the grafting operator ∧d is
defined as

∧d : V ⊗V → V, T1 ⊗ T2 7→ T = T1 ∧d T2 , (2.2.2)

with ∧d : Vk ⊗ Vℓ → Vk+ℓ−1, that attaches the two roots vr1 of T1 and vr2 of
T2 to a single root vertex v labeled by d ∈ DV .

Note that this is not the same as with free symmetric Merge M discussed
in the previous chapter because it acts on planar trees, producing new planar
trees, so in particular it is not commutative, unlike free symmetric MergeM. It
corresponds instead to the type of noncommutative Merge operation Mnc that
we considered in (1.12.2). However, in the case of the planar syntactic objects
in SOnc produced byMnc, only the leaves carry labels (in the set SO0 of lexical
items and syntactic features), while in the case of the operation (2.2.2) internal
vertices of the tree also carry labels, so that the operation itself depends on the
label d ∈ DV that is assigned to the new root vertex. Thus, we use here the
different notation ∧d of (2.2.2), which keeps track of this labeling.

One also introduces the following associative concatenation operations on
planar binary rooted trees.

Definition 2.2.3. Given S and T , the tree S \T (S under T) is obtained by
grafting the root of T to the rightmost leaf of S , while T/S (S over T) is the
tree obtained by grafting the root of T to the leftmost leaf of S . The grafting
operation (2.2.2) is related to these concatenations by

T1 ∧d T2 = T1/S \T2, (2.2.3)

where S is the planar binary tree with a single vertex decorated by d ∈ DV .

Remark 2.2.4. Each planar binary rooted tree is described as a grafting

T = Tℓ ∧d Tr,

of the trees stemming to the left and right of the root vertex.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 155

We remove the explicit mention of the vertex decorations when not needed.

Definition 2.2.5. The Loday–Ronco Hopf algebraHLR of planar binary rooted
trees is obtained from the vector space V by defining a multiplication and a
comultiplication inductively by degrees. For trees T = Tℓ∧Tr and T ′ = T ′ℓ∧T ′r
the product defined in (117) can be built inductively using the property

T ⋆ T ′ = Tℓ ∧ (Tr ⋆ T ′) + (T ⋆ T ′ℓ) ∧ T ′r ,

with the tree consisting of a single root vertex • as the unit. The coproduct
similarly can be built from lower degree terms by the property

∆(T) =
∑

j,k

(Tℓ, j ⋆ Tr,k) ⊗ (T ′ℓ,n− j ∧ T ′r,m−k) + T ⊗ •

where T = Tℓ ∧ Tr and ∆(Tℓ) =
∑

j Tℓ, j ⊗ T ′ℓ,n− j and ∆(Tr) =
∑

k Tr,k ⊗ T ′r,m−k,
for Tℓ ∈ Vn and Tr ∈ Vm.

In (117) this Hopf algebra HLR of planar binary rooted trees is described in
terms of the Hopf algebra structure on the group algebra Q[S∞] = ⊕nQ[S n]
of the symmetric group. Namely, the inclusion of the Hopf algebra of non-
commutative symmetric functions in the Malvenuto-Reutenauer Hopf algebra
of permutations factors through the Loday-Ronco Hopf algebra of planar bi-
nary rooted trees; on this point, see also (1). In (17) a version of the Loday-
Ronco Hopf algebra of planar binary rooted trees was used for the renormaliza-
tion of massless quantum electrodynamics and explicit isomorphisms between
the Loday-Ronco Hopf algebra of planar binary rooted trees and the (noncom-
mutative) Connes–Kreimer Hopf algebra of renormalization was constructed
in (1), (87), (59). We discuss this relation to the Connes–Kreimer Hopf alge-
bra in §2.2.5, after a more explicit illustration of the Loday-Ronco product and
coproduct in §2.2.4.

2.2.4 Graphical form of coproduct and product
It is shown in (1) that the coproduct and product of the Loday-Ronco Hopf
algebra of planar binary rooted trees can be conveniently visualized in the fol-
lowing way.

A given tree T can be subdivided into two parts by cutting along the path
from one of the leaves to the root; see Figure 2.1 (and §1.5 of (1)), and the
coproduct then takes the form of a sum over all such decompositions

∆(T) =
∑

T ′ ⊗ T ′′ (2.2.4)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

156 Chapter 2 Hopf Algebra Comparison

Figure 2.1
A term in the coproduct in the Loday–Ronco Hopf algebra.

is a sum of terms of the form

Figure 2.2
Product in the Loday–Ronco Hopf algebra, in a case with n1 = 5, n2 = 3.

where T ′,T ′′ are, respectively the parts of T to the left and right of the path
from a leaf to the root and all choices of leaves are summed over.

In order to form the product T1 ⋆ T2, suppose that T1 has n1 + 1 leaves and
T2 has n2 + 1 leaves. Consider again subdivisions of the tree T1 obtained by
cutting along paths from the leaves to the root, including trees consisting of
just the path itself, with the cuts chosen so as to obtain n2 + 1 subtrees of T1,
see Figure 2.2.

We write V(k) for the Q-vector space spanned by the planar binary rooted
trees with k leaves, and we write the usual operadic composition operation of
grafting roots to leaves as above in the form

γ : V(k0) × · · · × V(kn) ×V(n+1) →V(k0+···+kn) (2.2.5)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 157

where γ(T0, . . . ,Tn; T) is the tree obtained by grafting the trees Ti ∈ V
(ki) in

collection (T0, . . . ,Tn) to the tree T ∈ V(n+1), by attaching the root of Ti to the
i-th leaf of T , as illustrated above.

The product inHLR is then written in the form

T ⋆ T ′ =
∑

(T0,...,Tn)

γ(T0, . . . ,Tn; T ′) (2.2.6)

with n + 1 the number of leaves of T ′, and the sum over subdivisions into
subtrees extracted according to the rule described above.

One can observe here how the requirement of working only with trees and
not with forests–that is, no Workspaces–makes life more complicated to obtain
a viable form of compatible product and coproduct, compared to the case of
the Hopf algebra of Workspaces that we discussed in the previous chapter.
For instance, if we compare the product structure in the two cases we see that
the product in the Hopf algebra of workspaces is simply the disjoint union
that takes two workspaces and combines them into a single one. It has an
immediately clear interpretation. If one wants to work only with trees, though,
the product of two trees should produce a new tree, and this requires that one
of the trees is somehow distributed over the other (in particular resulting in
a non-commutative product, as it now does matter which of the two trees is
distributed over the other). The operation illustrated in Figure 2.2 displays this
procedure that takes one of the two trees apart and distributes it over the other
by grafting the resulting pieces to the leaves.

2.2.5 Hopf algebra comparisons
There is another notion, closely related to that of admissible cut that we used in
Chapter 1 for abstract binary rooted trees and in Definition 2.2.1 for planar bi-
nary rooted trees, which we will refer to as admissible pruning (see (1)). In the
case of admissible cuts, only in the case of an elementary cut of a single edge,
both parts of the cut are trees, while more generally, for non-elementary cuts,
one side πC(T) is a forest, and only the other one ρC(T) is a tree. Admissible
prunings produce always two resulting trees.

Definition 2.2.6. An admissible pruning set S of a planar binary rooted tree T
is a subset of the internal vertices of T with the property that if v ∈ S then the
left-successor (child) vertex of v is also in S . Cutting each edge connecting a
vertex in S to one not in S , one obtains two planar forests F′S and F′′S , where
one of the components of F′′S contains the root of T . A tree T ′S is then obtained
by gluing together the component trees of F′S and F′′S with the operations of
Definition 2.2.3, as shown in Figure 2.3.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

158 Chapter 2 Hopf Algebra Comparison

Figure 2.3
Admissible pruning set S of a planar binary rooted tree T and resulting trees T ′S and
T ′′S .

It is shown in §8 of (1) that there is a linear basis, which they denote by
the notation M∗T , of the Loday–Ronco Hopf algebra, labelled by the planar
binary rooted trees T , with the property that, in this basis, the Loday–Ronco
product is the free associative non-commutative algebra generated by the M∗T
with product

M∗T ⋆ M∗T ′ = M∗T\T ′ ,

with T\T ′ the operation recalled in Definition 2.2.3 above. The Loday–Ronco
coproduct, in this basis, takes the form

∆LR(M∗T) =
∑

S

M∗T ′S ⊗ M∗T ′′S ,

where the sum is over admissible pruning sets S , as in Definition 2.2.6, with the
resulting trees T ′S and T ′′S . Admissible pruning sets do not always correspond
to admissible cuts (the example in Figure 2.3 is not an admissible cuts), but if C
is an admissible cut of T then the set of vertices of πC(T) gives an admissible
pruning set S . In particular, for the case of an elementary admissible cut,
T ′S = πC(T) = Tv and T ′′S = T/cπC(T) = T/cTv, so that we can match the
corresponding term of the coproduct to the coproduct term Tv ⊗ T/cTv that
extracts an accessible term Tv for use by Internal Merge.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 159

Figure 2.4
Planar binary rooted trees in Stabler’s Computational Minimalism.

In (1) it is also proved that there is an explicit isomorphism between the
Connes-Kreimer non-commutative Hopf algebra of planar binary rooted forests
and the Loday–Ronco Hopf algebra of planar binary rooted trees. However,
this cannot be used to match iterated applications of Internal Merge (as we
will describe more explicitly in Proposition 2.2.25 below). Thus, in the for-
mulation of the Old Minimalism the relation between the Merge operation and
the Hopf algebra of binary rooted trees is less direct ahd less transparent than
in the New Minimalism based on free symmetric Merge.

2.2.6 Labeled trees
The previous subsections only dealt with general mathematical formalism about
planar binary rooted trees. We now consider more specifically the case of the
“old” form of minimalism as embodied in (180).

In this formulation, one considers planar binary rooted trees such as the ex-
ample in Figure 2.4, where the ordering of the leaves determines and is deter-
mined by the planar embedding of the tree, and the labels at the inner vertices
serve the purpose of pointing toward the head.

More precisely, all internal vertices and the root vertex are labeled by sym-
bols in the set {>, <}. The purpose of the labels > and < is to identify where the
head of the tree is: in the example above the head is the leaf with vertex number
8. In addition to these labels, one also considers a finite set of syntactic features
X ∈ {N,V, A, P,C,T,D, . . .} and “selector” features denoted by the symbol σX
for a head selecting a phrase XP. More generally we can have labels that are
strings (ordered finite sets) α = X0X1 · · · Xr of syntactic features as above. We
also consider labels given by letters ω and ω̄ that stand for “licensor” and “li-
censee”. (Note: in (180) the notation = X is used for feature selector instead of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

160 Chapter 2 Hopf Algebra Comparison

our σX, and the notation ±X is used for licensor/licensee pairs, but we prefer
to avoid using mathematical notation with a meaning different from its gener-
ally accepted one, to avoid confusion. Hence we will instead use the letters σ
and ω, ω̄.)

We write the result of External Merge applied to constituents α and β as in
(180), as the labeled planar binary rooted tree

<

α β

rather than α

α β

This means that we consider as generators of the Loday–Ronco Hopf alge-
bras the binary trees with labels that include the syntactic features, as well as
symbols < and >, as in (180), used to point towards the head when Merge is
applied.

By (2.2.3) it is clear that the head of the tree T1 ∧> T2 is the head of T2 and
the head of the tree T1 ∧< T2 is the head of T1.

Recall also that a maximal projection in T is a subtree of T that is not a
proper subtree of any larger subtree with the same head. As pointed out in
(180), in the example illustrated above, the leaves {2, 3, 4} determine a subtree
with head vertex the leaf numbered 3, but any larger subtree in T would have
a different head, hence this subtree is a maximal projection. So is the subtree
determined by the leaves {5, 6}, for instance.

Definition 2.2.7. We define Hling to be the Loday-Ronco Hopf algebra HLR

with the choice of labels described above. We will write Vling for the under-
lying Q-vector space spanned by the binary trees with the labeling described
above.

As we already pointed out, the choice of working with planar binary rooted
trees corresponds to an assigned linear ordering of its leaves, which in turn is
the linear ordering of the resulting sentence when spoken or read. Thus, by
working with planar trees we are assuming that linear ordering is determined
for the result of Merge. This is the same assumption made in (180). This is the
crucial point in the comparison with the newer version of Minimalism, and we
will discuss it more explicitly in Section 2.3.1below.

2.2.7 Old formulation of External and Internal Merge
We now discuss the External and Internal Merge operations in the old formu-
lations of minimalism. We first describe the operations at the level of the un-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 161

derlying combinatorial tree, and then we give the more precise constraints on
when the operations can be applied, based on the labels of the trees involved.

Thus, we should view external and internal merge as partially defined oper-
ations

E : Vling ⊗Vling →Vling

I : Vling →Vling

where we assume that the operations defined on generators are extended by
(bi)linearity, so that they are defined on linear subspaces

Dom(E) ⊂ Vling ⊗Vling

Dom(I) ⊂ Vling

that we will describe more precisely below.

At the level of the underlying combinatorial trees, External and Internal
merge are simply defined as the following operations.

The combinatorial structure of the external merge is given by

E(T1 ⊗ T2) =


• ∧ T2 T1 = •

T2 ∧ T1 otherwise,
(2.2.7)

where • denotes the tree consisting of a single vertex, and the ∧ operation is the
grafting operation ∧d defined as in (2.2.2), where the specific label d ∈ {>, <}
according to a rule that will be discussed more in detail in §2.2.8 below.

The combinatorial structure of Internal Merge is given by

I(T) = πC(T) ∧ ρC(T), (2.2.8)

where C is an elementary admissible cut of T with ρC(T) the remaining pruned
tree that contains the root of T and πC(T) the part that is severed by the cut
(which in the case of an elementary cut is itself a tree rather than a forest).
Again ∧ is as in (2.2.2), with a label that will be made more precise below, and
the choice of the elementary cut will also depend on conditions on tree labels;
see §2.2.9.

We now look more precisely at the structure of External and Internal Merge
and at their domains of definition. It should be noted how working with planar
structures and with conditions of matching/related labels makes the underlying
mathematical operations more difficult to describe, as they are only defined on
specific domains and with additional conditions.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

162 Chapter 2 Hopf Algebra Comparison

2.2.8 Old form of External Merge
The more precise definition of the External Merge in the older forms of Mini-
malism is given as follows (where we are adapting the description of (180) to
our terminology and notation).

Definition 2.2.8. As in (180), we use the notation T [α] for a tree where the
head is labeled by an ordered set of syntactic features starting with α. The
label α consists of a string of syntactic features of the form

α = X0X1 · · · Xr or α = σX0X1 · · · Xr,

with σ the selector symbol.
We introduce the notation α̂ for the string obtained from α after removing

the first feature (other than the selection symbol). Namely, for α = X0X1 · · · Xr

or α = σX0X1 · · · Xr, we have α̂ = X1 · · · Xr.

Proposition 2.2.9. The external merge T = E(T1[σα],T2[α]) of two trees
T1[σα] and T2[α] is given by

E(T1[σα],T2[α]) =

 T1[σ̂α] ∧< T2[α̂] |T1| = 1
T2[α̂] ∧> T1[σ̂α] |T1| > 1.

(2.2.9)

defined on the domain given by the vector space on the set of generators

Dom(E) = spanQ{(T1[β],T2[α]) | β = σα}. (2.2.10)

Proof. This clearly agrees with (2.2.7) at the level of the underlying combi-
natorial trees. The main difference with (2.2.7) is that here the operation can
be performed only if the heads are decorated with syntactic features σα and
α, respectively. Thus the domain of definition Dom(E) ⊂ Vling ⊗ Vling of the
external merge operation is the vector space with generators (2.2.10). □

2.2.9 Old version of Internal Merge
In the older formulations of Minimalism, one considers a second Merge oper-
ation, considered as distinct from External Merge, namely Internal Merge. We
again adapt to our notation and terminology the formulation given in (180).
We use the same notation as above for T [α] with α = X0X1 . . . Xr or α =
σX0X1 . . . Xr a string of syntactic features possibly starting with a selector, and
we write α̂ = X1 . . . Xr. Internal merge is again modeled on the basic grafting
operation of planar rooted binary trees ∧d, but this time its input is a single tree
T [α].

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 163

Definition 2.2.10. Given a planar binary rooted tree T containing a subtree T1,
and given another binary rooted tree T2, we denote as in (180) by T {T1 → T2}

the planar binary rooted tree obtained by removing the subtree T1 from T and
replacing it with T2. In particular, we write T {T1 → ∅} for the tree obtained by
removing the subtree T1 from T .

Remark 2.2.11. Note that, in order to ensure that the result of this operation
is still a tree, we need to assume that if an internal vertex of T belongs to the
subtree T1, then all oriented paths in T from this vertex to a leaf also belong to
T1, where paths in the tree are oriented from root to leaves. We only consider
subtrees that have this property. When it is necessary to stress this fact, we will
refer to such subtrees as complete subtrees.

Lemma 2.2.12. The complete subtrees of a given tree T are exactly the sub-
trees that can be obtained by applying a single elementary admissible cut C to
the tree T . The tree T {T1 → ∅} is then the same as the tree ρC(T).

Proof. The property described in Remark 2.2.11 characterizing complete sub-
trees is saying that there are no further cuts along any path from the root of the
subtree to any of the leaves, which is precisely the case of a subtree obtained
by performing a single admissible cut on T . □

The following statement specifies the domain for Internal Merge, and follows
directly from (180).

Proposition 2.2.13. Consider a tree T [α] where α = X0 · · · Xr or α = σX0 · · · Xr

or α = ωX0 · · · Xr or α = ω̄X0 · · · Xr. The domain Dom(I) ⊂ Vling of the in-
ternal merge is given by the subspace

Dom(I) = spanQ{T [α] | ∃T1[β] ⊂ T [α],with β = ω̄X0β̂, α = ωX0α̂} ,

(2.2.11)
where T1 ⊂ T is a subtree as above, and

I(T [α]) = T M
1 [β̂] ∧> T {T1[β]M → ∅} = πC(T) ∧> ρC(T), (2.2.12)

where C is the elementary admissible cut specified by the subtree T M
1 (the

maximal projection of the head of T1) and the condition (given by the matching
labels ωX0 and ω̄X0) that T [α] ∈ Dom(I). The head of πC(T) ∧> ρC(T) gets
the label α̂.

Proof. The domain (2.2.11) simply describes the label matching conditions
for performing Internal Merge in the formulation of (180). The only thing that

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

164 Chapter 2 Hopf Algebra Comparison

needs an explanation is the identification

T M
1 [β̂] ∧> T {T1[β]M → ∅} = πC(T) ∧> ρC(T)

of (2.2.12). To see this, observe that the maximal projection T M
1 of the head of

T1 determines an associated elementary admissible cut that separates T M
1 from

T {T1[β]M → ∅}, so that, with respect to this admissible cut T M
1 = πC(T) and

as observed in Lemma 2.2.12, T {T1[β]M → ∅} = ρC(T). □

In the tree ρC(T) we maintain the “trace” of the deeper copy of T1 through a
labeling (a leaf node in T/cπC(T) or a non-branching node in T/ρπC(T) with ∅
label), indicating the empty subtree left behind by the operation T1[β]M → ∅,
see §2 of (180).

These versions of External and Internal Merge, that we recalled here in
(2.2.9) and (2.2.12), have issues at the level of linguistic description, such
as problems with potentially unlabelable exocentric constructions. For exam-
ple (as observed by Riny Huijbregts) Internal Merge as in (2.2.12) can yield
{XP,YP} results, and a valid labeling cannot be assigned, unless a further appli-
cation of Internal Merge displaces XP or YP to a so-called “criterial position,”
that is, where structural agreement, specifier-Head agreement, can take place.

In (180), two further variants of External and Internal Merge are introduced
in order to deal with “persistent features.” This results in what is referred to
in (180) as “conflated minimalist grammars” (CMGs). These additional forms
of External and Internal Merge, however, do not solve the problem mentioned
above and further complicate the structure, so we will focus here on analyzing
the algebraic structure determined just be the forms (2.2.9) and (2.2.12) for
External and Internal Merge.

2.2.10 Old version of Internal Merge and the coalgebra structure
As we have discussed above, Internal Merge is only partially defined onVling

because it requires the existence of matching conditions on the label, that deter-
mine the domain Dom(I) ⊂ Vling. We now discuss how the domain Dom(I)
and the Internal Merge operation I behave with respect to the coproduct of the
Hopf algebraHling.

Remark 2.2.14. Consider the coproduct ∆(T) of a tree T ∈ Dom(I). This is
given by the sum of decompositions ∆(T) =

∑
T ′⊗T ′′ as illustrated in (2.2.4).

In each of these decompositions, one side will contain the head of the tree T (or
possibly both sides, if the leaf used to cut the tree happens to be also the head).
If both the head of T and the head of πC(T) are contained in the same side of
the partition, then that side still belongs to Dom(I). Thus, these pieces of the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 165

coproduct are in Dom(I)⊗Hling +Hling⊗Dom(I). The remaining terms, with
the heads of T of πC(T) on different sides of the decomposition only belong in
general toHling ⊗Hling and fall outside of the domain of Internal Merge.

This suggests a modification of the coproduct on Hling with respect to the
usual Loday-Ronco coproduct (2.2.4).

Definition 2.2.15. For a generator T that is not in Dom(I) we just set πC(T) =
T , that is, no cut is performed. For T ∈ Dom(I), let h(T) and h(πC(T)) be the
leaves of T that are the head of T and the head of πC(T), respectively. If T is
in Dom(I) then C is, as above, the elementary admissible cut determined by
the label conditions. Let PI(T) denote the set of bipartitions

PI(T) =

T = (T ′,T ′′)
∣∣∣∣∣ h(T) ∈ T ′ and h(πC(T)) ∈ T ′

or
h(T) ∈ T ′′ and h(πC(T)) ∈ T ′′

 . (2.2.13)

Remark 2.2.16. For trees outside the domain Dom(I) the set PI(T) just
counts all bipartitions as we have set πC(T) = T .

Proposition 2.2.17. Consider the modified coproduct

∆I(T) :=
∑

(T ′,T ′′)∈PI(T)

T ′ ⊗ T ′′, (2.2.14)

which is the same as (2.2.4) outside of Dom(I). With this modified coproduct
Dom(I) is a coideal of the coalgebraHling, namely

∆I(Dom(I)) ⊂ Dom(I) ⊗Hling +Hling ⊗ Dom(I) . (2.2.15)

Proof. The definition of the coproduct (2.2.14) using bipartitions PI(T) as in
(2.2.13) is precisely designed to avoid the problem mentioned in Remark 2.2.14
of terms of the Loday-Ronco coproduct that are inHling ⊗Hling but outside of
the domain of Internal Merge. □

2.2.11 Old version of Internal Merge and algebraic structure
We now discuss the behavior of Internal Merge with respect to the product
structure of Hling. In this case, arguing in a similar way as for the coproduct
above, there is a modification ⋆I of the original product of (HLR, ⋆) that re-
mains the same outside of Dom(I) and takes into account the additional data
in Dom(I) and that has the effect of making Dom(I) into a right ideal with
respect to the algebra (Hling, ⋆I). However, Dom(I) is not a left ideal.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

166 Chapter 2 Hopf Algebra Comparison

We define the modified product ⋆I onHling in the following way.

Definition 2.2.18. Let h(T) denote the head of T . Given trees T,T ′ where T ′

has n+1 leaves, consider the setPI(T,T ′) given by decompositions (T0, . . . ,Tn)
of T as above with

PI(T,T ′) := {(T0, . . . ,Tn) | h(T) and h(πC(T)) ∈ Th(T ′)} (2.2.16)

Namely these are the decompositions (T0, . . . ,Tn) with the property that the
head of T (and the head of πC(T) in the case where T ∈ Dom(I)) lies in the
component Th(T ′) that is grafted to the head of T ′. In the case of T < Dom(I)
the condition reduces to just h(T) ∈ Th(T ′).

Remark 2.2.19. Note that it is always possible to have such decompositions,
as some of the components Ti can always be taken to be copies of just the path
from a leaf to the root, so that the relevant piece of the decomposition can be
placed at the h(T ′)-position.

Proposition 2.2.20. Consider the modified product ⋆I onHling of the form

T ⋆I T ′ =
∑

(T0,...,Tn)∈PI(T,T ′)

γ(T0, . . . ,Tn; T ′) . (2.2.17)

Then the domain of Internal Merge Dom(I) is a right ideal (but not a left ideal)
with respect to the algebra (Hling, ⋆I), that is, it satisfies

Dom(I) ⋆I Hling ⊂ Dom(I) . (2.2.18)

For T ∈ Dom(I) we then have

I(T ⋆I T ′) =
∑

(T0,...,Tn)∈PI(T,T ′)

πC(Th(T ′)) ∧> γ(T0, . . . , ρC(Th(T ′)), . . . ,Tn; T ′) .

(2.2.19)

Proof. We consider the algebra (Hling, ⋆I) with the modified product (2.2.17).
The head of each γ(T0, . . . ,Tn; T ′) is then the same as the head of T , which
we write in shorthand as h(T ⋆I T ′) = h(T). Moreover, by construction the
component Th(T ′) is in Dom(I) when T ∈ Dom(I), so that T ⋆I T ′ is itself in
Dom(I). This shows that Dom(I) is a right ideal with respect to the algebra
(Hling, ⋆I). It is, however, not a left ideal, due to the asymmetric form of the
product in the Loday-Ronco Hopf algebra, which is inherited by the modified
product (2.2.17). The relation (2.2.19) then follows from the form (2.2.12) of
Internal Merge and the form (2.2.17) of the modified product. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 167

Combining the behavior with respect to the product with the previous obser-
vation about the coproduct we conclude the following.

Proposition 2.2.21. Internal Merge I as in (180) defines a right (Hling, ⋆I)-
module given by the coset

MI := Dom(I)\Hling

whereMI is also a coalgebra with the coproduct induced by (Hling,∆I).

2.2.12 Iterated Internal Merge
As we mentioned in the introduction to this chapter, since we need to con-
sider domains that make Internal and External Merge operations partially de-
fined, this has the effect that, when one composes a chain of Merge opera-
tions, as is typical in the course of a derivation, the problem with domains
also compounds: one needs to check a multiplicity of domain conditions. It
is indeed a well-known phenomenon that computationally implementing such
an approach can run into a problem with feature checking that rapidly grows
with the length of the derivation. This phenomenon can be seen, for instance,
in the construction of parsers for Minimalist Grammars in (97), where it oc-
curs embedded into the logical formulas and interface conditions that account
for the feature checking problem. In our setting, as described above, we see
this problem of compounding effects of domains and feature checking in the
following way: iterations of Internal Merge give rise to a nested family of
right-ideal coideals organized into a corresponding projective system of right-
module coalgebras. The growth of this projective system accounts for the
rapidly growing computational complexity of feature checking, as we argue
in §2.2.13 below.

Definition 2.2.22. For a forest F = T1 · · · Tℓ, we define a grafting operation
∧ℓ that consists of the repeated application of the grafting ∧ to the trees in F,

ℓ∧
F = T1 ∧ T2 ∧ · · · ∧ Tℓ. (2.2.20)

Definition 2.2.23. For a tree T [α], where α is a finite list of features each
of which can be either Xi or ωXi of ω̄Xi as above, we consider the following
combinatorial conditions

1. There are N subtrees T1, . . . ,TN in T , each of which is a complete subtree,
in the sense specified above.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

168 Chapter 2 Hopf Algebra Comparison

2. Let T M
1 , . . . ,T

M
N be the maximal projections of the subtrees, in the sense

recalled above. These are also complete subtrees of T .
3. The subtrees T M

i are disjoint.

We say that T [α] is N-fold complete if it satisfies the three conditions above.

Proposition 2.2.24. The domain of the N-th iteration of Stabler’s Internal
Merge

DN := Dom(IN) (2.2.21)

is given by the span ofT [α]
∣∣∣∣∣ ∃ subtrees

T1[β(1)], . . . ,TN[β(N)]
such that


(i) (1), (2), (3) are satisfied
(ii) β(1)

0 = ω̄X0, . . . , β
(N)
0 = ω̄XN−1

(iii) α = ωX0ωX1 · · ·ωXN−1 · · ·

 .
(2.2.22)

Proof. When we consider repeated application of N Internal Merge opera-
tions, starting from a given tree T [α], with α a finite list of features as above,
we need to assume that T [α] is N-fold complete (it satisfies the three combi-
natorial conditions of Definition 2.2.23), as these arise from the condition (??)
characterizing Dom(I) on each next iteration. In addition to these combinato-
rial conditions, we have a matching labels condition that specifies the domain
of the composite operation. Let T [α] be the given tree as a labeled tree, and let
T1[β(1)], . . . ,TN[β(N)] be the labeled subtrees, with the conditions listed above.
Then the remaining conditions listed in (2.2.22) provide the labels matching
conditions necessary for each successive iteration. □

Proposition 2.2.25. On the domain (2.2.22) the iterated Internal Merge acts
as

I#C(T [X]) =
1+#C∧ (

πC(T)[Ŷ] ρC(T)[X̂N]
)
, (2.2.23)

where we use the notation πC(T)[Ŷ] for the forest πC(T) = T M
N · · · T

M
1 , where

the label [Ŷ] means

πC(T)[Ŷ] = T M
N [β̂(N)] · · · T M

1 [β̂(1)]

and the label [α̂N] of the tree ρC(T) stands for what remains of the original
label X after the initial terms ωX0ωX1 · · ·ωXN−1 are removed.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 169

Proof. Arguing as in Proposition 2.2.13, we see that the conditions (1), (2),
and (3) of Definition 2.2.23 above ensure that the choice of the subtrees

T M
1 , . . . ,T

M
N

corresponds to an admissible cut C of the tree T , with the number of cut
branches #C = N. Using (2.2.12) we then see that the planar binary rooted tree
obtained by the iterated internal merge operation is then of the form (2.2.23).

□

Note that the extraction of a forest πC(T) for the Internal Merge iteration,
instead of a tree for a single elementary cut, is not directly describable in terms
of the Hopf algebra coproduct here, as the coproduct of the Loday–Ronco Hopf
algebra only has trees in both the left and the right channel, unlike the Hopf
algebra of workspaces of Chapter 1.

Proposition 2.2.24 directly implies the following generalization of Proposi-
tion 2.2.21.

Proposition 2.2.26. The domains (2.2.21) of the iterated Internal Merges de-
termine a nested family of right-ideal coideals, given by the domains of the
iterations of Internal Merge, DN+1 ⊂ DN with DN = Dom(IN) as above.
Each DN+1\DN determines a coideal in the coalgebra DN+1\Hling and this
gives a projective system of right-module coalgebras

MIN := Dom(IN)\Hling . (2.2.24)

2.2.13 Feature checking complexity
The results of Proposition 2.2.24 and Proposition 2.2.26 suggest an interpre-
tation of the modules MIN of (2.2.24) as measuring, in a sense, the growing
complexity of feature checking in Stabler’s Computational Minimalism, with
the length of the derivation. We can give a heuristic argument in the following
way in terms of a simple count of (vector space) dimensions.

As we mentioned above, in the planar binary rooted trees of Stabler’s Min-
imalism, the internal vertices are labeled by strings (ordered finite sets) α =
X0X1 . . . Xr of syntactic features. We denote by Σ∗ the set of all finite (but arbi-
trary length) strings in the alphabet given by the set of syntactic features, and
by Σℓ the subset of strings of fixed length ℓ. Let s denote the cardinality of the
set of syntactic features, so that #Σℓ = sℓ. (For simplicity, since we are only
interested in a rough estimate, we ignore here the possible of constraints on
subsequent elements XiXi+1 in such sequences that could make this a smaller

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

170 Chapter 2 Hopf Algebra Comparison

set.) We also denote by Σℓ(a0 . . . ar) with r < ℓ the subset of sequences in Σℓ
with the first r + 1 elements fixed and equal to a0, . . . , ar.

The following observation is a well known counting formula for planar bi-
nary rooted trees.

Remark 2.2.27. When we consider all the possible planar binary rooted trees
with k internal vertices labeled by a set Σℓ we obtain a total counting of the
form

dk,ℓ = dimVk,Σℓ = (#Σℓ)k (2k)!
k!(k + 1)!

= sk ℓ
(2k)!

k!(k + 1)!
, (2.2.25)

where Vk,Σℓ = Vling,k,ℓ denotes the vector space of planar binary rooted trees
with internal vertices labeled by the set Σℓ. Let thenVling,k,ℓ(α) be the span of
those trees with a given label α ∈ Σℓ assigned at the root vertex and the other
vertex labels assigned arbitrarily. We have

dk,ℓ(α) = dimVling,k,ℓ(α) = (#Σℓ)k−1 (2k)!
k!(k + 1)!

= s(k−1) ℓ (2k)!
k!(k + 1)!

, (2.2.26)

Definition 2.2.28. Consider the set

RI,ℓ := {(α, β) ∈ Σℓ × Σℓ |α = ωX0α̂ , β = ω̄X0β̂} . (2.2.27)

Similarly we define the set

RIN ,ℓ =


(α, β1, . . . , βN) ∈ Σℓ × ΣN

ℓ

∣∣∣∣∣
α = α = ωX0ωX1 · · ·ωXN−1 · · ·

β1 = ω̄X0, . . .

· · ·

βN = ω̄XN−1


,

(2.2.28)

We can assume here that k and ℓ are both large. We will also be interested in
the case of N large and we will assume that k, ℓ > N.

Proposition 2.2.29. The dimension of D1,k,ℓ(α) = D1 ∩ Vling,k,ℓ(α) for D1 =

Dom(I) is given by

dI,k,ℓ(α) = dimD1,k,ℓ(α) = (s(k−1) ℓ − s(k−1)(ℓ−2)(s2−1)k−1)
(2k)!

k!(k + 1)!
. (2.2.29)

Proof. Consider a single application of Internal Merge I. Note that, according
to the description (2.2.27) of the set RI,ℓ we need at least ℓ ≥ 3. Out of all
the dk,ℓ planar binary rooted trees with k internal vertices labeled by Σℓ, we
can identify those that are the generators of the subspace D1,k,ℓ(α) = D1 ∩

Vling,k,ℓ(α) for D1 = Dom(I) by considering all possible ways to have one

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 171

non-root, non-leaf vertex so that the pair of the root and this vertex have a pair
of labels (α, β) ∈ RI,ℓ, with arbitrary assignments of labels in all the remaining
k − 2 vertices. The condition (α, β) ∈ RI,ℓ means that, if we fix the value of α
then the value of β has the first two entries (which we just write as a0a1) fixed
and only the remaining terms in the sequence β ∈ Σℓ are free to assign. On
the remaining points we impose no constraints. As above s(k−1) ℓ = #(Σℓ)k−1,
which counts all the arbitrary assignments of labels in Σℓ to the k − 1 non-root
vertices. Also we have

s
ℓ − sℓ−2 = sℓ−2(s2 − 1) = #(Σℓ ∖ Σℓ(a0a1)). (2.2.30)

Thus, when we count all the assignments of labels in Σℓ such that not all of
them are in the complement Σℓ ∖ Σℓ(a0a1), which is the same as counting all
possible ways of having (at least) one of the vertices labeled by Σℓ(a0a1), we
obtain (2.2.29). □

When we consider iterations of Internal Merge, we obtain a similar state-
ment. We define

S N(a, b) :=
(
k − 1

N

)
bN(a − b)k−1−N . (2.2.31)

and

S N,k(a, b) := S N(a, b) + S N+1(a, b) + · · · + S k−1(a, b) ≤ ak−1 , (2.2.32)

where the inequality is a consequence of the binomial theorem,
∑k−1

i=0 S i = ak−1.
We then have the following result.

Proposition 2.2.30. The dimension ofDN,k,ℓ(α) = DN∩Vling,k,ℓ(α), with DN =

Dom(IN) is given by

dI,k,ℓ,N(α) = dimDN,k,ℓ(α) = S N,k(sℓ, sℓ−2N(s2N − 1))
(2k)!

k!(k + 1)!
. (2.2.33)

with dI,k,ℓ = dI,k,ℓ,1.

Proof. For N iterations of Merge we have (with k ℓ ≥ N), by the description
of the set (2.2.28), for a given label α = a0a1 . . . a2N−1α̂ ∈ Σℓ at the root vertex,
we are counting the label assignments for which there are N non-root vertices
whose labels are determined by the label α of the root, according to (2.2.28),
while at all the remaining vertices the labels can be arbitrarily assigned in Σℓ.
As before, we have s(k−1) ℓ = #(Σℓ)k−1 for arbitrary assignments of labels at all
the non-root vertices and

s
ℓ − sℓ−2N = sℓ−2N(s2N − 1) = #(Σℓ ∖ Σℓ(a0 . . . a2N−1)) . (2.2.34)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

172 Chapter 2 Hopf Algebra Comparison

We can identify among all the dk trees those that are generators of the subspace
DN,k,ℓ(α) = DN ∩Vling,k,ℓ(α) as the subset of trees that have a choice of N non-
root internal vertices which, together with the root, have an (N + 1)-tuple of
labels that belongs to the set RIN ,ℓ. This means that we are counting all the
possible ways in which among the k− 1 labels assigned to root vertices at least
N are not in the complement of Σℓ(a0 . . . a2N−1). To do that, note that (2.2.31)
counts the number of label assignments to a set of k − 1 points where N of
them have labels in a set B ⊂ A with b = #B and the remaining k − 1 − N have
labels in the complement A ∖ B. Thus, the situation in which exactly N points
out of the k − 1 are in B. The counting of the assignments for which (at least)
N of the points have labels in B is then given by (2.2.32), In our case, we are
only imposing that (at least) N of the non-root vertices have labels in the subset
Σℓ(a0 . . . a2N−1), so we obtain that the number of trees satisfying this property
is given by (2.2.33). □

The explicit counting of (2.2.29) and (2.2.33) provides a measure of the
growth in complexity, when N, k, ℓ grow large, of the feature checking require-
ments in Stabler’s Minimalism.

2.2.14 Coideals, recursive structures, and symmetries
In order to interpret the results of Proposition 2.2.21 and Proposition 2.2.26,
consider again the general fact that the Hopf-algebraic formalism occurs natu-
rally in settings involving construction of recursive and hierarchical structures,
due to the role of coproduct and product in separating out basic building blocks
and combining them. In both the old and the new version of the Minimalist
Model of syntax, the Merge operator is the main mechanism for the construc-
tion of recursive and hierarchical structures. So indeed the fact that, even in
this older formulation of Stabler’s Computational Minimalism we find a Hopf
algebra interpretation is not surprising.

It is more interesting to interpret the specific meaning of objects like the
right-module coalgebras that we obtain in Proposition 2.2.21 and Proposi-
tion 2.2.26. It is helpful to again consider the comparison with the role that
similar algebraic structures play in the context of theoretical physics, where
Hopf algebras describe similar hierarchical structures (such as Feynman graphs)
in fundamental physics. In the applications of Hopf algebras to physics, es-
pecially to renormalization in perturbative quantum field theories, Hopf ide-
als are closely related to the recursive implementation of symmetries (Ward
identities) and the recursive construction of solutions to equations of motion
(Dyson-Schwinger equations), (58), (190).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 173

We have discussed in the first chapter how the algebraic formulation of
the new Minimalism closely resembles the mathematical structure of Dyson-
Schwinger equations in physics. However, the analogous mathematical struc-
ture describing Merge in the old forms of Minimalism differs significantly
from that basic fundamental formulation we have in the case of the new Mini-
malism.

The main difference, as shown above, lies in the intrinsic asymmetry of the
old form of the Merge operation, which only gives rise to a weaker struc-
ture than Hopf ideals, namely the right-ideal coideals discussed in §2.2.11.
Thus, instead of a quotient Hopf algebra as in the case of implementation of
symmetries in quantum field theory, one only obtains a quotient right-module
coalgebra.

Such objects, quotient right-module coalgebras, sometimes referred to as
“generalized quotients” of Hopf algebras, do provide a suitable notion of quo-
tients in the case of noncommutative Hopf algebras, (139), (182). They are
also studied in the context of the theory of Hopf–Galois extensions, designed
to provide good geometric analogs in noncommutative geometry of principal
bundles and torsors in ordinary geometry, see for instance (172). However, the
type of structure involved, in order to accommodate the requirement of work-
ing with planar trees as well as the feature checking requirements, becomes
significantly more complicated than in the case of free symmetric Merge of
the new Minimalism.

We can think of the right-module coalgebrasMIN as a family of geometric
spaces (in a noncommutative sense) that implement the recursive structures of
syntax generated by the Merge operation, in a sense similar to how quotients
by Hopf ideals in physics recursively implement the gauge symmetries or the
recursively constructed solutions to the equations of motion. This, however, is
a significantly weaker (and at the same time significantly more complicated)
algebraic structure than the one we see occurring in the newer version of Min-
imalism, as discussed in the previous chapter.

2.2.15 Partial operated algebra
We now discuss more in detail the mathematical structure of the old formula-
tion of External Merge, and we show how it creates an independent structure
of a very different nature from Internal Merge discussed in §2.2.11. These
very different mathematical formulations of Internal and External Merge are
another significant drawback in the algebraic properties of the older Minimal-
ism in comparison with the newer, since one expects that both forms of Merge
arise as part of the same fundamental structure. We first need to introduce the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

174 Chapter 2 Hopf Algebra Comparison

notion of a partial operated algebra. We illustrate this context first in the case
of Internal Merge.

We can consider the data (Hling, ⋆I,Dom(I),I) discussed above as a gener-
alization of the notion of operated algebra (see (83), (192)) where one consid-
ers data (A, ⋆, F) of an algebra together with a linear operator F : A → A.
Here because of the presence of domains, we need to extend this notion to the
partially defined case.

Definition 2.2.31. A partial operated algebra is a pair (A, F) where A is an
associative algebra and F : Dom(F) → A is a linear operator defined on a
smaller domain Dom(F) ⊂ A which is a right ideal ofA.

Remark 2.2.32. The pair (Hling, ⋆I,Dom(I),I) is a partial operated algebra.

The setting of operated algebras was introduced by Rota (165) as a way of
formalizing various instances of linear operators F : A → A on an algebra
that satisfy polynomial constraints. The simplest example of such polynomial
constraints is the identity F(a⋆b) = F(a)⋆F(b) that makes F an actual algebra
homomorphism. Another example is the Leibniz rule constraint F(a ⋆ b) =
a ⋆ F(b) + F(a) ⋆ b that makes F a derivation. Other interesting polynomial
constraints are Rota–Baxter relations, F(a) ⋆ F(b) = F(a ⋆ F(b)) + F(F(a) ⋆
b)+ λF(a⋆ b), which depending on the value of the parameter λ can represent
various types of operations such as integration by parts, or extraction of the
polar part of a Laurent series. These Rota–Baxter relations play an important
role in the Hopf algebra formulation of renormalization in physics, and will
play a crucial role in the next chapter, in our model of the syntax-semantics
interface.

In the case of Internal Merge we considered above, not only the linear oper-
ator is only partially defined as I : Dom(I) → Hling, but the identity (2.2.19)
that expresses the InternalMmerge of a product is not directly of a simple poly-
nomial form as in Rota’s operated algebra program. However, it appears to be
an interesting question whether the type of relation (2.2.19) can be accommo-
dated in terms of the approach to Rota’s program via term rewriting systems
(in the sense of (4)) developed in (68), (83).

2.2.16 Old version of External Merge and Hopf algebra structure
We now focus on the binary operation E of External Merge, defined on the sub-
domain Dom(E) ⊂ Hling ⊗Hling described in (2.2.10). In the Old Minimalism
the structure of External Merge is simpler than Internal Merge discussed above,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.2 Old Minimalism and the Loday–Ronco Hopf algebra 175

and closely related to the usual Hochschild cocycle that defines the grafting op-
erations in the Hopf-algebraic construction of Dyson-Schwinger equations in
physics.

The “operated algebra” viewpoint we discussed briefly above is especially
useful in analyzing External Merge, along the lines of extending the notion of
operated algebra from unitary to binary operations discussed in (192).

We recall from (192) the notion of operated algebra based on binary opera-
tions. These structure is called a ∨Ω-algebra in (192). In our notation we use
∧ instead of ∨ for the grafting of binary trees used in Merge, following the
convention of writing syntactic parsing trees with the root at the top and the
leaves at the bottom. So we are going to refer to this structure as ∧Ω-algebra.

Definition 2.2.33. A ∧Ω-algebra is an algebra (A, ⋆) together with a family
of binary operations {∧α}α∈Ω satisfying the identity

a ⋆ b = a1 ∧α (a2 ⋆ b) + (a ⋆ b1) ∧α b2 , (2.2.35)

for a = a1 ∧α a2 and b = b1 ∧α b2. A ∧Ω-bialgebra (or Hopf algebra)
(H ,∆, ⋆,∧Ω) is a bialgebra (or Hopf algebra) that is also a ∧Ω-algebra. It is a
cocycle ∧Ω-Hopf algebra if the binary operations ∧Ω also satisfy the cocycle
identity

∆(a ∧α b) = (a ∧α b) ⊗ 1 + (⋆ ⊗ ∧α) ◦ τ(∆(a) ⊗ ∆(b)) , (2.2.36)

where τ : H ⊗ H ⊗ H ⊗ H → H ⊗ H ⊗ H ⊗ H is the permutation that
exchanges the two middle factors.

Again, because we have to use operations that are only partially defined on
a smaller domain, we need to extend this notion to a partially defined version,
as in the case of Definition 2.2.31.

Definition 2.2.34. A partially defined cocycle ∧Ω-bialgebra (or Hopf algebra)
is a bialgebra (or Hopf algebra) (H ,∆, ⋆) together with a family {∧α}α∈Ω of
binary operations defined on linear subspaces Dom(∧α) ⊂ H ⊗H ,

∧α : Dom(∧α) ↪→ H ⊗H → H

that satisfy (2.2.35) and (2.2.36), whenever all the terms are in Dom(∧α).

Proposition 2.2.35. The Hopf algebraHling with the External Merge operator
E is a partially defined cocycle ∧Ω-Hopf algebra.

Proof. It is shown in (192) that the Loday-Ronco Hopf algebraHLR of planar
binary rooted trees with the binary operations ∧α that graft two trees T1,T2 as

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

176 Chapter 2 Hopf Algebra Comparison

the left and right subtrees at a new binary root with label α is a cocyle ∧Ω-Hopf
algebra. The range of ∧α is a coideal inHLR. It is also shown in (192) that the
∧Ω-Hopf algebra HLR is the free cocycle ∧Ω-Hopf algebra, that is, the initial
object in the category of cocycle ∧Ω-Hopf algebras.

The External Merge operation is modeled on the grafting operations ∧α of
the Loday-Ronco Hopf algebra, with labels α ∈ {<, >}. The main differences
are that External Merge inverts the order when the first tree is nontrivial,

E(T1,T2) = T2 ∧> T1 for T1 , •

E(•,T2) = • ∧< T2

and the fact that the operation is only defined on a domain

Dom(E) ⊂ Hling ⊗Hling

of pairs of trees (T1[β],T2[α]) with matching labels β = σα.

Both the ∧α-algebra identity (2.2.35) and the cocycle identity (2.2.36) are
still satisfied, whenever all the terms involved are in the domain of the Merge
operator. This yields the description of External Merge as a structure of par-
tially defined cocycle ∧Ω-Hopf algebra. □

2.3 Summary comparison of Old and New Minimalism

The new version of Minimalism, as presented in (25), (26), (30), and in our
mathematical formulation in the previous chapter, avoids all the complications
arising in the older formulation, both issues arising from the presence of planar
structure, and from the need for labeling and projection. By delegating these
aspects to a later Externalization procedure, the core computational mecha-
nism of Merge becomes very transparent and simple from the mathematical
perspective and no longer leads to very different structures underlying Internal
and External Merge. The formulation is also no longer plagued by the problem
of partially defined operations and corresponding domains.

We discussed in detailed in the previous chapter the whole mathematical
structure of Merge in the new version of Minimalism, including a proposed
model for Externalization. Here we present a direct comparison with the old
Minimalism discussed in the previous section.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 177

2.3.1 The core computational structure
The first point of comparison is identifying the core computational structure
behind the generative process in old and the new versions of Minimalism and
compare them.

2.3.1.1 Core process of New Minimalism In the new version of Mini-
malism, one starts with a core computational structure, that is the recursive
construction of binary rooted trees, where trees are now just abstract trees, not
endowed with planar structure.

As we described in the previous chapter, the set T of finite binary rooted
trees without planar structure is obtained as the free non-associative commuta-
tive magma whose elements are the balanced bracketed expressions in a single
variable x, with the binary operation (binary set formation)

(α, β) 7→ M(α, β) = {α, β} (2.3.1)

where α, β are two such balanced bracketed expressions.

This description of the generative process of binary rooted trees is immediate
from the identification of these trees with balanced bracketed expressions in a
single variable x, such as

{{x{xx}}x} ←→

x x x
x
.

Under this identification, the binary operation of the magma takes two rooted
binary trees and attaches the roots to a new common root

(T,T ′) 7→ M(T,T ′) = T T’ . (2.3.2)

If one takes the Q-vector space V(T) spanned by the set T, the magma op-
eration M on T induces on V(T) the structure of an algebra. More precisely,
V(T) is the free commutative non-associative algebra generated by a single
variable x, or equivalently the free algebra over the quadratic operad freely
generated by the single commutative binary operation M (see (89)). We will
return to this description in terms of operads in the next chapter, where we
discuss its relation to semantics.

2.3.1.2 Core process of Old Minimalism By comparison, the key genera-
tive process in the case of Old Minimalism is governed by the grafting opera-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

178 Chapter 2 Hopf Algebra Comparison

tors of Definition 2.2.3 for planar binary rooted trees

T = Tℓ ∧d Tr = d

Tℓ Tr

where the planar trees now also carry labels at the internal vertices, not only
labels at the leaves (as in the case of syntactic objects in the New Minimalism).
Thus, in particular, here one has one such grafting operation for every possible
label d ∈ DV assigned to the new root vertex.

As we have seen, these grafting operations are involved in the inductive con-
struction of the product and coproduct of the Loday–Ronco Hopf algebra of
planar binary rooted trees.

This operations ∧d inductively construct planar binary rooted trees. How-
ever, here one needs to impose further constraints, due to the fact that the
labeling of internal vertices of the planar trees also keeps track of the syntactic
head of the tree and the subtrees (see the example in Figure 2.4).

These additional requirement lead to the operations ∧d being defined on a
subdomain of pairs of Tℓ, Tr with the property that Tℓ ∧d Tr has a well-defined
head. For comparison, we will discuss the role of the head in the context of the
New Minimalism in §1.13 below.

2.3.2 Relation to combinatorial Dyson-Schwinger (DS) equations
We have observed that the generative process of syntax in Minimalism shares
strong formal similarities with the generative process of recursive construc-
tions of solutions of combinatorial Dyson–Schwinger equations in physics,
the mechanism underlying the inductive construction of solutions of quan-
tum equations of motion. This formal resemblance manifests itself in different
ways in the Old and New Minimalism.

2.3.2.1 DS equations and New Minimalism As we discussed in the previ-
ous chapter, the core computational mechanism of the New Minimalism, based
on free symmetric MergeM is a very natural and simple mathematical object,
and the generative process for the binary rooted trees can then be seen as the
simplest and most fundamental possible case of recursive solution of a fixed
point problem, of the kind that is known in physics as Dyson–Schwinger equa-
tion.

Indeed, one can view the recursive construction of binary rooted trees through
repeated application of the Merge operation (2.3.1) as the recursive construc-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 179

tion of a solution to the fixed point equation

X = M(X, X) , (2.3.3)

where X =
∑
ℓ Xℓ is a formal infinite sum of variables Xℓ in V(T)ℓ, with ℓ the

grading by number of leaves. The problem (2.3.3) can be solved recursively
by degrees, with

Xn = M(X, X)n =

n−1∑
j=1

M(X j, Xn− j) ,

with solution X1 = x, X2 = {xx}, X3 = {x{xx}} + {{xx}x} = 2{x{xx}}, X4 =

2{x{x{xx}}}+ {{xx}{xx}}, and so on. The coefficients with which the trees occur
in these solutions count the different possible choices of planar embeddings.

The equation (2.3.3) is the simplest case (with the simplest quadratic poly-
nomial) of the more general form of Dyson–Schwinger equations for rooted
trees X = B(P(X)) where P(X) is a polynomial in the formal variable X and B
(usually called B in the physics literature) is the operation that takes a collec-
tion of rooted trees T1,T2, . . . ,Tn, seen as the forest F = T1 ⊔ T2 ⊔ . . . ⊔ Tn,
which appears as a monomial in P(X), and constructs a new tree by attaching
all the roots of the Ti’s to a single new root (an n-ary Merge),

B : T1 ⊔ T2 ⊔ . . . ⊔ Tn 7→

T1 T2 · · · Tn

. (2.3.4)

For a detailed discussion of the role of this operator in physics see, for instance,
(58), (190). The case where P(X) has a single quadratic term gives the binary
Merge operation in its core generative process.

2.3.2.2 DS equations and old Minimalism In the case of the “old” Mini-
malism, the recursive structure of combinatorial Dyson–Schwinger equations
is not as directly visible as in the New Minimalism. As we have discussed in
§2.2.14, the relation goes through a more subtle point. It is known (see (5),
(58), (59)) that solutions of combinatorial Dyson–Schwinger equations corre-
spond to Hopf ideals in a Hopf algebra. In the case of the Old Minimalism
formulation, Internal Merge does not quite define a Hopf ideal, but it defines a
closely related structure, namely a right-ideal coideal. While a Hopf ideal de-
termines an associated quotient Hopf algebra, noncommutative Hopf algebras
in general have a weaker notion of quotient that is given by the structure of
quotient right-module coalgebras, which is indeed the structure we have seem
associated to Internal Merge in the Old Minimalism. Thus, we can think of
the right-ideal coideals defined by Internal Merge and its iterations as what

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

180 Chapter 2 Hopf Algebra Comparison

remains visible in this setting of a recursive combinatorial Dyson–Schwinger
equation (which correspond to Hopf ideals).

2.3.3 Combinatorial objects
We can now compare the main hierarchical structures involved in the New and
the Old versions of Minimalism. The New Minimalism has syntactic objects
(abstract binary rooted trees with leaves decorated by lexical items and syn-
tactic features) and workspaces that are forests whose connected components
are syntactic objects. The Old Minimalism has planar binary rooted trees (no
forests) with feature labels at both leaves and internal vertices and with a well
defined syntactic head.

2.3.3.1 Syntactic objects and workspaces in the New Minimalism As we
discussed in the previous chapter, the core computational structure of §2.3.1 in-
troduces Merge in the most basic form of binary set formation (2.3.1). This can
then be extended to the generative process that gives rise to syntactic objects.
One starts with an assigned set SO0 of lexical items and syntactic features such
as N,V, A, P,C,T,D, . . . The set SO of syntactic objects is then identified with
the set (1.1.4)

SO ≃ TSO0

of finite binary rooted trees with no assigned planar embedding, and with
leaves labeled by elements of SO0. Just as the set of binary rooted trees with
no labeling of leaves has a magma structure with the binary set formation op-
eration M of (2.3.1), the set of syntactic objects also has a magma structure,
namely it is the free, non-associative, commutative magma over the set SO0,
as in (??),

SO = Magmana,c(SO0,M) ,

with the binary Merge operationM defined as in (2.3.2) for pairs of trees with
labeled leaves. In both the core magma (T,M) and in the magma (1.1.2) of
syntactic objects, one can introduce a multiplicative unit 1 satisfyingM(T, 1) =
T = M(1,T) for all trees, by formally adding a trivial (empty) tree. (Note that
this is also different from the Loday–Ronco Hopf algebra in the Old Minimal-
ism, where one uses the “trivial tree” • that consists of a single vertex.)

Note that the description as elements of the magma Magmana,c(SO0,M) is
what is usually referred in the linguistics setting (see (25), (26)) as the descrip-
tion in terms of sets (in fact multisets) rather than trees, since one expresses the
elements of the magma in terms of (multi)sets with brackets corresponding to

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 181

the Merge operations, rather than representing them in tree form, such as

{a, {{b, c}, d}} ↔
a

b c d

,

where the tree on the right should not be considered as planar. As sets

TSO0 ≃ Magmana,c(SO0,M)

are in bijection, hence both descriptions are equivalent, but the description as
magma is preferred in linguistics as it emphasizes the generative process. The
description in terms of magma elements, as in the left-hand-side of the example
above, also avoids confusion as to whether the trees have a planar embedding
or not: working with (multi)sets rather than with lists clearly means that no
planarity is assumed. We have adopted the tree notation, just because that is
the standard mathematical terminology and certain mathematical operations
we are using have a simpler and more immediately visualizable description in
terms of trees rather than in terms of the corresponding multisets.

In the new formulation of Minimalism, Merge acts on workspaces, consist-
ing of material (lexical items and syntactic objects) available for computation.
The Merge operation updates the workspace for the next step of structure for-
mation. This notion of workspace is formalized in (41). Mathematically, as
discussed in the previous chapter, workspaces are just finite disjoint unions of
binary rooted trees (that is, forests) with leaves labeled by SO0. Equivalently,
workspaces are multisets of syntactic objects. Thus, the set of workspaces can
be identified with the set FSO0 of binary rooted forests with no assigned pla-
nar structure (disjoint unions of binary rooted trees with no assigned planar
structure) with leaf labels in SO0.

This is a key difference with respect to the Old Minimalism, that does not
use the notion of workspaces. Mathematically, the fact of using forests (the
workspaces) instead of just trees (individual syntactic objects) has the advan-
tage that it admits a very simple and natural product structure, namely the
disjoint union product ⊔ that combines together two given workshops. This
gives a very simple commutative product on the resulting Hopf algebra, to be
compared with the more involved and non-commutative product of the Loday–
Ronco Hopf algebra in the case of the Old Minimalism. The coproduct on
workspaces also simplifies with respect to the coproduct of the Loday–Ronco
Hopf algebra, as we now discuss more in detail.

Given a workspace F ∈ FSO0 , the material in F that is accessible for compu-
tation consist of the lexical items and all the trees that were obtained through

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

182 Chapter 2 Hopf Algebra Comparison

previous applications of Merge. This inductive definition can be rephrased
more directly, by defining the set of accessible terms of F. As we discussed
in the previous chapter, for a single binary rooted tree T with no assigned pla-
nar structure, the set Acc(T) of accessible terms of T is the set of all subtrees
Tv ⊂ T given by all the descendants of a given non-root vertex of T , and for a
workspace given by a forest F = ⊔a∈ITa ∈ FSO0 , with Ta the component trees
and I a finite indexing set, the set of accessible terms of the workspace con-
sists of the syntactic objects, i.e. the connected components Ta of F, together
with all the accessible terms α ∈ Acc(Ta) of each component Ta.

2.3.3.2 Labeled planar trees The fundamental combinatorial objects that
describe the hierarchical structures in the Old Minimalism differ from the set-
ting of syntactic objects and workshops of the New Minimalism in several
important ways.

1. The use of planar trees;
2. The use of labeling of the internal vertices (which reflects features and

head);
3. The fact that only trees are used and not forests (workspaces).

The first difference is responsible for the Hopf algebra being non-commutative
and for the asymmetry of the resulting algebraic structure (the right-ideal coide-
als) associated to Internal Merge. The second difference is responsible for the
partially defined action of Merge (the domains that correspond to the feature
checking conditions) and these domains in turn determine the algebraic struc-
ture of right-ideal coideals, which one does not see in the New Minimalism.
The third difference is what makes the algebraic structure significantly more
complicated, in terms of the form of the product and coproduct of the Hopf
algebra, since, for example, the product is forced to be an asymmetric merg-
ing of two trees into a single one, rather than just a simple combination of
workspaces via disjoint union as in the New Minimalism.

2.3.4 Action of Merge
Finally, we can directly compare the algebraic structures of the Old and the
New Minimalism at the level of the action of Merge, comparing the algebraic
properties of the action of free symmetric Merge on workspaces of the New
Minimalism with the different properties of the partial actions of Internal and
External Merge in the Old Minimalism.

2.3.4.1 Action of Merge in the new Minimalism With the same notation
and terminology we used in the previous chapter, we have seen that in the New

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 183

Minimalism the Hopf algebra structure on workspaces can be seen as underly-
ing the action of Merge. Indeed, the fundamental property of the coproduct in
a Hopf algebra provides the list of all the possible ways of decomposing an ob-
ject (the term of the algebra the coproduct is applied to) into a pair consisting
of a subobject and the associated quotient object. In other words, in the case
of a tree T one can write a coproduct in the form

∆(T) =
∑

v

Fv ⊗ T/Fv , (2.3.5)

where we include the special cases T ⊗ 1 and 1 ⊗ T , and where, for v = {vi}
k
i=1

we write Fv for the forest consisting of a union of disjoint subtrees Tvi ⊂ T .
This can be equivalently described as a forest obtained from an admissible cut
of the tree T . As we discussed in Chapter 1, Internal and External Merge use
the terms

∆(2)(T) =
∑

v

Tv ⊗ T/Tv , (2.3.6)

of the coproduct (meaning those where the subforest in the left-channel has at
most two components) as a way of compiling a list of all the accessible terms
of T with the corresponding cancellation of the deeper copy. In these terms,
the action of Merge can be described as taking, for each of the two arguments
of the binary operation MS ,S ′ , for a pair S , S ′ ∈ TSO0 of syntactic objects, the
coproduct ∆(F) over the entire workspace, which extracts all the accessible
terms, searching among them for matching copies of S and S ′, merging them
if found, and keeping the other terms of the coproduct that perform the cancel-
lation of the deeper copies. As we have seen in §1.16, the remaining parts ∆(n)

of the coproduct play a role in the FormSet operation.

The Q-vector space V(FSO0) spanned by the workspaces, with the opera-
tions of disjoint union ⊔ as product and the coproduct (2.3.5) extended from
trees to forests by ∆(F) = ⊔a∆(Ta) for F = ⊔aTa, has the structure of an
associative, commutative, coassociative, non-cocommutative bialgebra

(V(FSO0),⊔,∆).

The vector space V(FSO0) = ⊕ℓV(FSO0)ℓ has a grading by number of leaves,
compatible with the operations, so that an antipode compatible with product
and coproduct, makingV(FSO0) a Hopf algebra can be constructed inductively
by degrees (see the general discussion of the properties of Hopf algebras in
§4.2). A more nuanced discussion of the different forms of the coproduct, ∆c,
∆ρ, ∆d and the effect on the coassociativity properties were discussed in §1.2.1.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

184 Chapter 2 Hopf Algebra Comparison

The action of Merge on workspaces described above is then formulated ex-
plicitly in terms of the product and coproduct structure of (V(FSO0),⊔,∆), as

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆ , (2.3.7)

where the coproduct ∆ produces the list of accessible terms and corresponding
cancellations, and the operator δS ,S ′ identifies the matching copies. These are
then fed into Merge by the operation B ⊗ id which at the same times produces
the new merged tree through the grafting operation B of (2.3.4) and performs
the cancellation of the deeper copies by keeping the corresponding quotient
terms produced by the coproduct in the new workspace. The resulting new
workspace is then produced by taking all these components and the new com-
ponent created by Merge together through the product operation ⊔.

For the comparison with the Old Minimalism, it is important to stress here
that the entire action of Merge (including both Internal and External Merge)
arises in the New Minimalism from the same mechanism associated with the
coproduct and product operations of the Hopf algebra. This is unlike what
happens with Old Minimalism, where Internal and External Merge are inde-
pendently defined and are not directly constructed in terms of the coproduct
and product of the Loday–Ronco Hopf algebra. Indeed the relation to the
Hopf algebra structure is described in a more indirect way: through the case of
an elementary cut and the relation between the Loday–Ronco and the Connes–
Kreimer coproducts, and via the behavior of the domains of Merge with respect
to the Hopf algebra operations. In the New Minimalism, by contrast, Merge
is globally defined so the domain is the full Hopf algebra (that is, arbitrary
workspaces).

The form (2.3.7) of the action of Merge includes other possible forms of
Merge, in addition to External and Internal Merge, such as some forms Side-
ward and Countercyclic Merge that we discussed in the previous chapter. This
again differs from the case of “old” Minimalism, where only External and In-
ternal Merge are defined. In the New Minimalism, the additional unwanted
forms of Merge are eliminated through a mechanism of Minimal Search that
extracts the terms corresponding to External and Internal Merge as the “least
effort” contributions and through a Minimal Yield condition. We have seen
in the previous chapter that the usual form of Minimal Search can be imple-
mented in this Hopf algebra setting by selecting the leading order part of the
coproduct with respect to a grading that weights the accessible terms Tv ⊂ T by
the distance of the vertex v from the root vertex of T , so that searching among
terms deeper into the tree becomes less efficient, with respect to this cost func-
tion, than searching near the top of the tree, and at the same time weighting

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 185

the cancellation of a deeper term as less costly than the cancellation of a term
near the root. Taking the leading order term with respect to this grading has
exactly the same effect as implementing Minimal Search in the way usually
described in the linguistics literature (see (25), (26), (30)). More precisely, one
has a weighted form of the Merge operation where this cost function is taken
into account,

M
ϵ
S ,S ′ = ⊔ ◦ (Mϵ ⊗ id) ◦ δS ,S ′ ◦ ∆

and taking the leading term (namely the only nonzero term in the limit ϵ →
0) of arbitrary compositions of operators Mϵ

S ,S ′ , one finds only Internal and
External Merge, while all the remaining forms of Merge are of lower order
and disappear in the ϵ → 0 limit. In the next chapter, we will see a way of
interpreting Minimal Yield, using the formalism of Rota–Baxter algebras and
Birkhoff factorization.

2.3.4.2 Action of Merge in the Old Minimalism The action of Merge in
the “Old” Minimalism again differs in several significant ways from the newer
version:

1. internal and External Merge are independently defined operators, instead
of being cases of the same operator as in the New Minimalism;

2. no other forms of Merge occur (unlike the Sideward/Countercyclic Merge
discussed above);

3. Merge is partially defined, due to feature checking;
4. Internal and External Merge lead to different algebraic structures;
5. Internal Merge can be described in terms of admissible cuts: the relation of

these to the coproduct of the Loday–Ronco Hopf algebra is more involved
than the direct relation of free symmetric Merge to the coproduct of the
Hopf algebra of workspaces.

The first difference is a consequence of the fact that the combinatorial objects
considered are only trees and not forests. This implies that the External Merge
requires the additional algebraic structure of ∧Ω-algebra that we discussed in
§2.2.16. Even when the two operations of Internal and External Merge are
compared in the way that most closely highlights the similarities, as in §2.2.15
and §2.2.16, these two operations cannot be reduced to special cases of a single
algebraic structure. This is very different from what happens in the the newer
version of Minimalism, where the expression (2.3.7) covers all possible cases
of Merge in a single operation.

As we showed above, the second difference is that the lack of a unified Merge
operation means that the “older” version does not have Sideward and Counter-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

186 Chapter 2 Hopf Algebra Comparison

cyclic Merge (that are eliminated through the mechanism of Minimal Search
in the new approach).

The third difference, that in the “Old” Minimalism, Merge is partially de-
fined, creates the compounding problem of domain checking in derivation
chains. It is also responsible at the level of algebraic structures for the presence
of an additional structure beyond the Hopf algebra, in the form of associated
right-ideal coideals. Finally, the description of Internal Merge in terms of ad-
missible cuts in the Old Minimalism is very similar to the description in terms
of extraction of accessible terms using the Hopf algebra coproduct in the New
Minimalism. In the Old Minimalism, the admissible cuts that occur in Internal
Merge and its iterations do not come directly from the terms of the coproduct
of the Loday–Ronco Hopf algebra. There is a known relation between the ad-
missible cuts and the coproduct of the Loday–Ronco Hopf algebra, which is
not immediately evident in the form we described in §2.2.3 and §2.2.4. This is
shown in Theorem 8.4 of (1) where one demonstrates that there is a choice of
basis for the Loday–Ronco Hopf algebra with respect to which the coproduct
is expressible in terms of a collection of a version of the notion of admissi-
ble cuts, adapted to the decomposition of the tree into its left/right subtrees,
T = Tℓ ∧d Tr (see §2.2.5 above). These, however, are not the same collection
of admissible cuts that one needs in the iterations of Internal Merge. Moreover,
a difference with respect to the Hopf algebra of workspaces, is that, even when
the Loday–Ronco coproduct is expressed in terms of admissible cuts, the for-
est part πC(T) of the admissible cut needs to be assembled into a tree, as only
trees occur in the Loday–Ronco Hopf algebra and not forests, while one does
need to use the forest πC(T) in describing the iterated Internal Merge.

2.3.4.3 Labeling in Old and New Minimalism We discussed in §1.13 and
§1.15 the notion of head function, planarization, and labeling algorithm in the
setting of the New Minimalism based on free symmetric Merge. In compar-
ison, descriptions of Merge at the level of planar trees, as in the older Min-
imalism, involve a partially defined operations with restrictions on domains,
based on some label assignments. We have discussed this explicitly earlier in
this chapter, in the case of Stabler’s formulation, but analogous conditions ex-
ist in other formulations of the older version of Minimalism. In view of the
considerations above, this can be read as evidence of the fact that one is trying
to describe at the level of planar trees a Merge operation that is really taking
place at the underlying level of non-planar abstract trees, correcting for the
incompatibility described above by restricting the domain of applicability. In
particular, this means that the significant complications in the underlying al-
gebraic structure of External and Internal Merge that we have observed in the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.3 Summary comparison of Old and New Minimalism 187

case of Stabler’s formulation, similarly apply to other formulations that locate
Merge after the planar embedding of trees.

This issue does not arise within the formulation of the newer Minimalism,
since the planarization that happens in Externalization is simply a non-canonical
(meaning dependent on syntactic parameters) choice of a section σ of the pro-
jection SOnc → SO. The only requirement on σ is to be compatible with
syntactic parameters, not to be a morphism with respect to the magma opera-
tions M and Mnc, since in this model Merge only acts before externalization
as M (not after externalization as Mnc: the operation Mnc is in fact never in-
volved). In the previous chapter we described Externalization in the form of
a correspondence. This represents a two step procedure that first chooses a
non-canonical section σ, and then quotients the image by eliminating those
planar trees obtained in this way that are not compatible with further (lan-
guage specific) syntactic constraints. Merge is not applied anywhere in this
externalization process, that takes place after the results of Merge have been
computed at the level of trees without planar structure.

The same issues we discussed in §1.13.2 regarding planarization, occur in
the formalism of (180) that we have been discussing in the previous sections
of this Chapter: it is easy to see the same issues arise in terms of the labels >
and < assigned to the internal vertices of (planar) trees. The difference is that
in (180) one starts with a tree that already has a planar assignment and uses
heads, maximal projection, and c-command to obtain a new planar projection.
In that case, as we already discussed, the labels > and < are assigned to the
root and the non-leaf vertices of a planar tree by pointing, at each vertex v,
in the direction of the branch where the head of the tree Tv resides. If this
assignment of labels is well defined, then the new planar structure of the tree
can be obtained simply by flipping subtrees about their root vertex every time
the vertex is labeled <, until all the resulting vertices become labeled by >.

The implicit assumption that makes this possible is that every subtree Tv of
a given tree T has a head, that is, a marked leaf. This assumption regarding
heads is necessary both for the labeling by > and < in Stabler’s formalism and
for the use of maximal projections for the definition of ordering in the LCA.

In the case of the labels > and <, the problem of what label is assigned to the
new root vertex when External or Internal Merge is performed, demands re-
strictions on the domain of applicability of these Merge operations, depending
on conditions on the labels at the heads of the trees used in the Merge operation
(which makes them partially defined operations). It also requires further steps,
such as allowing Merge results to be unlabeled during derivation and labeled
at the end so that successive-cyclic raising can remove the elements respon-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

188 Chapter 2 Hopf Algebra Comparison

sible for un-labelability. (This refers to the same linguistic problem with the
formalism that we discussed above, at the end of §2.2.9, mentioned to us by
Riny Huijbregts.)

In the case of LCA, the partial corrections to this problem (see (91) pp.230–
231) that we mentioned in §1.13.2 are similar in nature to the point mentioned
above regarding un-labelable structures in Stabler’s formalism.

2.4 Conclusions

We have seen from this comparative analysis of the algebraic structures un-
derlying one of the older versions of Minimalism (Stabler’s Computational
Minimalism) and Chomsky’s newer version (New Minimalism), that the new
version has a simpler mathematical structure with a unifying description of
Internal and External Merge, and with a core generative process that reflects
the most fundamental magma of binary set formation, generating the binary
rooted trees without assigned planar structure.

The more complicated mathematical structure of Stabler’s Minimalism is
caused by several factors. The intrinsic asymmetry of the Internal Merge is
due to working with planar binary rooted trees. Abandoning the idea that
planar embeddings should be part of the core computational structure of Mini-
malism is justified linguistically by the relevance of structures (abstract binary
rooted trees) rather than strings (linearly ordered sets of leaves, or equivalently
planar embeddings of trees) in syntactic parsing, see (56). Thus, working with
abstract trees without planar embeddings is one of the simplifying factors of
the new Minimalism. The other main issue that complicates the mathematical
structure of the older versions of Minimalism is the very different nature of the
Internal and External Merge operations: in the case of Stabler’s Minimalism
analyzed here these two forms of Merge relate to two very different algebraic
objects (operated algebras and right-ideal coideals) hence they cannot be rec-
onciled as coming from the same operation, while in the new Minimalism
both Internal and External Merge are cases of the same operation, and both
arise as the leading terms with respect to the appropriate formulation of Mini-
mal Search. Finally, another main issue that makes the mathematical structure
of older versions of Minimalism significantly more complicated is the pres-
ence of conditions on labels that need to be matched for Internal and External
Merge to be applicable, related to the problem of projections discussed in (23).
Mathematically this makes all operations only partially defined on particular
domains where conditions on labels are met. As we discussed, this creates
problems with having to work with partially defined versions of various alge-
braic structures and it significantly complicated iterations of the Merge oper-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.5 Comparison with other models 189

ations, where the conditions on domains compound. Since the conditions on
labels are absent from the fundamental structure of the new Minimalism, this
problem of dealing with partially defined operations also disappears, leading
to another simplification at the level of the mathematical structures involved.
In the new form of Minimalism, the labeling algorithm, which we discussed
in §1.15, does not run into this problem, because labeling takes place after the
process of structure formation via free symmetric Merge, not as a part of the
Merge operation.

Within the new formulation of Minimalism, the planar structure of trees is
introduced as a later step of externalization, not at the level of the Merge ac-
tion. The choice of planar structure in externalization is done through a non-
canonical (that is, dependent on syntactic parameters) section of the projection
from planar to abstract trees. We showed in §1.13 that proposed construction
of a unique canonical choice of planar embeddings, based on heads of trees,
maximal projections, and c-command, can only be partially defined on a do-
main Dom(h) ⊂ SO.

2.5 Comparison with other models

In this chapter we have mostly discussed the comparison, at the level of alge-
braic properties, between the New Minimalism based on free symmetric Merge
and the Old Minimalism, focusing on the formulation of Stabler’s of Compu-
tational Minimalism.

We finish this chapter by discussing briefly the comparison with other mod-
els of syntax, that may appear at first to have a very similar structure to the
free symmetric Merge, but that in fact turn out to be significantly different in
various respects.

2.5.1 Tree Adjoining Grammars – TAGs
Before we proceed to discuss further aspects of our model, we also want to
make a comment, regarding the formalism we presented in Chapter 1, that dis-
ambiguates between our setting based on Merge and other different settings. In
particular, we add here a very brief clarification on the difference between the
algebraic structure of Merge described in Chapter 1 and that of Tree Adjoining
Grammars (TAGs). In the setting of TAGs, one considers a generative process
that depends on an initial choice of a given finite set of “elementary trees” with
vertex labels. In TAGs, in general, trees are not necessarily assumed to be
binary. There are two composition rules: one composition operation (substi-
tution rule) consists of grafting the root of a tree to the leaf of another tree; a
second composition operation (a so-called adjoining rule) inserts at an internal

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

190 Chapter 2 Hopf Algebra Comparison

vertex of a tree with a label x another tree with root labeled by x, and one of
the leaves also labeled by x. The adjoining rule can be obtained as a suitable
composition of grafting of roots to leaves, so the basic generative operations
of TAGs are the operad compositions of rooted trees. Namely, if O(n) denotes
the set of trees in a given TAG with n leaves, then there are composition maps

◦i : O(n) × O(m)→ O(n + m − 1) (2.5.1)

that plug the root of a tree in O(n) to the i-th leaf of a tree in O(m) resulting in
a tree in O(n + m − 1). Such operations, subject to associativity and unitarity
conditions, define the algebraic structure of an operad (which we will return to
in §3.8.1). Label matching conditions would require the notion of colored op-
erads, but we will not discuss this here (see §3.8.1 for a similar label matching
condition arising in our setting).

In order to compare the TAG formalism with the algebraic formulation of
Merge of Chapter 1, one should note that there is an important relation be-
tween the two as well as important differences: the latter show that these two
formalisms do not constitute the same algebraic structure. This is why, in our
view, it is algebraic structure that is essential to the line of work presented here,
rather than the formal language theoretic notion of weak generative capacity
(such as mild-context sensitivity).7

The relationship between TAGs and Merge arises from the fact that, in the
Merge formalism of Chapter 1, recalled in §3.1.2 above, the syntactic objects
T ∈ SO = TSO0 are generated as elements of the free non-associative commu-
tative magma (3.1.1) on the Merge operationM. This does have an equivalent
operad formulation, in terms of the quadratic operad freely generated by the
single commutative binary operationM, see (89). Thus, there exists an equiv-
alent way of formulating the generative process for the syntactic objects in
terms of operad compositions (2.5.1), that makes this generative process ap-
pear similar to TAGs. Moreover, as we will discuss in §3.8.1 the formulation
of Theta Theory in our setting does involve operads and colored operads. So
there is some part of the algebraic structure that is common to both models.
However, the main difference between the two lies in the fact that the Merge
formalism does not just consist of the generation of syntactic objects through
the magma operation, but also of the action of Merge on workspaces, given by
forests F ∈ TSO0 .

7 In other words, this is not to deny that notions of generative capacity might be useful to illuminate
one or another aspect of human language; simply that the algebraic approach presented here does
not draw on this more familiar formal language theory tradition.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.5 Comparison with other models 191

The action of Merge on workspaces is not determined only by the operad
underlying the SO magma, but also requires the additional datum of the Hopf
algebra structure on workspaces. This makes it possible to incorporate not
External Merge, that is involved in the magma SO, but also Internal Merge,
that requires an additional coproduct operation.

It is important to observe here that the operad underlying SO also determines
a Hopf algebra, but the associative, commutative Hopf algebra on the vector
space V(FSO0) spanned by forests of binary rooted trees, used in Chapter 1
to formulate the action of Merge on workspaces is not the same as the non-
associative, commutative Hopf algebra structure induced by the operad on the
vector space V(TSO0) spanned by binary rooted trees as in TAGs; see (88),
(89). This is a key algebraic difference between TAGs and Merge. The intro-
duction of workspaces and the action of Merge on workspaces thus amounts to
a key innovation in the modern Minimalist account.

Another main difference lies in the fact that the other main operation of
TAGs, insertion at inner vertices of the tree, does not fit either with the operad
formalism, nor with the Hopf algebra. We have discussed in §1.7 how certain
insertion operations at internal vertices of trees (as used, for instance, in Late
Merge models) can be expressed in terms of a Lie algebra structure related to
the Hopf algebra by duality (hence making these extensions of Merge express-
ible in terms of only the original Internal and External Merge). However, the
insertion operation of TAGs does not fit the same Lie algebra structure, so it is
not an equivalent model.

2.5.2 Tensor models
Smolensky proposed in (176), (177) an “integrated connectionist symbolic” ar-
chitecture for complex combinations of serial and parallel processing, aimed at
modeling cognition, based on a formalism of tensor products of vector spaces.
We will return in §3.2.4 to discuss criticism of this approach and to explain
why our model of syntax-semantics interface is not a tensor model in the sense
of Smolensky. Tensor models of the kind described in (176), (177) have been
used in computational linguistics for parsing, both in the setting of context-free
grammars and of TAGs, and in the case of Stabler’s Computational Minimal-
ism and Minimalist Grammars (MGs) in (74), (76), with an attempt to unify
symbolic and connectionist approaches in language processing. The main idea
is that given a planar binary rooted trees with labeling by features as in Sta-
bler’s Minimalism, one encodes the set of features into a set of corresponding
vectors and one encodes the planar binary rooted tree structure, using “position
roles” r1, r2, r3 for mother vertex and left/right daugther vertices and encodes

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

192 Chapter 2 Hopf Algebra Comparison

these also as independent vectors Vri , then encoding a tree

α

β γ

with a vector Vα ⊗ Vr1 + Vβ ⊗ Vr2 + Vγ ⊗ Vr3 .

This type of tensor product relations Vα ⊗ Vr are referred to as a “filler–role
binding relation”, where fillers stand for the features α. Here we have illus-
trated roles as “position roles” that keep track of the tree structure, but more
generally, roles are considered in this approach to represent the fillers positions
in the larger structures and can be represented by theta-roles, the argument of
a predicate. We will discuss in §3.2.4 that, when used in this more general
sense, the tensor product pairing Vα ⊗ Vr of fillers and roles would lead to as-
signments of tensor products of vectors when External Merge operations are
performed that involve theta-roles matching (see also our discussion of theta-
roles in §3.8.1), and this has problems with semantic interpretation, as pointed
out in (137). In (76) this approach is realized in terms of vector representations
in Fock spaces, and it is shown that External and Internal Merge (formulated in
the older terminology of merge and move) act as transformations on the Fock
space.

As observed in (147) a fundamental construction in theoretical physics, the
Fermionic Fock space, can be related to rooted trees, via a procedure that la-
bels in a one-to-one correspondence states in the Fermionic Fock space with
rooted trees (not necessarily binary). This correspondence is based on two
intermediate steps: the Matula number of a rooted tree (140), which gives
a unique labeling of rooted trees by integers (using prime number decompo-
sition), and an arithmetic construction of both Bosonic and Fermionic Fock
space, which is also based on prime numbers. Combining these two param-
eterization one can match rooted trees to states in the Fermionic Fock space.
This correspondence with Fock spaces makes it possible to express operations
such as the coproduct of the Connes–Kreimer Hopf algebra of rooted trees,
and solutions to combinatorial Dyson–Schwinger equations in terms of states
in the Fermionic Fock space (see (147)). Thus, it is possible that the formalism
we are describing here, using the Hopf algebra of rooted trees, for the action
of Merge on workspaces, may admit a compatible encoding via Fock spaces,
of the kind used for the old version of Minimalism in (74), (76). Such repre-
sentations should not assign a tensor product of vectors VT1 ⊗ VT2 to a Merge
M(T1,T2), due to the difficulties outlined in §3.8.1, but should rely on an ap-
propriate encoding of binary rooted trees (with the magma operation M) in

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

2.5 Comparison with other models 193

states of a Fock space (Bosonic or Fermionic). We will not discuss this topic
further in this book.

2.5.3 Physics methods in Minimalism
The algebraic model of Merge and Minimalism that we present in this book
is directly inspired by the mathematical formalism of Hopf algebras used the-
oretical physics to describe the generative process of Feynman diagrams in
quantum field theory and the renormalization of the perturbative Feynman in-
tegrals.

There have been other approaches that considered adopting methods from
theoretical physics to model aspects of generative linguistics, and especially
Merge and Minimalism.

For example, in (154), Phase Theory and the “phase impenetrability con-
ditions”, formulated in terms of trees in X-bar theory, is considered as a dy-
namical process governed by certain creation and annihilation operators akin
to those used in the context of quantum physics. This viewpoint is consis-
tent with the Fock space approach outlined in §2.5.2 where such operators are
a natural part of the structure. While the approach of (154) is very different
from the one we follow here, they do make the observation that “copies” in
generative syntax should be governed by a Hopf algebra structure.

In (67), Merge is regarded as a “process of coarse graining” akin to a renor-
malization process in physics. The point of view illustrated there is similar to
what physicists refer to as the MERA renormalization in tensor networks, with
the binary tree structures of syntactic objects regarded as a tensor network. The
impenetrability of phases is then interpreted as the irreversibility of the renor-
malization group flow. Again the approach described in (67) is different from
the one that we follow in this book. In particular, while we model the syntax-
semantics interface on a form of renormalization used in quantum field theory,
we do not model this in a coarse graining process (in our model no syntactic
information is lost or averaged out, though phase impenetrability does hold, in
the form ∆Φ of the Hopf algebra coproduct that we described in §1.14.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3 The Syntax-Semantics Interface: an Algebraic Model

3.1 Introduction: modeling the syntax-semantics interface

As we have argued in the previous chapters, the modeling of generative syntax,
based on the core computational structure of Merge, within the setting of the
Minimalist Model, satisfies the following fundamental properties:

1. a concise conceptual framework;
2. a precise mathematical formulation;
3. a good explanatory power.

For the most recent formulation of Minimalism, the first and third property are
articulated in (26), (27), (30) and in Elements (37). While the requirement of
the existence of precise mathematical models has been traditionally associated
with sciences like physics, since syntax is essentially a computational process,
this suggests that a mathematical formulation might also be a desirable require-
ment in linguistics, and more specifically in the modeling of I-language.

In comparison with syntax, modeling semantics is presently in a less satis-
factory state from the point of view of the same three properties listed above.
Some main approaches to semantics include forms of compositional semantics
(156), (157), truth-conditional semantics, semiring semantics (75), and vector-
space models (the latter especially in computational linguistics). General views
of logic-oriented approaches to semantics, that we will not discuss here, can be
seen, for instance, in (171), (183), (191). In our view, each of these viewpoints
has limitations of a different nature.

Our purpose here is not to carry out a comprehensive comparative analysis
and criticism of contemporary models of semantics. Rather, we want to ap-
proach the problem of modeling the syntactic-semantic interface on the basis
of a list of abstract properties, and articulate a possible mathematical setting
that such properties suggest. We can then compare existing models with the
specific structure that we identify. We will show that one can remain, to some

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

196 Chapter 3 Algebraic Model

extent, agnostic about specific models of semantics, beyond some basic re-
quirements, and still retain a fundamental functioning model of the interaction
with syntax. This reflects a view of the syntax-semantics interface that is pri-
marily syntax-driven.

As in the case of our mathematical formulation of Merge in terms of Hopf
algebras, our guiding principle will be an analogy with conceptually similar
structures that arise in theoretical physics. In particular, in the context of fun-
damental physical interactions described by the quantum field theory, a fun-
damental problem is the assignment of “meaningful” physical values to the
computation of the expectation values of the theory. This can be compared
with the assignment of meaning–semantics–to syntactic objects. More pre-
cisely, assignment of meaning in the quantum field theory setting consists of
the extraction of a finite (meaningful) part from Feynman integrals that are in
general divergent (produce meaningless infinities). This process is known in
theoretical physics as renormalization. In the algebraic form we consider here
it is known as Connes–Kreimer renormalization of as Hopf algebra renormal-
ization. While the renormalization problem and procedures leading to satis-
factory solutions for it have been known to physicists since the development of
quantum electrodynamics in the 1950s and 60s (see (14)), a complete under-
standing of the underlying mathematical structure is much more recent, (see
(42), (43)).

Even more recently, it has been shown by Manin that the same mathematical
formalism can be applied in the theory of computation, in order to extract, in
a similar way, computable “subfunctions” from non-decidable problems (un-
decidability being the analog in the theory of computation of the unphysical
infinities); see (122), (123), and also (47), (105).

Assuming the conceptual standpoint that Internal or I-language is, in essence,
a computational process, the extension of the mathematical framework of renor-
malization to the theory of computation suggests the existence of a similar pos-
sible manifestation in linguistics as well. In the case of linguistics, one does not
have to deal with divergences (of a physical or computational nature); rather
one has to carry out a consistent assignment of meaning to syntactic objects
produced by the Merge mechanism, and reject inconsistencies and impossibil-
ities. In the rest of this chapter we plan to turn this heuristic comparison into a
precise formulation.

There are several reasons why developing such a mathematical model of the
syntax-semantics interface is desirable. Aside from general principles based
on the three “good properties” of theoretical modeling stated above, there are
other possible applications of interest. For instance, a significant ongoing de-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 197

bate and controversy has ensued from the recent development of statistically-
based large language models (LLMs), with various claims of incompatibility
with the generative linguistics framework itself. Since such theories, in our
view, ultimately describe computational processes (albeit most likely also in
our view of a different nature from those governing language in human brains),
a viable computational and mathematical setting is helpful, so that a specific
comparative analysis can be carried out, and such claims can be addressed.

3.1.1 Some conceptual requirements for a syntax-semantics interface
We being our analysis by setting out a simple list of what we regard as desirable
properties of a model of the syntax-semantic interface.

1. Autonomy of syntax
2. Syntax supports semantic interpretation
3. Semantic interpretation is, to a large extent, independent of externalization
4. Compositionality

The first requirement, the autonomy of syntax, expresses that the compu-
tational generative process of syntax described by Merge is independent of
semantics. The second requirement can be seen as positing that the syntax-
semantic interface proceeds from syntax to semantics (a syntax-first view),
while syntax itself is not semantic in nature. The third claim separates the
interaction of the core computational mechanism of syntax with a Conceptual-
Intensional system, which gives rise to the syntax-semantic interface, from the
interaction with an Articulatory-Perceptual or Sensory-Motor system, which
includes the process of externalization. While it is reasonable to assume a cer-
tain level of interaction between these two interface channels, with “indepen-
dence of externalization” we emphasize that semantic interpretation depends
primarily on structural relations and proximity in the syntactic structure rather
than on linear proximity of words in a sentence. The compositional property
is meant here simply as a requirement of consistency across syntactic sub-
structures.

We also add another general principle that we will try to incorporate in our
model and that may be at odds with some of the traditional approaches to se-
mantics (such as the truth value based approaches). We propose the following
fundamental distinction between the roles of syntax and semantics in language
(that we realize not everyone will agree with):

• Syntax is a computational process.
• Semantics is not a computational process and is in essence grounded on a

notion of topological proximity.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

198 Chapter 3 Algebraic Model

The first statement is clear in the context of generative linguistics, and in par-
ticular in the setting of Minimalism, where the computational process is run
by the fundamental operation Merge. The second assertion requires some con-
textual clarification. Saying that semantics is only endowed with a notion of
proximity of a topological nature does not mean that it is not possible, or de-
sirable, to consider models of semantics where additional structure is present,
but rather that these additional properties (metric, linear, semiring structures,
for instance) only play a role to instantiate or quantify proximity relations. The
compositionality of semantics does not require positing an additional compu-
tational structure on semantics itself: the computational structure of syntax
suffices to induce it. In this view, semantics is not really a part of language
itself, but rather an autonomous structure of “conceptual spaces” that mostly
deals with proximity classifications.

3.1.2 Syntax
On the syntax side of the syntax-semantic interface we assume the formula-
tion of free symmetric Merge presented in Chapter 1. This accounts for the
properties (1) and (3) in our list of §3.1.1: it provides a computational model
of syntax that is independent of semantics, and where the interface with se-
mantics takes place at the level of free symmetric Merge, without requiring
prior externalization. Free symmetric Merge generates syntactic objects, de-
scribed by binary rooted trees without any assigned planar embedding. Thus,
our choice of modeling the syntax-semantic interface starting from the level of
free symmetric Merge, as the syntactic part of the interface, has the effect of
ensuring that the interface of syntax and semantics (also sometimes called the
Conceptual-Intensional system) is parallel and separate from the channel con-
necting the output of Merge to externalization (the so-called Sensory-Motor
system), although interactions between these two channels can be incorporated
in the model (and will be discussed in §3.4 of this chapter).

Summarizing briefly the setting of Chapter 1, syntax is represented by the
following:

• a (finite) set SO0 of lexical items and syntactic features;
• the set of syntactic objects SO, identified with the set TSO0 of binary rooted

trees (with no planar structure) with leaves labeled by SO0, generated as the
free, non-associative, commutative magma over the set SO0,

SO = Magmana,c(SO0,M) = TSO0 ; (3.1.1)

• the set of accessible terms of a syntactic object T ∈ TSO0 , given by the set of
all the full subtrees Tv ⊂ T with root a non-root vertex v ∈ V(T);

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 199

• the commutative Hopf algebra of workspaces obtained by considering the
vector spaceV(FSO0) spanned by the setFSO0 of (finite) binary rooted forests
with leaves decorated by elements of the set SO0, with product given by the
disjoint union ⊔ and coproduct determined by

∆(T) = T ⊗ 1 + 1 ⊗ T +
∑

v

Fv ⊗ T/Fv , (3.1.2)

with Fv = Tvq ⊔ · · · ⊔ Tvn a collection of accessible terms;
• the action of Merge on workspaces

M = ⊔ ◦ (B ⊗ id) ◦ ∆

where B is the grafting of components of a forest to a common root vertex,
or for a fixed pair of syntactic objects S , S ′

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ δS ,S ′ ◦ ∆ , (3.1.3)

where δS ,S ′ selects matching pairs in the workspace (see Chapter 1 for a more
detailed description).

We will use the notation H = (V(FSO0),⊔,∆, S) for the Hopf algebra de-
scribed above. Note that since the Hopf algebra is graded, the antipode S is
defined inductively using the coproduct, so that we can equivalently just spec-
ify the bialgebra part of the structure,H = (V(FSO0),⊔,∆).

3.1.2.1 Remark on the Hopf algebra coproduct We pointed out in Chap-
ter 1 that there are different possible ways of interpreting the quotient T/Tv (or
more generally T/Fv) in the coproduct (1.2.8), which we wrote as T/cTv, per-
forming contraction of Tv to its root vertex (which becomes a new leaf labelled
by Tv), or T/dTv that deletes Tv (taking the unique maximal binary tree deter-
mined by the complement), as ones sees in externalization. The intermediate
construction T/ρTv maintains an unlabelled non-branching vertex marking the
cancellation of the deeper copy Tv. This provides so-called traces, the empty
categories left behind by “movement” implemented by Internal Merge. As is
familiar from the long historical discussion of what is called reconstruction,
such traces are needed for semantic parsing.

In Chapter 1 we argued that the two different forms T/cTv and T/dtv of quo-
tient account for the fact that the deeper copy of the accessible term Tv is inter-
preted at the syntax-semantics interface but not expressed in externalization.

Thus, when it comes to interfacing syntax with semantics, it is in general
better to retain the root vertex v of Tv in the quotient T/cTv with the Tv la-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

200 Chapter 3 Algebraic Model

bel. Similarly, in quotients T/Fv each tree component Tvi of the forest Fv is
contracted to its root vertex vi with label Tvi .

However, there will be cases, in our discussion of syntax-semantics interface,
where it will still be useful to consider also the quotient of the form T/dTv with
the deletion of Tv. This will be the case when we want to separately compare
some form of parsing on a substructure Tv and on a complementary structure
where Tv is absent. We will encounter such cases, for instance, in §3.2.5 and
§3.9.

In order to formulate more precisely property (2) of our list in §3.1.1 above,
we will rely on the notion of an abstract head function that we introduced in
§1.13.3, considering the role of the notion of head in syntax and semantics. So
we will in general work with a subset of the set SO of syntactic objects, which
is the domain Dom(h) of a head function.

3.1.3 Consistency and substructures: preliminary discussion
A fundamental aspect of how we want to approach the question of modeling
the interface between syntax and semantics is the idea that assignment of se-
mantic values to syntactic objects requires a recursive checking of consistency
across substructures. This is the key guiding principle that dictates the alge-
braic properties of our model.

As we have discussed in Chapter 1 where we present the mathematical for-
mulation of Merge and the Strong Minimalist Thesis, a syntactic object T ∈
SO ≃ TSO0 comes endowed with its family of accessible terms Tv ∈ Acc(T).
These are substructures, namely they are themselves syntactic objects Tv ∈ SO

contained in T by way of its recursive construction through the magma opera-
tionM. As we discussed in Chapter 1, the accessible terms Tv are exactly the
substructures that are available for computation via the action of Merge.

The key idea here is that, given the hierarchical, recursive nature of the con-
struction of syntactic objects (that is, the generation of the magma SO from
the set SO0 via repeated application of the magma operation M), one should
expect that an assignment of semantic values will have to be compatible with
this recursive computational structure. This means that one should be able to
assign values first to the lexical items in SO0 and then (whenever possible)
to the smaller objects built from these in the magma, and then to larger ones,
with the constraint that, when one assigns a value to a larger object T , this
value assignment should be compatible with the values already assigned, in
this recursive procedure, to the smaller substructures Tv that it contains.

As we will discuss briefly in §3.1.4, this idea about recursive assignment
of values with compatibility across substructures is very familiar in physics,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 201

where one also deals with recursive generative processes and a very similar
problem of value assignments.

The way that this consistency problem is addressed mathematically is by re-
placing a simple assignment of values, say a function ϕ : SO → S to some
(for the moment unspecified) target space S of values, with a more elaborate
function that incorporates the consistency checking for substructures into its
own (recursive) definition. This more elaborate function is known as the Bo-
golyubov preparation, and is extensively used to solve this same problem in
the context of quantum physics.

In order to make this Bogolyubov preparation work and modify a given map
ϕ : SO → S recursively, so that it incorporates the needed consistency check-
ing, one needs two fundamental ingredients, one of which we already have
from our setting in Chapter 1:

• a way of extracting substructures Tv of a given structure T and separately
consider the substructure Tv by itself, and what remains of T with the sub-
structure removed, T/Tv;

• a way of separating out, in the target space S, agreement and disagreement
(or to filter by levels of agreement and disagreement).

The first requirement is provided to us by the coproduct of the Hopf algebra
of workspaces that we introduced in Chapter 1. The second will be the funda-
mental requirement that we impose on whatever model of semantics we use as
the target space S. It is important to notice here how the first requirement lies
entirely on the side of syntax, and is very closely tied up to the fundamental
computational structure of syntax based on Merge, while the second require-
ment lies entirely on the side of semantics, and has to do with whatever notion
of proximity and similarity one can introduce for semantic values.

Once these two ingredients are available, one can recursively identify places
where agreement of values between a substructure Tv and its complement T/Tv

fails. These reveal exactly where and why the overall consistency of seman-
tic interpretation runs into possible problems. This recursive separation be-
tween inconsistencies and consistencies is a mathematical procedure known as
Birkhoff factorization. We will discuss it in more specific details in the rest of
this chapter.

3.1.4 Algebraic Renormalization: a short summary
The physical procedure of renormalization can be formulated in algebraic
terms (see (42), (43), (51), (52)) using Hopf algebras and Rota–Baxter alge-
bras, as in the setting of Connes–Kreimer renormalization. In this formulation,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

202 Chapter 3 Algebraic Model

the procedure describes a very general form of Birkhoff factorization, which
separates out an initial (unrenormalized) mapping into two parts of a convolu-
tion product, with one term describing the desirable (meaningful) part and one
term describing the meaningless part that needs to be removed (divergences in
the case of Feynman integrals in quantum field theory).

The mathematical setting that describes renormalization in physics, which
we summarize here, may seem far-fetched as a model for linguistics, but the
point here is that mathematical structures exist as flexible templates for the de-
scription of certain types of universal fundamental processes in nature, which
are likely to manifest themselves in similar mathematical form in a variety of
different contexts.

The Hopf algebra datum H = (V, ·,∆, S), a vector space with compati-
ble multiplication, comultiplication (with unit and counit) and antipode, takes
care of describing the underlying combinatorial data and their generative pro-
cess. In the case of quantum field theory these are the Feynman graphs with
their subgraphs. The Feynman graphs of a given quantum field theory can
be described as a generative process in two different ways: one in terms of
graph grammars (see (134)), which is similar to the older formal languages ap-
proach in generative linguistics, another in terms of a Hopf algebra (see (42),
(43), (51), (52)). The comparison between these two generative descriptions
of Feynman graphs shows direct similarities with what happens in the case of
syntax, with the difference between the old formal languages approach and the
new Merge approach in generative linguistics, where syntactic objects and the
workspaces with the action of Merge can also be described in terms of Hopf
algebras, as in Chapter 1.

The Hopf algebra structure is central to the renormalization process and the
coproduct operation is the key part of the structure that is responsible for im-
plementing the renormalization procedure, as we will recall below. The other
algebraic datum, the Rota-Baxter algebra (R,R) represents what in physics is
called a “regularization scheme”. This is the choice of a model space where
the factorization into meaningful and meaningless parts takes place. There is
an important conceptual difference between these two algebraic objectsH and
R, in the sense that H is essentially intrinsic to the process while R is an ac-
cessory choice, and in principle many different regularization schemes can be
adopted to achieve the same desired renormalization. In terms of our linguis-
tic model, one should think of this choice of a regularization scheme R as the
choice of some model of semantics. As in the case of regularization in physics,
we view the specifics of such a model as accessories to the interface we are
describing, while we view the role of the syntactic structures encoded in H

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 203

as the essential part. This again reflects the view of a primarily syntax-driven
interface between syntax and semantics.

In our context, this reflects the fact that there are several approaches to the
construction of possible models of semantics, which are, in our view, not en-
tirely satisfactory and not entirely compatible. However, we argue that this is
not as serious an obstacle as it might first appear, in the sense that this is very
much the situation also with regularization schemes in the physics of renormal-
ization, where one has dimensional, cutoff, zeta function regularizations, etc.,
and yet one can still extract a viable procedure of assignment of meaningful
physical values, consistently across the choices of regularization. We will ar-
gue that indeed, a viable model of the interface between syntax and semantics
rests upon specific formulations of semantics only through some very simple
abstract properties that can be satisfied within different models.

We have here briefly recalled the detailed definition of the Hopf algebra
structure in (132); for details we refer the readers to our discussion there.
Recall that the datum H = (V, ·,∆, S) is assumed to be a commutative, as-
sociative, coassociative, graded, connected Hopf algebra, but it is in general
not cocommutative. We will fix this to be H = (V(FSO0),⊔,∆), with FSO0

the set of finite binary rooted forests (with no planar structure), and with the
coproduct ∆ as in (1.2.8) of the form ∆ = ∆c, the grading via the number of
leaves, and with the unique inductively defined antipode S . As mentioned in
§3.1.2.1, we will occasionally need to use the coproduct ∆d instead of ∆c.

For the Rota-Baxter part of the structure, we can distinguish two cases, the
algebra and the semiring case. The algebra case is the one that was originally
introduced in the physics setting.

Definition 3.1.1. A Rota-Baxter algebra (R,R) of weight −1 is a commutative
associative algebra R together with a linear operator R : R → R satisfying the
identity

R(a)R(b) = R(aR(b)) + R(R(a)b) − R(ab) ,

for all a, b ∈ R.

The prototype example (relevant to physics) is the algebra of Laurent series
with the operator R of projection onto their polar (divergent) part. We will see
an explicit linguistic example in §3.5.2.

The case of a semirings (where addition is no longer invertible), more closely
related to settings like the theory of computation, was introduced in (135) (see
also (128), (136)). It will apply to various forms of semiring parsing in lin-
guistics, that we will discuss in this chapter.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

204 Chapter 3 Algebraic Model

Definition 3.1.2. A Rota-Baxter semiring of weight +1 is a semiring R to-
gether with a Rota-Baxter operator R of weight +1. This is an additive (with
respect to the semiring addition) map R : R → R satisfying

R(a) ⊙ R(b) = R(a ⊙ R(b)) ⊡ R(R(a) ⊙ b) ⊡ R(a ⊙ b) ,

with (⊡,⊙) the semiring addition and multiplication operations. A Rota-Baxter
semiring of weight −1 similarly satisfies the identity

R(a) ⊙ R(b) ⊡ R(a ⊙ b) = R(a ⊙ R(b)) ⊡ R(R(a) ⊙ b) .

Note that since semiring addition is not invertible, in this case we cannot
move the term R(a ⊙ b) to the other side of the identity. The purpose of the
Rota-Baxter operator R is to project onto the “part of interest” (for example,
divergencies in physics). We will discuss in §3.1.5 how to adapt Rota-Baxter
data of the form (R,R) to semantic models.

Definition 3.1.3. A character of a commutative Hopf algebra H with values
in a commutative algebra R is a map

ϕ : H → R

which is assumed to be a morphism of algebras, hence it satisfies ϕ(xy) =
ϕ(x)ϕ(y), as well as being a linear map of the underlying vector spaces. In
the case where R is a semiring, we will consider two cases of semiring-valued
characters

1. Semiring maps:
ϕ : H semi → R

defined on a subdomain H semi of H that is a commutative semiring, with
ϕ a morphism of commutative semirings.

2. Maps on cones: assuming thatH is defined over the field R, we consider
maps

ϕ : Hcone → R

where the subdomain Hcone of H is a cone, closed under convex linear
combinations and under multiplication inH , with ϕ compatible with con-
vex combinations and with products, ϕ(xy) = ϕ(x) ⊙ ϕ(y), with ⊙ the
semiring product.

In physics such datum ϕ : H → R describes the Feynman rules for com-
puting Feynman integrals in an assigned regularization scheme (given by the
Rota-Baxter datum). In our setting, the map ϕ : H → R is some map from

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 205

syntactic objects to a semantic space, which includes the possibility of mean-
inglessness, when a consistent semantics cannot be assigned. By “consistent”
here we mean that assignment of semantic values to larger hierarchical struc-
tures has to be compatible with assignments to sub-structures: this is exactly
the same consistency requirement that is used in the physics of renormalization
and that determines the required algebraic structure. The multiplicativity con-
dition here just means that, in a workspace containing many different syntactic
objects, the image of each of them in the semantic model R is independent
of the others. Of course, when different syntactic objects are assembled to-
gether by the action of Merge, these different images need to be compared for
consistency: this is indeed the crucial part of the interpretive process, that cor-
responds to the compositionality requirement, number (4) on our list of desired
properties for the syntax-semantics interface.

Remark 3.1.4. It is important to stress the fact that a character ϕ : H → R is
only a map of algebras: it does not know anything about the fact that H also
has a coproduct ∆ and that R also has a Rota-Baxter operator R. In particular,
the target R does not carry a coproduct operation and ϕ is not a morphism of
Hopf algebras.

The observation made in Remark 3.1.4 will play an important role in our
linguistic model. It is in fact closely related to the statement we made at the
beginning of this chapter: the computational structure of syntax –which as we
explained in Chapter 1 depends on the coproduct structure of H–does not re-
quire an analogous computational counterpart in semantics. We will discuss
this point in more detail in the following sections, where we will show that, in
our model, the compositional properties of semantics are entirely governed by
the computational structure of syntax, along with the topological nature of se-
mantics (as a classifier of proximity relations). This is a very strong statement
on the relative roles of syntax and semantics, presenting what can be viewed as
a strong “syntax-first” model. While several of the examples we present in this
chapter will be simplified mathematical models aimed at illustrating the funda-
mental algebraic properties, we will discuss at some length how the principle
we state here can be understood in the case of Pietroski’s model of semantics,
that we compare with our framework in §3.6. We will also discuss in §3.9 how
our model can be applied if one adopts the Heim–Kratzer model of semantics.

In the physics setting as well as in our linguistics model, the interaction be-
tween the two additional data, ∆ and R, is used to implement consistency across
substructures (our desired property of compositionality). This happens by re-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

206 Chapter 3 Algebraic Model

cursively constructing a factorization (over the grading of the Hopf algebra),
in the following way.

Definition 3.1.5. A Birkhoff factorization of a character ϕ : H → R is a
decomposition

ϕ = (ϕ− ◦ S) ⋆ ϕ+ (3.1.4)

with S the antipode and ⋆ the convolution product determined by the coprod-
uct ∆

(ϕ1 ⋆ ϕ2) (x) = (ϕ1 ⊗ ϕ2)∆(x) .

One interprets one of the two terms ϕ+ as the meaningful renormalized part
and the other ϕ− as the meaningless part that needs to be removed. The semir-
ing case is similar.

Definition 3.1.6. A Birkhoff factorization of a semiring character ϕ : H semi →

R is a factorization of the form

ϕ+ = ϕ− ⋆ ϕ.

A Birkhoff factorization as in Definition 3.1.5 is constructed inductively us-
ing R and ∆ as follows.

Proposition 3.1.7. [see (42), (51)] If (R,R) is a Rota–Baxter algebra of weight
−1 andH is a commutative graded connected Hopf algebra, with ϕ : H → R
a character, there is (uniquely up to normalization) a Birkhoff factorization of
the form (3.1.4) obtained inductively (on the Hopf algebra degree) as

ϕ−(x) = −R(ϕ(x) +
∑
ϕ−(x′)ϕ(x′′))

ϕ+(x) = (1 − R)(ϕ(x) +
∑
ϕ−(x′)ϕ(x′′))

(3.1.5)

where ∆(x) = 1 ⊗ x + x ⊗ 1 +
∑

x′ ⊗ x′′, with the x′, x′′ of lower degree. The
ϕ± : H → R± are algebra homomorphisms to the range of R and (1 − R).
These are subalgebras (not just vector subspaces), because of the Rota–Baxter
identity satisfied by R.

Remark 3.1.8. One usually refers to the expression

ϕ̃(x) := ϕ(x) +
∑

ϕ−(x′)ϕ(x′′) (3.1.6)

as the Bogolyubov preparation of ϕ and writes ϕ− = −R(ϕ̃) and ϕ+ = (1−R)(ϕ̃).

The case of semirings is similar.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 207

Proposition 3.1.9. [see (135)] If (R,R) a Rota–Baxter semiring of weight +1
andH is a commutative graded connected Hopf algebra with a semiring char-
acter ϕ : H semi → R, where H semi has an induced grading, one has a factor-
ization

ϕ−(x) = R(ϕ̃(x)) = R(ϕ(x) ⊡ ϕ−(x′) ⊙ ϕ(x′′))

ϕ+(x) = (ϕ− ⋆ ϕ)(x) = ϕ(x) ⊡ ϕ−(x) ⊡ ϕ−(x′) ⊙ ϕ(x′′)

= ϕ− ⊡ ϕ̃ ,

(3.1.7)

where the ϕ± are also multiplicative with respect to the semiring product,
ϕ±(xy) = ϕ±(x) ⊙ ϕ±(y).

Remark 3.1.10. In the case with (R,R) a Rota–Baxter semiring of weight −1,
one still obtains a Birkhoff factorization of the form (3.1.7). In this case both
ϕ± still satisfy the multiplicative property if R has the additional property that

R(x ⊙ y) ⊡ R(x) ⊙ R(y) = R(x) ⊙ R(y), (3.1.8)

see (135). This happens for instance if R(x + y) ≤ R(x) + R(y) in R = (R ∪
{−∞},max,+).

3.1.5 Semantic spaces
If we follow the idea described above of a syntax-semantics interface modeled
after the formalism of algebraic renormalization in physics, we encode the syn-
tactic side of the interface in terms of the Hopf algebra model of Merge and
Minimalism as we described in Chapter 1. We then need a general description
of what type of mathematical objects should be feasible on the semantic side,
so that a Birkhoff factorization mechanism as above can be used to implement
the assignment of semantic values to syntactic objects. As we will be illustrat-
ing in a series of different examples in the following sections, Birkhoff factor-
izations of the form (3.1.5) or (3.1.7) will serve the purpose, in our model, of
checking and implementing consistency of semantic assignments throughout
all substructures of given syntactic hierarchical structures, through the use of
a combination of values on substructures provided by the Bogolyubov prepa-
ration (3.1.6) and the use of a Rota–Baxter operator as a way of checking the
possible failures of consistency across substructures. Since the target of our
map from the Hopf algebra of syntax has to be a model of a “semantic space”,
again we proceed first by trying to identify certain key formal properties that
we would like to have for such “semantic spaces” (thought of in similar terms
to the regularization schemes in the physics of renormalization).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

208 Chapter 3 Algebraic Model

We first discuss in §3.1.5.1 some analogies of the type of model that we
have in mind, originating in neuroscience. The first is a neuroscience model
that is somewhat controversial (and that will play no direct role in this chapter,
except in the form of an analogy) while the second is a well established result
on neural codes and homotopy types.

3.1.5.1 Neuroscience data and syntax-semantics interface models Neu-
roscience data that study the human brain’s handling of syntax and semantics
in response to auditory or other signals (see (64) and (9), (65)), e.g., in exper-
iments measuring ERP (event-related brain potentials) waveform components
and in functional magnetic resonance imaging studies, display rapid recogni-
tion of syntactic violations and activation in the middle and posterior superior
temporal gyrus for both semantic and syntactic violations. In contrast, the ante-
rior superior temporal gyrus and the frontal operculus are activated by syntactic
violations. Syntax and semantics have been claimed to be disentangled in such
experiments, by using artificial grammars: syntactic errors in simple cases that
do not involve significant hierarchical syntactic structures appear related to ac-
tivation of the frontal operculum, while the type of syntactic structure building
that is modeled by the Merge operation appears related to activation in the most
ventral anterior portion of the BA 44 part of Broca’s area.

Additional semantic information shows involvement of other areas of the
brain, in particular the BA 45 area. This suggests a possible “syntax-first”
model of language processing in the brain, with an initial structure building
process taking place at the syntactic level and an interface with semantics
through the connectome involving the frontal operculus, BA 44, and BA 45. It
should be noted though that this proposal regarding brain regions implicated
in syntax and semantics has been strongly contested, for example according to
the results of (57), that dispute the disentanglement and partitioning into areas
of the syntax-first proposal of (64). We only mention this proposal here as an
analogy that can help illustrate some for our modeling of the syntax-semantics
interface according to the list of properties outlined in §3.1.1 above. While we
understand that this view is considered controversial by some, it does furnish a
suggestive analogy for some of the basic geometric requirements that we will
be assuming about the semantic side of the interface we wish to model.

Another insight from neuroscience that we would like to carry into our mod-
eling is the idea of information encoded via “open coverings” (overlapping
open neighborhoods in a topological space and their pattern of intersections)
and “homotopy types”. This is well known in the setting of visual stimuli when
hyppocampal place cells, that fire in response to a restricted area of the spatial
stimulus, are analyzed to address the question of how neuron spiking activity

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.1 Introduction: modeling the syntax-semantics interface 209

encodes and relays information about the stimulus space. In such settings one
can show that patterns of neuron firing and their receptive fields determine an
open covering that (under a convexity hypothesis) can reconstruct the stimulus
space up to homotopy, see (46) and the mathematical survey in (125). While
this picture is specific to visual stimuli, an important idea that can be extracted
from it is the role of open coverings8 (in particular open coverings associated
with binary codes) in encoding proximity relations, and the role of convexity
in such coverings. We will incorporate these ideas in a general basic picture of
a notion of “semantic spaces” that can be compatible with how semantic infor-
mation may effectively be stored in human brains. It was already observed in
(126) that this structure should be part of modeling of semantic spaces.

3.1.5.2 Formal properties of semantic spaces As basic structure for an
adequate parametrizing space for semantics, we focus on two compositional
aspects: measuring degrees of proximity, and a notion of agreement and dis-
agreement. Our setting here is similar to the notion of semantic spaces of
Manin–Marcolli in (126) We argue that, at the least, semantics should be able
to compare different semantic values (points in a semantic space) in terms
of their level of agreement/disagreement, and to form new semantic points by
some form of combination/interpolation of previously achieved ones. The type
of “interpolation” considered may vary with specific models, but in general we
can think of it in the following related forms:

• geodesic paths
• convex combinations
• overlapping open neighborhoods.

A typical example that would combine these forms of combination and inter-
polation is provided by a geodesically convex Riemannian manifold (a smooth
space with a notion of distance and where convex interpolation can be achieved
along shortest paths, see §3.2.2). Another aspect to take into consideration is
the idea that, for instance, one can usually associate with a lexical item a collec-
tion of different “semes,” hence points in a “semantic space.” In other words,
the target of a map from lexical items and syntactic objects should allow for
such “lists of semes.”

A very simple mathematical structure where notions of agreement or dis-
agreement, proximity, and lists are simultaneously present, and combination

8 Open coverings (or just “coverings”) of a topological space X are collectionsU = {Uα} of open
setsUα ⊂ X such that their union covers the entire space X = ∪αUα.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

210 Chapter 3 Algebraic Model

operations are possible is of course a vector space structure, and for this reason
it happens that frequently used elementary computational models of semantics
tend to be based on vectors and vector space operations. More sophisticated
geometric models of semantics based on spaces with properties of convexity,
local coordinates representing semic axes, and realizations of notions of sim-
ilarity, were presented for example in (69), (70). Such geometric models also
incorporate the possibility of open coverings, intersections of open sets, and
homotopy, as a way of realizing a “meeting of minds” model of Gärdenfors
(69), (70), where different observers may produce somewhat different sets of
semantic associations with the same linguistic items (see the corresponding
discussion in (126)).

Additional structure can be incorporated, if one desires for example to in-
clude a notion akin to that of “independent events.” This can be achieved by
working with spaces that have also a product operation, such as algebras, rings,
or semirings, or that can be mapped to a space with this kind of structure, where
such independence hypotheses can be tested. Thus, for example, elementary
operations like assignments of truth values, or of probabilities/likelihood es-
timates, fall within this category, and are usually performed by mapping to
some (semi)-ring structure. More generally, rings, algebras, and semirings can
be seen as repositories for comparisons with specific test hypotheses, probing
agreement/disagreement, or likelihood, of representation along a chosen semic
axis. We will discuss a few such examples in the following sections.

3.1.5.3 Concept spaces outside of language In this viewpoint, the type of
fundamental structure that we associate with semantic spaces is not strictly de-
pendent on their role in language. Indeed the idea of extracting classifications
from certain kinds of sensory data and associating with them some representa-
tion where proximity and difference can be evaluated is common to other cog-
nitive processes. Conceptual spaces associated with vision are intensely stud-
ied in the context of neuroscience, computer vision, and artificial intelligence,
and in that case certainly the most relevant structures involved are topological
in nature (see for example the theory of perceptual manifolds, (38)). This sug-
gests that it is possible to consider a model where the conceptual spaces that
syntax interfaces with in language would be of an essentially similar nature as
other conceptual spaces, and not necessarily endowed with additional struc-
ture specific to their role in language, with all the required structure that is of
a specifically linguistic nature being provided by syntax.

Formulated in such terms, this leads to a view of semantics that is essentially
external to language and becomes a part of linguistics through the presence of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 211

a map from syntax. A more nuanced position, as we will illustrate in specific
examples that follow, endows the semantic conceptual spaces with just enough
additional structure extending the topological notion of proximity, to make the
mapping from syntax sufficiently robust to induce a compositional structure on
semantics, modeled on the Merge operation in syntax.

For ease of computation, we will be using examples where such additional
structure, aimed at quantifying proximity relations, consists of metrics with
convexity properties and/or evaluations in semirings. This viewpoint will bring
us close to Pietroski’s model of compositional semantics, (157), where a com-
positional structure in semantics is modeled on the Merge operation of syn-
tax. One significant difference in our setting, though, is that we do not need
to posit a separate compositional/computational operation on semantics itself
(why should a Merge-type operation develop twice, once for syntax and once
for semantics?). In our model, the compositionality of semantics is directly in-
duced by the computational structure of syntax through the Birkhoff factoriza-
tion mechanism described above. This will constitute the key to our interface
model.

Of course one should allow for enough structure on the semantics side to
incorporate the possibility of conjunctions of predicates, as well as a way of
distinguishing the possibilities of mapping to conjunctions, predicate satura-
tion, existential closure. We will discuss more of this in §3.6 where we analyze
Pietroski’s semantics, and in §3.9 where we analyze Heim–Kratzer semantics.
The main point we want to stress here is that one does not need two parallel
generative computational processes, one on the side of syntax and one on the
side of semantics (as would be the case if we were to assume that our maps
ϕ : H → R are Hopf algebra homomorphisms, see Remark 3.1.4). What one
has instead is a map between two different kinds of mathematical structures,
only one of which (syntax) is constructed by a recursive generative process.

3.2 Syntax-Semantics Interface as Renormalization: Toy Models

In this section we outline some of the mathematical properties of the type of
model we are proposing. In order to do that, we focus on what we refer to
as “toy models”, following the standard physics use of the term, where we
present an overly simplified form of the type of structure we are describing,
which will make it possible to outline more easily all the essential ingredients
of the construction, and the essential algebraic properties resulting. We will
then proceed to gradually modify these toy models to incorporate more realistic
features.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

212 Chapter 3 Algebraic Model

3.2.1 A simple toy model: Head-driven syntax-semantics interface
We discuss, as a first illustrative example, a very simple-minded toy model
of the type of syntax-semantics interface we are proposing. The example we
present in this section is intentionally oversimplified in order to more easily
illustrate its main formal aspects.

Consider the semiring (R ∪ {−∞},max,+) where the addition is the maxi-
mum (with −∞ as the unit of addition), and with product the usual sum of real
numbers (with the rule that −∞ + x = −∞), with 0 as the unit of the semiring
multiplication +. This is also known as the “tropical semiring”.

Lemma 3.2.1. The ReLU operator R : x 7→ x+ = max{x, 0} is a Rota–Baxter
operator of weight +1 on R = (R ∪ {−∞},max,+).

Proof. To see this, we need to check that the Rota–Baxter relation

x+ + y+ = max{(x+ + y)+, (x + y+)+, (x + y)+}

is verified for all x, y ∈ R∪{−∞}. The following table shows that this is indeed
the case

x ≤ 0, y ≤ 0 x ≥ 0, y ≤ 0 x ≤ 0, y ≥ 0 x ≥ 0, y ≥ 0
x+ + y+ 0 x y x + y

(x+ + y)+ 0
{

x + y x + y ≥ 0
0 x + y ≤ 0

y x + y

(x + y+)+ 0 x
{

x + y x + y ≥ 0
0 x + y ≤ 0

x + y

(x + y)+ 0
{

x + y x + y ≥ 0
0 x + y ≤ 0

{
x + y x + y ≥ 0
0 x + y ≤ 0

x + y

max 0 x y x + y

□

Remark 3.2.2. The identity operator R = id on the same semiring (R ∪
{−∞},max,+) is a Rota–Baxter operator of weight −1.

Definition 3.2.3. Consider a semantic space S with a map s : SO0 → S that
assigns a meaning (a point in S) to the lexical items and the syntactic features
in SO0. Given a tree T ∈ TSO0 and a leaf ℓ ∈ L(T), we write λ(ℓ) ∈ SO0 for
the label (lexical item or syntactic feature) assigned to that leaf. Given a head
function h, defined on a domain Dom(h) ⊂ TSO0 , we obtain a map

s ◦ h : Dom(h) ⊂ TSO0 → S , T 7→ s(λ(h(T)) ,

where h(T) ∈ L(T) is the head. For simplicity of notation, we will also just
write s(h(T)) for s(λ(h(T))) leaving the label assignment λ implicit.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 213

We now assume that the semantic space S has probes, given by functions
Υ : S → R, that check the degree of agreement or disagreement with some
particular semantic hypothesis. We assume that, for an s ∈ S, a value Υ(s) < 0
means that there is disagreement between the semantic object s and the seman-
tic hypothesis Υ, while a value Υ(s) > 0 signifies agreement, with the mag-
nitude |Υ(s)| signifying the amount of agreement or disagreement. A value
Υ(s) = 0 signifies indifference.

Example 3.2.4. In the case of the familiar vector space model of semantics,
such a probe can be obtained by taking the inner product with a specified
hypothesis-vector,

Υ(s) = ⟨s, vΥ⟩

where the semantic hypothesis being tested is semantic proximity to a chosen
vector vΥ.

Lemma 3.2.5. Suppose given a semantic space S, a probe Υ : S → R, a
map s : SO0 → S assigning semantic values to lexical items and syntactic
features, and a head function h defined on a domain Dom(h) ⊂ TSO0 . Let
V(FSO0)semi ⊂ V(FSO0) denote the semiring of linear combinations

∑
i ciFi

with ci ≥ 0. Then the data (Υ, s, h) determine a semiring homomorphism

ϕΥ,s,h : V(FSO0)semi → R ∪ {−∞} .

Proof. The data (Υ, s, h) determine a map

Υs,h : TSO0 → R ∪ {−∞}

Υs,h : T 7→

 Υ(s(λ(h(T))) T ∈ Dom(h)
−∞ T < Dom(h) .

(3.2.1)

The value −∞ in the case of T < Dom(h) here represents the case where the
comparison with the hypothesis in the probe cannot be performed due to the
lack of a well-defined head in the tree T . This map can be extended from trees
to a forest by setting

ϕΥ,s,h : FSO0 → R ∪ {−∞} , ϕΥ,s,h(F) =
∑

a

Υs,h(Ta) , for F = ⊔aTa .

We can further extend this map to the subdomain V(FSO0)semi ⊂ V(FSO0) by
setting

ϕΥ,s,h(
∑

i

ciFi) = ⊡iϕΥ,s,h(Fi) ⊙ log(ci) = max
i
{ϕΥ,s,h(Fi) + log(ci)} .

□

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

214 Chapter 3 Algebraic Model

The extension to linear combinations is needed for formal consistency. In
the case of sums where all the coefficients are 1 the corresponding log(ci) term
vanishes.

Remark 3.2.6. One reason why this simple-minded toy model is too over-
simplified is that the assignment ϕΥ,s,h only follows the semantic value of the
head of the tree, hence it only uses the semantic values already attached to the
leaves of the tree. However, in general we want to obtain new points in seman-
tic space, as the lexical items attached to the leaves are related and combined
inside more elaborate syntactic objects. We will show in §3.2.2 how to correct
this problem and obtain more refined toy models.

To see how our interface model works in this simplified example, we first
perform the Birkhoff factorization with respect to the Rota–Baxter operator
R = id of weight −1 and then with respect to the ReLU Rota–Baxter operator
R = (·)+ of weight +1.

Lemma 3.2.7. For a semiring homomorphism ϕ : V(FSO0)semi → R = (R ∪
{∞},max,+), where the values ϕ(T) signify agreement/disagreement between
a semantic value assigned to the tree T and a semantic probe, the Birkhoff
factorization with R = id has the effect of checking, for a given syntactic object
T ∈ TSO0 , and all chains of subforests FvN

⊂ FvN−1
⊂ · · · ⊂ Fv1

⊂ T, when the
combined agreement with the semantic probe of the parts

ϕ(FvN
) + ϕ(FvN−1

/FvN
) + · · · + ϕ(T/Fv1

)

is greatest, and is at least as good as the overall agreement ϕ(T).

Proof. The Birkhoff factorization with respect to the Rota–Baxter operator
R = id of weight −1 simply gives ϕ− = ϕ̃, so that we have

ϕ−(T) = ϕ̃(T) = max{ϕ(T),
N∑

i=1

ϕ(Fvi
) + ϕ(Fvi−1

/Fvi
)}

where FvN
⊂ FvN−1

⊂ · · · Fv0
= T is a nested sequence of subforests (collections

of accessible terms, and the maximum is taken over all such sequences of
arbitrary length N ≥ 1. □

Corollary 3.2.8. For the case of ϕ = ϕΥ,s,h the Birkhoff factorization as in
Lemma 3.2.7 has the effect of checking, for a given syntactic object T ∈ TSO0 ,
and all chains of subtrees (subforests) TvN ⊂ TvN−1 ⊂ · · · ⊂ Tv1 ⊂ T, when
the combined agreement with the semantic probe is maximal. If ϕΥ,s,h(T) > 0,
this maximum is bounded below by the sum of values on the chain of subtrees

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 215

with h(Tvi) = h(T) which is N · ϕΥ,s,h(T) with N the length of the path from the
root of T to the leaf h(T). If ϕΥ,s,h(T) < 0, on the other hand, the maximum is
bounded below by the ϕΥ,s,h(T) + M · ϕΥ,s,h(Tv) where Tv is an accessible term
with ϕΥ,s,h(Tv) > 0 and M is the length of the path from v to the leaf h(Tv).

Proof. Observe that we have ϕΥ,s,h(T/Tv) = ϕΥ,s,h(T), since if h(T) < Tv then
quotienting the subtree Tv will not affect the head, and if h(T) ∈ Tv then h(T) =
h(Tv), by the properties of head functions, and we label the leaf of T/Tv with
a trace carrying the semantic value that was assigned to the leaf h(Tv), and
similarly for the case of T/Fv. Note that here we take quotients as contractions
of each component of the subforest, as discussed in §3.1.2.1.

For simplicity we write out in full only the case where each Fvk
consists of a

single subtree Tvk as the more general case of forests is analogous. In this case
we are computing

ϕΥ,s,h,−(T) = max{ ϕΥ,s,h(T), ϕΥ,s,h(T) + ϕΥ,s,h(T1), · · · ,
ϕΥ,s,h(T) + ϕΥ,s,h(T1) + · · · + ϕΥ,s,h(TN) }

where N is the longest chain of nested accessible terms in T . The maximum
is achieved at sequences Tk ⊂ · · · ⊂ T1 ⊂ T where all ϕΥ,s,h(Ti) > 0 and as
large as possible, that is, at the chains of nested accessible terms that achieve
the combined maximal agreement with the probe.

For example, for a chain of length N = 1, that is, a single accessible term
Tv ⊂ T , we are comparing ϕΥ,s,h(T) and ϕΥ,s,h(T) + ϕΥ,s,h(Tv), hence we are
checking whether ϕΥ,s,h(Tv) > 0 or ϕΥ,s,h(Tv) < 0, that is, whether individual
accessible terms of T have heads h(Tv) that semantically agree with the probe
Υ of not. Clearly, among all subtrees Tv one can always find some for which
ϕΥ,s,h(T)+ϕΥ,s,h(Tv) > ϕΥ,s,h(T), namely subtrees for which h(Tv) = h(T). The
case of longer chains is analogous.

It is then clear that a lower bound in the case ϕΥ,s,h(T) > 0 is obtained by
following the path from the root of T to the head h(T), while in the case
ϕΥ,s,h(T) < 0 one maximizes over collections of accessible terms with posi-
tive values ϕΥ,s,h(Tvi) > 0 and one such collection is obtained by following the
head of any Tv that has ϕΥ,s,h(Tv) > 0. □

We compare this to taking the Birkhoff factorization with respect to the
ReLU Rota–Baxter operator R(x) = x+ = max{x, 0} of weight +1. This shows
that using different Rota–Baxter structures on the target semiring corresponds
to performing different tests of semantic compositionality.

Lemma 3.2.9. For the semiring homomorphism ϕΥ,s,h : V(FSO0)semi → R =

(R∪{∞},max,+), consider the Birkhoff factorization with respect to the ReLU

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

216 Chapter 3 Algebraic Model

Rota–Baxter operator R(x) = x+ = max{x, 0} of weight +1. In this case, the
value of ϕΥ,s,h,−(T) is computed as a maximum value ϕΥ,s,h(FvN

)+ϕΥ,s,h(FvN−1
)+

· · · + ϕΥ,s,h(Fv1
) + ϕΥ,s,h(T), over all nested sequences with the property that

all ϕΥ,s,h(Fvi
) > 0 and, in the case where ϕΥ,s,h(T) < 0, with

∑
i ϕΥ,s,h(Fvi

) >
|ϕΥ,s,h(T)|. The maximum computing ϕΥ,s,h,−(T) is bounded below by NϕΥ,s,h(T),
with N the length of the path from the root of T to the leaf h(T), in the case
with ϕΥ,s,h(T) > 0 and by ϕΥ,s,h(T) + M · ϕΥ,s,h(Tv) where Tv is any accessible
term with ϕΥ,s,h(Tv) > |ϕΥ,s,h(T)| and M is the length of the path from v to the
leaf h(Tv), when ϕΥ,s,h(T) < 0.

Proof. We obtain in this case

ϕΥ,s,h,−(T) = max{ϕΥ,s,h(T), (· · · (ϕΥ,s,h(FvN
)+ + · · ·

+ϕΥ,s,h(Fvi−1
/Fvi

))+ + · · · + ϕΥ,s,h(T/Fv0
))+}+ ,

over all nested sequences of subforests of arbitrary length N ≥ 1 as above. By
the same argument as in Lemma 3.2.7 about heads of subtrees Tv and quotient
trees T/Tv, in the case of chains of subtrees TvN ⊂ TvN−1 ⊂ · · · ⊂ Tv1 ⊂ T , this
gives

(· · · ((ϕΥ,s,h(TvN)+ + ϕΥ,s,h(TvN−1))+ · · · + ϕΥ,s,h(Tv1))+ + ϕΥ,s,h(T))+ ,

and similarly for forests (with sums over the component trees), and then ReLU
is applied to the maximum taken over all these sums.

For example, for a chain of length N = 1, one compares ϕΥ,s,h(T) with
ϕΥ,s,h(T)+ϕΥ,s,h(T1), so that max{ϕΥ,s,h(T), (ϕΥ,s,h(T)+ϕΥ,s,h(T1)+)+}+ has value
ϕΥ,s,h(T) if ϕΥ,s,h(T) > 0 and ϕΥ,s,h(T1) < 0, value ϕΥ,s,h(T) + ϕΥ,s,h(T1) if
ϕΥ,s,h(T) > 0 and ϕΥ,s,h(T1) > 0, or if ϕΥ,s,h(T) < 0 and ϕΥ,s,h(T1) > 0 with
ϕΥ,s,h(T) + ϕΥ,s,h(T1) > 0, and value 0 if ϕΥ,s,h(T) < 0 and ϕΥ,s,h(T1) < 0, or if
ϕΥ,s,h(T) < 0 and ϕΥ,s,h(T1) > 0 with ϕΥ,s,h(T) + ϕΥ,s,h(T1) < 0.

Thus, we see that, when ϕΥ,s,h(T) > 0, the value ϕΥ,s,h,−(T) is bounded
below by NϕΥ,s,h(T), where N is the length of the path from the root of T
to the leaf h(T), as in Corollary 3.2.8. However, when ϕΥ,s,h(T) < 0 the
Birkhoff factorization with respect to the ReLU gives a more refined test than
the Birkhoff factorization with respect to R = id of Lemma 3.2.7 and Corol-
lary 3.2.8. Indeed, in this case we not only search over nested sequences with
ϕΥ,s,h(TvN)+ϕΥ,s,h(TvN−1) · · ·+ϕΥ,s,h(Tv1) > 0 but also we further require that in-
dividual terms are positive and that ϕΥ,s,h(TvN)+ ϕΥ,s,h(TvN−1) · · ·+ ϕΥ,s,h(Tv1) >
|ϕΥ,s,h(T)| because of applying ReLU to the result of the sum. In particular, one
obtains such a lower bound by following the head of any accessible term Tv

with ϕΥ,s,h(Tv) > |ϕΥ,s,h(T)| as stated. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 217

A case where ϕΥ,s,h(T) < 0 with the maximum realized by a sequence of pos-
itive terms with ϕΥ,s,h(TvN)+ ϕΥ,s,h(TvN−1) · · ·+ ϕΥ,s,h(Tv1) > |ϕΥ,s,h(T)| signifies
a situation where the semantic value assigned to the head h(T) is in disagree-
ment with the semantic probe used, but there are accessible terms in T that
are individually in agreement with the semantic probe and whose combined
agreement is greater than the magnitude of the disagreement for h(T).

Remark 3.2.10. The construction illustrated in Lemma 3.2.7, Corollary 3.2.8,
and Lemma 3.2.9 above can be seen as a way of extracting substructures where
agreement/disagreement with a given semantic value is concentrated.

As mentioned at the beginning of this section and in Remark 3.2.6, the exam-
ple semiring homomorphism ϕΥ,s,h(T) used in Lemma 3.2.7, Corollary 3.2.8,
and Lemma 3.2.9 is unsatisfactory because it only uses the semantic values
assigned to the leaves of the syntactic objects T through the map s : SO0 → S

and does not create new semantic values assigned to the syntactic objects T
themselves that go beyond the value already assigned to its head h(T) leaf.

We can easily see the problem outlined here and in Remark 3.2.6 by consid-
ering some simple examples where this setting works and where it runs into
problems. Consider first a sentence like

cats
chase

small birds

Let’s assume that the lexical items λ are mapped to values s(λ) in a vector
space model of semantics. In this vector space consider then a probe vΥ, which
is the vector associated to “predation”. The vector v assigned to the lexical
items “cats”, “chase”, “birds” will all positively correlate (as predator, prey,
hunting action) to the chosen semantic probe. Extracting coproduct terms and
building the recursive factorization gives

ϕΥ,s,h,−(T) = (max{ϕΥ,s,h(T), ϕΥ,s,h(Fv)+ϕΥ,s,h(T/Fv),

. . . , ϕΥ,s,h(FvN
)+ϕ(FvN−1

/FvN
) · · · ϕ(T/Fv1

)})+

ϕΥ,s,h,−(
cats

chase
small birds

) =

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

218 Chapter 3 Algebraic Model

(max{ϕΥ,s,h(
cats

chase
small birds

),

ϕΥ,s,h(cats)+ϕΥ,s,h(
chase

small birds

),

ϕΥ,s,h(small)+ϕΥ,s,h(
cats

chase birds

),

ϕΥ,s,h(birds)+ϕΥ,s,h(
cats

chase small

),

ϕΥ,s,h(
chase

small birds

)+ϕΥ,s,h(cats),

ϕΥ,s,h(
small birds

)+ϕΥ,s,h(
cats chase

), . . .})+

where . . . stands for the further terms of the coproduct involving a forest rather
than just a tree in the left-channel. Here head is either the verb “chase” or the
noun “bird” on the subtrees and if the Rota–Baxter operator R is ReLU (or
some threshold) one gets agreement with probe on the substructures. Consider
then the same sentence but replace “chase” with “nurture”, for example, and
use the same probe. Now some substructures are filtered out by ReLU because
of disagreement with the probe:

ϕΥ,s,h(
nurture

small birds

)+ = 0 .

Also the final application of R = ReLU to the maximum in ϕΥ,s,h,− = R(ϕ̃Υ,s,h)
also cuts off all structures with head the verb “nurture” because of disagree-
ment with probe

ϕΥ,s,h(
cats nurture

)+ = 0, ϕΥ,s,h(
cats

nurture birds

)+ = 0, etc. .

Thus, on this simple example, comparing probes with the semantic value of
the head of the structures suffices to detect agreement and disagreement as
desired. On the other hand, consider a different example, given by the sentence

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 219

“France is a hexagonal republic” that we discussed in the Introduction, and
that we will return to later in this chapter. In a vector space model of semantics
all the lexical items “France”, ”hexagon(al)”, “republic” have corresponding
vectors, say vFr, vhex, vrep ∈ S. Then choose a probe vΥ, for example the vector
associated to “government”. This would give ⟨vΥ, vFr⟩ > 0, ⟨vΥ, vrep⟩ > 0, but
⟨vΥ, vhex⟩ ≤ 0. We have the same tree structure, but now just looking at the
head leaf would not help detecting these agreements and disagreements with
the semantic probe. So one can see by comparing these examples that, instead
of just using the semantic value s(h(T)) associated to the head, we want a point
s(T) ∈ S that displaces the position of the head s(h(T)) in the direction of the
complement of the head, just slightly if there is large agreement between them,
and a lot if there is disagreement, so that ϕΥ,s,h(T) can differ significantly from
ϕΥ,s,h(h(T)) in the case where there is disagreement inside the structure T .

So we can conclude that this toy model construction does not represent cor-
rectly how an assignment of semantic values to sentences should work. We
discussed it here mostly as a way to show, in the simplest possible form, how
Birkhoff factorizations work. We now move on to more realistic models, as
suggested by the comparison of examples above. These will also be simplified
toy models, but we will gradually introduce more realistic features.

3.2.2 Head-driven interfaces and convexity
We now assume that our semantic space model S is a geodesically convex
region inside a Riemannian manifold (M, g). A region S ⊂ M is geodesically
convex if, for any given points s, s′ ∈ S minimal length geodesic arcs γ :
[0, 1] → M with γ(0) = s and γ(1) = s′ are contained in the region, γ(t) ∈ M
for all t ∈ [0, 1].

This includes in particular the cases where S is a vector space or a simplex.
In these cases, we write {λs + (1 − λ)s′ | λ ∈ [0, 1]} for the segment connecting
s, s′ inS (the convex combinations of s and s′). With a slight abuse of notation,
in the more general case of geodesically convex regions inside a Riemannian
manifold, we will still write λs + (1 − λ)s′ to indicate the point γ(λ) along a
given minimal geodesic arc (γ(t))0≤t≤1 in S.

We assume, as above, that there is a map s : SO0 → S that assigns semantic
values to the lexical items and syntactic features.

3.2.2.1 Comparison functions We assume that the semantic space S is
endowed with one of the following additional data:

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

220 Chapter 3 Algebraic Model

1. On the product S × S there is a function

P : S × S → [0, 1] (3.2.2)

that evaluates the probability that two points s, s′ are semantically as-
sociated (interpreted as the frequency with which they are semantically
associated within a specified context). We assume that P is symmetric,
P(s, s′) = P(s′, s), i.e. that it factors through the symmetric product

P : Sym2(S)→ [0, 1] .

One can additionally assume that P is a probability measure on S × S,
although this is not strictly necessary in what follows. If the underlying
space S is convex, we always assume that P is a biconcave function.

2. On the product S × S there is a function

C : S × S → R (3.2.3)

that evaluates the level of semantic agreement/disagreement between two
points s, s′, with

• |C(s, s′)| measuring the magnitude of agreement/disagreement,

• sign(C(s, s′)) = C(s, s′)/|C(s, s′)| ∈ {±1} measuring whether there is
agreement or disagreement.

Again we assume that the function C is symmetric. In the case of a seman-
tic vector space S one can additionally assume that C is obtained from a
symmetric bilinear form by

C(s, s′) =
⟨s, s′⟩
∥s∥ ∥s′∥

, (3.2.4)

which gives the usual cosine similarity, but in general it is not necessary
for C(s, s′) to be of the form (3.2.4).

This type of comparison functions P : S × S → [0, 1] as in (3.2.2) or C :
S × S → R as in (3.2.3), should really be thought of, more generally, as a
collection P = {Pσ} or C = {Cσ}, where the index σ runs over certain syntactic
functions (in the sense of functional relations between constituents in a clause).
For example, suppose that one looks at the two sentences “dog bites man” and
“man bites dog.” In the first case the VP determines a point on the geodesic
arc in S between the points s(bite) and s(man) at a distance Pσ(s(bite), s(man))
from the vertex s(bite). The value Pσ(s(bite), s(man)) ∈ [0, 1] evaluates the
degree of “likelihood” of this association, see the discussion of this example in
§3.2.2.3.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 221

3.2.2.2 Threshold Rota-Baxter operators As in the cases discussed in
the previous section, we can consider a semiring P endowed with a Rota–
Baxter structure. Here we take P = ([0, 1],max, ·, 0, 1), the Viterbi semiring,
for probabilistic parsing.

Lemma 3.2.11. Consider the Viterbi semiring P = ([0, 1],max, ·, 0, 1). Then
the threshold operators

cλ : P → P with λ ∈ [0, 1] ,

given by

cλ(x) =

 x x < λ
1 x ≥ λ

(3.2.5)

are Rota–Baxter operators of weight −1 that satisfy the property (3.1.8).

Proof. We can compare the values in the Rota–Baxter identity as follows:

x < λ, y < λ x ≥ λ, y < λ x < λ, y ≥ λ x ≥ λ, y ≥ λ

cλ(xy) xy xy xy

 xy xy < λ
1 xy ≥ λ

cλ(x)cλ(y) xy y x 1
cλ(cλ(x)y) xy y xy 1
cλ(xcλ(y)) xy xy x 1

Indeed, we have x, y, λ ∈ [0, 1], hence if either x < λ or y < λ then xy < λ.
The the maximum of the first two rows is max{cλ(xy), cλ(x)cλ(y)} = cλ(x)cλ(y),
which shows that the identity (3.1.8) holds. Moreover, the maximum between
the last two rows of the table above is also equal to cλ(x)cλ(y) so that the Rota–
Baxter identity of weight −1 holds. □

3.2.2.3 Viterbi-valued semiring character We then consider construc-
tions of a character. For our target semiring given by the Viterbi semiring
P = ([0, 1],max, ·, 0, 1), we can consider characters ϕ : Hcone → P with do-
main a convex cone inside H , which ensures that if generators F ∈ FSO0 are
mapped to P, linear combinations that are in the cone will also map to S.

Lemma 3.2.12. Suppose given a semantic space S that is geodesically convex,
endowed with a function s : SO0 → S and a function P : Sym2(S) → [0, 1]
as above. Also assume given a head function h defined on a domain Dom(h) ⊂

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

222 Chapter 3 Algebraic Model

TSO0 . The function s : SO0 → S extends to a map s : Dom(h)→ S, and these
data determine a character given by a map

ϕs,P,h : Hcone → P ,

with Hcone the cone of convex linear combinations
∑

i aiFi with 0 ≤ ai and∑
i ai = 1, and forests Fi ∈ FSO0 . The character is defined on the generators

by ϕs,P,h(T) = 0 for T < Dom(h), while for T ∈ Dom(h) the value ϕs,P,h(T)
is inductively determined by the description of T as iterations of the Merge
operation M in the magma (3.1.1). It is extended to Hcone by ϕs,P,h(F) =∏

k ϕs,P,h(Tk), for F = ⊔kTk, and ϕs,P,h(
∑

i aiFi) = maxi aiϕs,P,h(Fi).

Proof. To an unordered pairM(α, β) = {α, β} of α, β ∈ SO0 we assign a value
in P in the following way. If the tree T = M(α, β) ∈ SO = TSO0 is not in
Dom(h) we assign value ϕs,P,h(T) = 0. If T ∈ Dom(h), consider the value

pα,β := P(s(α), s(β))

and define s(T) ∈ S as

s(T) = ps(α) + (1 − p)s(β) (3.2.6)

where p ∈ [0, 1] is

p =

 pα,β α = h(T)
1 − pα,β β = h(T) .

(3.2.7)

We then set
ϕs,P,h(M(α, β)) = pα,β . (3.2.8)

We then proceed inductively. If T = M(T1,T2) is not in Dom(h) we set
ϕs,P,h(T) = 0. If it is in Dom(h), then by the properties of head functions,
T1 and T2 are also in Dom(h). So we can assign to T the point s(T) ∈ S given
by

s(T) = p s(T1) + (1 − p) s(T2)

where

p =

 ps(T1),s(T2) h(T) = h(T1)
1 − ps(T1),s(T2) h(T) = h(T2) .

(3.2.9)

with
ps(T1),s(T2) = P(s(T1), s(T2)) .

We then set
ϕs,P,h(T) = ps(T1),s(T2) .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 223

It is clear that this determines a map

ϕs,P,h : Hcone → P ,

with ϕs,P,h(
∑

i aiFi) = maxi{aiϕs,P,h(Fi)} and ϕs,P,h(F) =
∏

k ϕs,P,h(Tk), for F =
⊔kTk ∈ FSO0 . □

Remark 3.2.13. The semiring-valued character ϕs,P,h that we constructed in
Lemma 3.2.12 improves on the construction of the character ϕΥ,s,h given in
Lemma 3.2.5 in the sense that the values ϕs,P,h(T) assigned to syntactic ob-
ject do not depend uniquely on the semantic values of the lexical items, but
also on other points of semantic space S, obtained as convex combinations
of values assigned to lexical items. However, it should still be regarded as
a toy model case, as the way in which these combinations are obtained and
the corresponding value of ϕs,P,h(T) is computed is still overly simplistic. We
show in §3.2.3 another similar simplified toy model example, with a choice of
semiring-valued character that combines properties of ϕs,C,h of Lemma 3.2.12
and ϕΥ,s,h of Lemma 3.2.5.

Note that we have, in principle, two simple choices of how to extend induc-
tively (3.2.7) from the cherry tree case T = M(α, β) to the more general case
T = M(T1,T2). One is to define ps(T1),s(T2) as in (3.2.9), with ps(T1),s(T2) =

P(s(T1), s(T2)), inductively using the previously constructed points s(T1) and
s(T2). Another possibility, more similar to our previous example ϕΥ,s,h of
Lemma 3.2.5, is to define it using the heads, P(h(T1), h(T2)). To see why the
option of (3.2.9) is clearly preferable, consider the following example. Take
the three sentences “man bites dog”, “man bites apple”, “dog bites man”. De-
noting by M,B,D,A the respective points in S associated to these lexical items,
the points associated to the respective sentences are shown in the diagram in
Figure 3.1.

In the sentence “dog bites man”, the VP determines a point on the geodesic
arc in S between the points B and M at a distance Pσ(B,M) from the vertex
B, where in this case σ is the verb-object relation and the value Pσ(B,M)) ∈
[0, 1] expresses the degree of “likelihood” of this association in the relation
σ. One then considers, on the geodesic arc in S between this point associ-
ated to the VP phrase and the point D, a new point. In the case of the choice
ps(T1),s(T2) = P(s(T1), s(T2)) as in (3.2.9), this point is located at a distance
either Pσ′ (D, BM), where we write BM for the point s(M(B,M)) associated
to the VP by the procedure just described and σ′ is the subject-verb rela-
tion between D and h(M(B,M)). In the case where we use P(h(T1), h(T2)),
this point is located at a distance Pσ′ (D, B) where σ′ the subject-verb rela-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

224 Chapter 3 Algebraic Model

Figure 3.1
Sketch of different semantic points constructed by geodesic arcs for the three sentences
“man bites dog”, “man bites apple”, “dog bites man”, and with the two different choices
of ps(T1),s(T2) = P(s(T1), s(T2)) (circled) or P(h(T1), h(T2)).

tion. The cases of the second and third sentences are analogous as sketched
in Figure 3.1. One can see in a simple example like this, why the choice
ps(T1),s(T2) = P(s(T1), s(T2)) is preferable to P(h(T1), h(T2)) by comparing the
location of points in the first two cases in Figure 3.1. If one uses P(h(T1), h(T2))
the length of the arc of geodesic between M and the point BD, respectively BA
is in both cases determined by the same value Pσ′ (M, B), while in the case of
P(s(T1), s(T2)) one has different lengths Pσ′ (M, BD) << Pσ′ (M, BA).

3.2.2.4 Birkhoff factorization with threshold operators The Birkhoff
factorization of the character ϕs,P,h with respect to the threshold Rota–Baxter
operators provides a way of searching for substructures with large semantic
agreement between constituent parts. More precisely, we have the following.

Proposition 3.2.14. The Birkhoff factorization of the character ϕs,P,h defined
in Lemma 3.2.12 with respect to the Rota–Baxter operators cλ of weight −1
identifies, as elements that achieve the maximum, those accessible terms Tv ⊂

T with values ϕs,P,h(Tv) above a threshold λ. This identifies substructures
within T that carry large semantic agreement between their constituent parts.

Proof. If we perform the Birkhoff factorization of the character ϕs,P,h using
the Rota–Baxter operator cλ of weight −1, we obtain

ϕs,P,h,−(T) = cλ(ϕ̃s,P,h(T)) =

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 225

cλ(max{ϕs,P,h(T), cλ(· · · cλ(ϕs,P,h(FvN
))ϕs,P,h(FvN−1

/FvN
)) · · · ϕs,P,h(T/Fv0

)})

over nested chains of subforests of all possible lengths N, as before. Again
we can look for simplicity at the case of subtrees, as the value on forests is
the semiring product of the values on the tree components. When we look at
chains of length N = 1 with subtrees, we are comparing ϕs,P,h(T) to the value
cλ(ϕs,P,h(Tv)) · ϕs,P,h(T/Tv). Arguing as above, we have

cλ(max{ϕs,P,h(T), cλ(ϕs,P,h(Tv)) · ϕs,P,h(T/Tv)}) =

cλ(max{ps(T1),s(T2), cλ(ps(Tv,1)s(Tv,2)) · ps(T1),s(T2)}) = cλ(ps(T1),s(T2))

where this time the maximal value is realized by all the terms Tv ⊂ T that
have ps(Tv,1)s(Tv,2) ≥ λ and ps(T1),s(T2) ≥ λ. Note that longer sequences will have
products with intermediate terms ϕs,P,h(Fvi−1

/Fvi
) < 1 hence will not achieve

the same maximum. Thus, the maximizers are accessible terms that carry large
semantic agreement between their constituent parts. □

For example, suppose that we consider again the two sentences “dog bites
man” and “man bites dog”. As shown above, the resulting semantic points
associated to these two sentences are, as they should be, in different locations
in S. Moreover, the fact that one will have Pσ′ (M, BD) << Pσ′ (D, BM) when
σ′ is the subject-verb relation, implies that the threshold operators cλ discussed
in the previous section will filter out the second sentence before the first.

3.2.2.5 Convex neighborhoods The construction of the character ϕs,P,h of
Lemma 3.2.12 is also a toy model. It is better than the initial oversimplified
toy model of Lemma 3.2.5 (see Remark 3.2.6), because it does not use only
the points in the semantic space S associated to the head leaf, but it still uses
only geodesic arcs in the semantic space S. Passing from a zero-dimensional
to a one-dimensional representation of syntactic relations is an improvement,
and as we will discuss in §3.3 it is already sufficient to obtain an embedded
image of syntax inside semantics (in essence because the syntactic objects are
themselves 1-dimensional tree structures). However, this representation can be
improved by considering, along with geodesic arcs, higher dimensional con-
vex structures like simplexes and geodesic neighborhoods of points. While we
will not expand this approach in the present chapter, it is worth mentioning
some ideas that relate to some of what we will be discussing in the following
sections. Given a syntactic object T ∈ SO with T ∈ Dom(h), a geodesically
convex semantic space S, and a mapping s : Dom(h) → S constructed as
in Lemma 3.2.12, we can consider the points s(Tv) ∈ S associated to all the
accessible terms of T . (See §3.3 below, for the embedding properties of this

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

226 Chapter 3 Algebraic Model

map.) Now consider geodesic balls Bv(ϵ) in S centered at the points s(Tv) with
radius ϵ > 0. Here by geodesic ball we mean the image under the exponential
map of a ball in the tangent space. We assume the injectivity radius of S is
larger than the maximal distance between the points s(Tv) for all v ∈ V(T).
In terms of the semantic space, a geodesic neighborhood around a given point
s ∈ S represents all the close semantic associations to the semantic point s
recorded in S. We can then vary the scale ϵ of the geodesic balls and form
simplicial complex (a Vietoris–Rips complex) associated to the intersections
of these geodesic balls (see Figure 3.2). As the scale ϵ > 0 varies, one obtains
a filtered complex, according to the familiar construction of persistent topol-
ogy (see (53)). The scale ϵ provides another form of filtering that generalizes
what we previously described in terms of the threshold operators cλ. In this
case, the persistent structures that arise can be seen as detecting “collections
of substructures that carry higher semantic relatedness” inside the given hier-
archical structure T . A possible way to associate an open covering in semantic
space, consisting of a system of overlapping open neighborhoods of the se-
mantic values of the heads of the substructures, would be to construct such
open coverings based on the decomposition of the syntactic object into phase,
according to Phase Theory, as we discussed in §1.14.

Figure 3.2
Example of a Vietoris–Rips complex.

3.2.3 Head-driven interfaces and vector models
Consider now the case where the semantic space S is modeled by a vector
space, and assume that it is endowed with a function C : S × S → R that
describes the level of semantic agreement, as in §3.2.2.1. This may be based on
cosine similarity or on other methods: the detailed form of C is not important
in what follows, beyond the basic property described in §3.2.2.1.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 227

3.2.3.1 Max-plus-valued semiring character We discuss an example where
we consider again the max-plus semiring R = (R∪{−∞},max,+) and a seman-
tic comparison function of the form C : S × S → R as discussed in §3.2.2.1.

Lemma 3.2.15. Consider the semiring R = (R∪ {−∞},max,+). The data of a
function C : S×S → R as above, a function s : SO0 → S and a head function
defined on a domain Dom(h) ⊂ TSO0 determine a semiring-valued character

ϕs,C,h : H semi → R ,

withH semi the semiring of linear combinations
∑

i aiFi with ai ≥ 0.

Proof. For any tree T < Dom(h) we set ϕs,C,h(T) = −∞. We then consider
only trees that are in Dom(h). As in Lemma 3.2.12 we start by considering the
case of a tree of the form T = M(α, β) = {α, β} with α, β ∈ SO0. We assign to
this tree a value in R obtained by computing C(s(α), s(β)) ∈ R and considering
the line Lα,β, in the vector space S, through the points s(α) and s(β),

Lα,β = {tα + (1 − t)β = β + t(α − β) | t ∈ R} ,

if β = h(T) (exchanging α and β if α = h(T), that is, replacing t with 1 − t).
We then define

tα,β = C(α, β)

s(T) := β + tα,β(α − β) ∈ Lα,β . (3.2.10)

This has the effect of creating a new point s(T) which moves the value s(h(T))
along the line Lα,β in the direction α (or in the opposite direction) depending
on the agreement/disagreement sign of C(α, β). We then set

ϕs,C,h(M(α, β)) =

 C(α, β) β = h(T)
1 − C(α, β) α = h(T)

We can then proceed inductively, setting, for T = M(T1,T2) ∈ Dom(h)

tT =

 C(s(T1), s(T2)) h(T) = h(T2)
1 − C(s(T1), s(T2)) h(T) = h(T1)

s(T) = tT s(T1) + (1 − tT)s(T2)

=

 s(T2) + tT (s(T1) − s(T2)) h(T) = h(T2)
s(T1) + tT (s(T2) − s(T1)) h(T) = h(T1)

ϕs,C,h(T = M(T1,T2)) = tT .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

228 Chapter 3 Algebraic Model

Setting ϕs,C,h(F) =
∑

k ϕs,C,h(Tk) for F = ⊔kTk and

ϕs,C,h(
∑

i

aiFi) = max{aiϕs,C,h(Fi)}

then completely determines ϕs,C,h onH semi. □

3.2.3.2 Hyperplane arrangements The following observation follows from
Lemma 3.2.15, rephrased in a more geometric way.

Lemma 3.2.16. Let S C denote the multiplicative subsemigroup of R∗ gener-
ated by the set of non-zero elements in C(s(SO0) × s(SO0)). For T ∈ TSO0 in
Dom(h), let L(T) be the set of leaves of the tree. We write, for simplicity of
notation, s(L(T)) for the set of vectors s(λ(L(T))) ⊂ S, with λ the labeling in
SO0. Let S T ⊂ S C ⊂ R∗ be the multiplicative semigroup generated by the set
R∗ ∩ C(s(L(T)) × s(L(T))). The vector s(T) of (3.2.10) is in the linear span of
the set s(L(T)) with coefficients in S T .

Proof. Suppose given a binary rooted tree T ∈ Dom(h) ⊂ TSO0 , with L(T)
its set of leaves. By the recursive procedure of Lemma 3.2.15, based on the
construction of T by repeated application of free symmetric Merge M, as an
element in the magma (3.1.1), the resulting point s(T) in the vector space S is
a linear combination of the vectors s(ℓ) with ℓ ∈ L(T) (where we write s(ℓ) as
a shorthand notation for s(λ(ℓ)),

s(T) =
∑
ℓ∈L(T)

aℓ s(ℓ) ∈ span(L(T))

with coefficients aℓ in the multiplicative subsemigroup S T ⊂ S C. □

Lemma 3.2.17. If C on the vector space S is given by a cosine similarity
as in (3.2.4), then the set of vectors s(SO0) ⊂ S determines an associated
hyperplane arrangementHASO0 of hyperplanes

HASO0 = {Hλ = {v ∈ S | ⟨v, s(λ)⟩ = 0} | λ ∈ SO0, s(λ) , 0} , (3.2.11)

where the hyperplane Hλ describes all semantic vectors that are neutral with
respect to s(λ), namely vectors v , 0 with C(v, s(λ)) = 0.

This is immediate, as the set of hyperplanes here is simply given by the
normal hyperplanes to the given set of vectors under the inner product that
also defines the cosine similarity.

One can then see the construction of the character ϕs,C,h of Lemma 3.2.15 in
the following way.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 229

Lemma 3.2.18. The vectors s(T), for T ∈ Dom(h) ⊂ TSO0 , give a refinement
of the hyperplane arrangement HASO0 of Lemma 3.2.17, with a resulting ar-
rangement

HASO = {HT = {v ∈ S | ⟨v, s(T)⟩ = 0} |T ∈ TSO0 , s(T) , 0} , (3.2.12)

where the values tTv = ϕs,C,h(Tv), with v ∈ V(T) determine which chambers of
the complement of the arrangementHASO0 the hyperplane HT crosses.

Proof. The inductive construction of ϕs,C,h in Lemma 3.2.15 shows that, for
α, β ∈ SO0 the value ϕs,C,h(M(α, β)) = tα,β determines which chambers of the
complement of Hα ∪Hβ the hyperplane HM(α,β) crosses, depending on the sign
of tα,β and of 1 − tα,β. Inductively, the same applies to the role of tT = ϕs,C,h(T)
in determining the position of HT with respect to HT1 and HT2 , hence the role
of the values tTv , for the accessible terms Tv ⊂ T , in determining the position
of HT with respect toHASO0 . □

3.2.3.3 ReLU Birkhoff factorization We then consider, in this model,
the effect of taking the Birkhoff factorization with respect to the ReLU Rota-
Baxter operator of weight +1. Note that this gives an instance of a situation
quite familiar from the theory of neural networks, where a ReLU function is
applied to certain linear combinations and an optimization is performed over
the result.

Proposition 3.2.19. The Birkhoff decomposition of the character ϕs,C,h defined
in Lemma 3.2.15, with respect to the ReLU Rota–Baxter operator of weight +1
selects, for a given tree T , chains TvN ⊂ TvN−1 ⊂ · · · ⊂ Tv1 ⊂ T of accessible
terms of T where each ϕs,C,h(Tvi) > 0 and of maximal values among all ac-
cessible terms of Tvi−1 , that is, every Tvi optimizes the value of the character
among the available accessible terms.

Proof. As in Lemma 3.2.9, we consider

ϕs,C,h,−(T) = max{ϕs,C,h(T), (· · · (ϕs,C,h(FvN
)+ + · · ·

+ϕs,C,h(Fvi−1
/Fvi

))+ + · · ·)+ + ϕs,C,h(T/Fv0
)}+ ,

over all nested sequences of subforests of arbitrary length N ≥ 1. For chains
of length N = 1, considering the case of subtrees Tv ⊂ T , we are comparing
ϕs,C,h(T) and ϕs,C,h(Tv)+ + ϕs,C,h(T/Tv). Again we have h((T/Tv)1) = h(T1) and
h((T/Tv)2) = h(T2), with T/Tv = M((T/Tv)1, (T/Tv)2), so that ϕs,P,h(T/Tv) =
ϕs,P,h(T). Thus, the maximum max{ϕs,C,h(T), ϕs,C,h(Tv)+ + ϕs,C,h(T/Tv)}+ =
(ϕs,C,h(Tv)+ + ϕs,C,h(T/Tv))+ is achieved at the largest positive value ϕs,C,h(Tv)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

230 Chapter 3 Algebraic Model

over all accessible terms Tv ⊂ T . The next step then compares this maximal
value with the values (ϕs,C,h(Tw)+ + ϕs,C,h(Tv))+ + ϕs,C,h(T) over all accessi-
ble terms Tw ⊂ Tv and the maximum is again realized at the largest positive
ϕs,C,h(Tw) among these. This shows that the overall maximum is achieved at
the longest chain TvN ⊂ TvN−1 ⊂ · · · ⊂ Tv1 ⊂ T of accessible terms where each
Tvi has ϕs,C,h(Tvi) > 0 and of maximal values among all accessible terms of
Tvi−1 . □

3.2.4 Not a tensor-product semantics
While the examples of characters, Rota–Baxter structures, and Birkhoff fac-
torizations considered above are just a simplified model, they are already good
enough to illustrate some important points. Consider for example the prop-
erty, mentioned in Remark 3.1.4, that characters are not morphisms of coal-
gebras, but only morphisms of algebras (or semirings). This has important
consequences, such as the fact that we are not dealing here with what is often
referred to as “tensor product based” connectionist models of computational
semantics, such as (176) (se also our comparative discussion in §2.5). The
compositional structure of such Smolensky tensor product models has in our
view been rightly criticized (see for instance (137)) for not being compati-
ble with human behavior. Indeed one can easily see the problem with such
models: the idea of “tensor product based” compositionality is that, given vec-
tors s(α), s(β) ∈ S for lexical items α, β, one would assign to a planar tree
T = Mnc(α, β) a vector s(α)⊗ s(β) ∈ S⊗S and correspondingly evaluate cosine
similarity between T and another T ′ = Mnc(γ, δ) in the form C(α, γ) · C(β, δ).

There are several obvious problems with such a proposal. In a simple exam-
ple with lexical items α = γ =light and β =blue and δ =green, the planar trees
T =light blue and T ′ =light green should have closer semantic values s(T)
and s(T ′) than the values s(β) and s(δ) (since both colors share the property of
being light), but a measure of similarity of the product form C(α, γ) · C(β, δ)
would just be equal to C(β, δ). A further issue with these tensor-models, from
our perspective, is that this type of model would require previous planarization
of trees and cannot be defined at the level of the products of free symmetric
Merge.

In contrast, in the type of model we are discussing these issues do not arise.
While we have described in Chapter 1 the Merge operation on workspaces in
terms of a coproduct on a Hopf algebra of binary rooted forests, that maps to
a tensor product ∆ : H → H ⊗ H (since comultiplication has two outputs),
the characters used for mapping to semantic spaces have no requirement of
compatibility with the coproduct structure. Indeed, in our setting we would
not assign to a tree T = M(α, β) a tensor product of vectors and a product of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.2 Syntax-Semantics Interface as Renormalization: Toy Models 231

cosine similarities, but a linear combination s(T) = tT s(α) + (1 − tT)s(β), that
is indeed seemingly more directly compatible with the empirically observed
human behavior, as described in (137).

3.2.5 Boolean semiring
As a final example of a simple toy model of syntax-semantics interface, in
preparation for the discussion of §3.2.2 we consider the simplest choice of
semiring, namely the Boolean semiring

B = ({0, 1},∨,∧) = ({0, 1},max, ·) . (3.2.13)

Assignments of values in the Boolean semiring can be regarded as a form of
truth-valued semantics, where one assigns a 0/1 (F/T) value to (parts of) sen-
tences or to syntactic objects.

A map ϕ : TSO0 → B is an assignment of truth values, extended to ϕ :
FSO0 → B by ϕ(F) =

∏
i ϕ(Ti) for F = ⊔iTi. We use the identity as Rota–

Baxter operator.
The Bogolyubov preparation ϕ̃ is then given by

ϕ̃(T) = max{ϕ(T), ϕ(Fv)ϕ(T/Fv), . . . , ϕ(FvN
)ϕ(FvN−1

/FvN
) · · · ϕ(T/Fv1

)} ,
(3.2.14)

with the maximum taken over all chains of nested forests of accessible terms.
Thus, ϕ̃ detects, in cases where the truth value assigned to T may be False
(ϕ(T) = 0), the longest chains of decompositions into accessible terms and
their complements which separately evaluate as True, hence identifying where
the truth value changes from T to F when substructures are combined into the
full structure.

While we will return in §3.9 to a more specific discussion of truth-conditional
semantics in the context of Heim–Kratzer semantics, we can use the example
above to illustrate here some known difficulties with that model and possi-
bly some way of reconsidering some of the issues involved. We look at a
simple example, mentioned in the criticism of truth-conditional semantics in
Pietroski’s work (156), that consists of the observation that, while the truth
conditions of “France is a republic” and “France is hexagonal” are satisfied,
the sentence “France is a hexagonal republic” seems weird, due to the seman-
tic mismatch in the expression “hexagonal republic”.

We view this example in the light of an assignment ϕ : H → B and the
corresponding Birkhoff factorization with the identity Rota–Baxter operator
as written above. We can assume that ϕ assigns value ϕ(T) = 1 when T has
a well determined associated truth condition and ϕ(T) = 0 when it does not.
Thus, the trees corresponding to “France is a republic” and “France is hexag-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

232 Chapter 3 Algebraic Model

onal” would have value 1, because a country can be a republic and can have
a certain type of shape on a map, while the tree corresponding to “hexagonal
republic” would have value 0 if we agree that a polygonal shape is not one
of the attributes of a form of state governance. The tree T that corresponds
to “France is a hexagonal republic” contains an accessible term Tv that corre-
sponds to “hexagonal republic” and accessible terms (in this case leaves) ℓ and
ℓ′ that correspond to the lexical items “hexagonal” and “republic”. Each acces-
sible term Tv has a corresponding quotient T/Tv. The Bogolyubov preparation
ϕ̃ of (3.2.14) then takes the form

ϕ̃(
a

b c d

) = max{ϕ(
a

b c d

), ϕ(a)ϕ(
b c d

),

ϕ(c)ϕ(
a b d

), ϕ(d)ϕ(
a b c

),

ϕ(
b c d

)ϕ(a), ϕ(c d)ϕ(a b), . . .} ,

where the . . . stand for the remaining terms of the coproduct that involve a
forest of accessible terms rather than a single one, which can be treated sim-
ilarly. Thus, while one would have ϕ(T) = 0, the value of ϕ̃(T) = 1 detects
the presence of substructures (the third and fourth among the explicitly listed
terms on the right-hand-side of the formula above) that do have well defined
truth conditions.

This more closely reflects the fact that, when parsing the original sentence
for semantic assignments, one does indeed detect the presence of the two sub-
structures that have unproblematic truth conditions, and the fact that these do
not combine to assign a truth condition to the full tree T , causing a mismatch
between the values of ϕ(T) and ϕ̃(T). This manifests itself in the weird im-
pression resulting from the parsing of the full sentence.

3.3 The image of syntax inside semantics

The examples illustrated above demonstrates one additional property of this
model of syntax-semantics interface: syntactic objects are mapped, together
with their compositional structure under Merge, inside semantic spaces and so
are, at least in principle, reconstructible from this syntactic “shadow” projected
on the model used for the representation of semantic proximity relations. This
observation is in fact of direct relevance to the current controversy about the
relationship between large language models and generative linguistics, as we

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.3 The image of syntax inside semantics 233

discuss more explicitly below in §3.10 below. For now, let us add some detail
to this picture.

Consider again the setting of Lemma 3.2.12 above.

Proposition 3.3.1. Let S be a semantic space that is a geodesically con-
vex Riemannian manifold, endowed with a semantic proximity function P :
Sym2(S) → [0, 1] with the property that, for s , s′ one has P(s, s′) ∈ (0, 1),
and a map s : SO0 → S that assigns semantic values to lexical items and syn-
tactic features. Let h be a head function with domain Dom(h) ⊂ TSO0 . These
data determine embeddings of trees T ∈ Dom(h) inside the semantic space S.

Proof. Arguing as in Lemma 3.2.12, we can use the convexity property of S
and the function P to extend s : SO0 → S to a function s : Dom(h) → S,
inductively on the generation via Merge of objects T ∈ TSO0 , by setting, for
T ∈ Dom(h)

s(T) = p s(T1) + (1 − p) s(T2) for T =
T1 T2

(3.3.1)

p =

 ps(T1),s(T2) h(T) = h(T1)
1 − ps(T1),s(T2) h(T) = h(T2)

with ps(T1),s(T2) = P(s(T1), s(T2)) .

(3.3.2)
We can then obtain an embedding I(T) of T inside S in the following way.
First the function s : SO0 → S determines a position s(λ(ℓ)) in S for every
leaf of T , with λ(ℓ) the label in SO0 assigned to the leaf ℓ ∈ L(T). Note that
the same lexical item λ ∈ SO0 may be assigned to more than one leaf in L(T)
so that this assignment ℓ 7→ s(λ(ℓ)) is not always an embedding of L(T) in S.
For each pair ℓ, ℓ′ ∈ L(T) that are adjacent in T the syntactic object

Tvℓ,ℓ′ = ℓ ℓ′

with vℓ,ℓ′ the vertex above the leaves ℓ, ℓ′, is in Dom(h), since T is, and (3.3.1)
assigns to it a point in S on the geodesic arc between s(λ(ℓ)) and s(λ(ℓ′)),
where these two points are distinct since Tvℓ,ℓ′ ∈ Dom(h). We then obtain
embeddings of all the subtrees Tvℓ,ℓ′ in S by taking the image I(Tvℓ,ℓ′) to consist
of the geodesic arc ts(λ(ℓ))+ (1− t)s(λ(ℓ′)) with t ∈ [0, 1] with root at the point
s(Tvℓ,ℓ′).

We proceed similarly for the subsequent steps of the construction of T in
the SO magma, by obtaining the image I(Tv) of a subtree Tv as the union
of the images I(Tv,1) and I(Tv,2), where Tv = M(Tv,1,Tv,2), and the geodesic
arc between s(Tv,1) and s(Tv,2) with root vertex at s(Tv). The images I(T)
of trees T ∈ Dom(h) constructed are in general immersions rather than simply

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

234 Chapter 3 Algebraic Model

embeddings because of the possible coincidence of the points assigned to some
of the leaves, as well as because of possible intersections of the geodesic arcs
at points that are not tree vertices. Both of these issues can be readily resolved
to obtain embeddings. Indeed, the semantic space S will be in general high
dimensional. As long as it is of dimension larger than two, crossings of strands
of a diagram can be eliminated by a very small perturbation. In the case of
leaves carrying the same lexical item, one can argue that the different context
(in the sense of the different subtree) in which the item appears will naturally
slightly modify its semantic location in S. This can be modeled by a small
movement of the endpoints of the geodesic arc to the interior of the arc (which
functions as modifier of the semantic proximity relations). This deforms the
immersions to embeddings. □

The assumption that the function P that measures semantic relatedness has
values 0 < P(s, s′) < 1 whenever s , s′ means that we model a situation
where different points in the semantic space S are never completely semanti-
cally disjoint or entirely coincident. In such a semantic space model, even an
apparently “nonsensical” pair would not score 0 under the function P, so that,
for example, different locations in S would distinguish “colorless green” from
“colorless red”, as different (mental) images of (absence of) green rather than
red color. The fact that the expression is semantically awkward would corre-
spond to a small (but non-zero) value of P(s, s′) that affects the (metric) shape
of the resulting image tree (that in the geometric setting we describe in §3.4
below will end up located very near a boundary stratum of the relevant moduli
space).

On the other hand, if we allow for the possibility that P(s, s′) = 0 or P(s, s′) =
1, for some pairs s , s′, the construction of Proposition 3.3.1 would no longer
yield an embedding, since for lexical items mapped to such pairs the root of
the associated Merge tree would map to one or the other leaf rather than to
an intermediate point. Such models will result in certain syntactic trees being
mapped to degenerate image trees in S, that are located not just near, but on the
boundary strata of the moduli spaces we introduce in §3.4 below. Such cases
should also be taken into consideration. (We will see the relevance of this in
the context of Pietroski’s semantics in §3.6 below.) Here we focus on models
where this situation can be avoided.

It is important to note that the image of the syntactic trees T ∈ Dom(h) ⊂
TSO0 inside the semantic space S is like a static photographic image, rather
than a dynamical computational process. Indeed, all computational manipu-
lations of syntactic objects are performed by Merge on the syntax side of the
interface, not inside the space S, which does not have on its own a computa-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 235

tional structure. The only property of S that is used to obtain an embedded
copy of the syntactic tree are proximity relations (here realized in the form of
geodesic convexity).

In particular, given that the construction above determines an embedding of
syntactic trees in semantic spaces, one can consider the inverse problem of
reconstructing syntactic objects and the action of Merge from their image un-
der this embedding. In other words, given enough measurements of semantic
proximities in text, can we reconstruct the underlying generative process of
syntax? Since the computational mechanism of syntax is not directly acting
on semantic spaces, and one is only able to see the embedding of the syntactic
objects, it is reasonable to expect that this inverse problem (reconstructing the
map ϕ̃ of the syntax-semantics interface from the embedding I) could be, and
we suspect probably is, computationally hard. (See (127) for recent work that
in a certain sense attempts to solve this problem, but not within the explicit
framework we describe here.) We will return to discuss another instance of
this problem, in the context of large language models, in section §3.10. In the
next section, we further discuss the image of syntax inside semantics and its
relation to the Externalization of free symmetric Merge.

3.4 Head functions, moduli spaces, associahedra, and Externalization

We now revisit the simple model of §3.2.2.3, with the recursive construction
of semantic values associated with trees in the domain of a head function.
We view here the same construction in terms of points in a moduli space
of metric trees introduced in (49), related to moduli spaces of real curves
of genus zero with marked points. We will show that this viewpoint pro-
vides further insight into the geometry of an Externalization process that in-
troduces language-dependent planarization of the syntactic trees, and the in-
teraction between the core generative process of free symmetric Merge and
the Conceptual-Intensional system (the syntax-semantics interface), and an
Externalization mechanism that interfaces the same core computational pro-
cess with the Articulatory-Perceptual or Sensory-Motor system. This will pro-
vide a more careful and elaborate explanation of the viewpoint we sketched
in the Introduction regarding independence of the syntax-semantics interface
and Externalization. The relation between these two mechanisms can also be
approached in a geometric form.

3.4.1 Preliminary discussion
In the formulation of Minimalism in terms of free symmetric Merge as the core
computational mechanism, as presented in (37) and formalized mathematically

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

236 Chapter 3 Algebraic Model

in the previous chapters, the generative process of syntax produces hierarchical
structures through syntactic objects and the action of Merge on workspaces in
terms of the Hopf algebraH of binary rooted forests (with no assigned planar
structure). A mechanism of Externalization takes place after this generative
process. This mechanism describes the connection to the Sensory-Motor sys-
tem, that due to its physical and physiological nature externalizes language
in the form of a temporally ordered sequence of words, realized as sounds or
signs or writing (or, inversely, for parsing). The necessity of temporal order-
ing in the Externalization of language requires a planarization of the binary
rooted trees (syntactic objects), as the choice of a planar structure is equiva-
lent to the choice of an ordering of the leaves. This choice of planarization is
subject to language-dependent constraints, through the syntactic parameters of
languages. In Chapter 1 we proposed a mathematical formalism for External-
ization based on a suitable notion of correspondences.

In the previous sections of this chapter, we have analyzed possible models
(some of them highly simplified) of how the products of the free Merge gener-
ative process of syntax can be mapped to semantic spaces, where the main
property of semantic space we have used is a notion of topological/metric
proximity. This type of mapping of syntax to semantics is designed to di-
rectly apply to the hierarchical structures produced by free symmetric Merge,
without having to first pass through the choice of a planar structure as is done
in the externalization process. This mapping to semantic spaces represents
the interaction between the core computational mechanism of Merge with the
Conceptual-Intensional system.

These two mechanisms are illustrated as the two top arrows depicted in Fig-
ure 3.3. This part of the picture corresponds to property (3) on the list in
§3.1.1, that semantic interpretation is, to a large extent, independent of Exter-
nalization. However, obviously the Externalization process and the mapping
to semantic spaces need to be compatibly combined, as figure Figure 3.3 sug-
gests. The goal of the rest of this section is to introduce the mathematical
framework in which both processes simultaneously coexist.

It is important to stress here that what we refer to as “combined process” in
Figure 3.3 and later in this section is not incorporated in the modeling of the
generative process of Merge, as formulated in the Elements text (37), as for
that purpose it suffices to regard as separate the two interface channels with
the conceptual-intensional system (CI interface, syntax-semantics interface)
and with the sensory-motor system (SM interface, Externalization). Where
it becomes useful to consider a common parameterizing space where these
two channels can be simultaneously accessed is at the “receiver’s end”, or in

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 237

other words when one models parsing rather than production. In particular, a
compatibility is necessary since one receives a product of externalization and,
in proceeding to its syntactic and semantic parsing, one needs to be able to
relate it to the productions of the free symmetric Merge and their mapping to
semantic spaces. We will see that indeed there is a good geometric setting
for such comparisons, and an “origami folding” projection map that undoes
the planarization of externalization while maintaining compatible mapping to
a semantic space.

Figure 3.3
Free symmetric Merge, Externalization, and Semantic Spaces.

We proceed in the following way. First we introduce a framework designed
for the comparison of different planar structures on the same abstract binary
rooted tree. Since the planarization of Externalization is language dependent,
we need a space where different planarization can be considered. Such a space
is well studied in mathematics and is called the associahedron. We recall its
properties in §3.4.2. At the same time, we want to keep track of the fact that
the hierarchical structures produced by free symmetric Merge have also ac-
quired a metric structure through its mapping to semantic spaces, where this
metric structure keeps track of information about semantic relatedness, across
substructures. This assignment of metric data on (non-planar) binary rooted

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

238 Chapter 3 Algebraic Model

trees is also described by a well known mathematical object, the BHV moduli
space, that we also discuss in §3.4.2.

Thus, we present a formulation where, taken separately (as in the top arrows
of Figure 3.3) the Externalization and the mapping to semantic spaces result,
respectively, in the assignment to a given syntactic object T ∈ SOwith n leaves
of a vertex in the Kn associahedron, and of a point in the BHVn moduli space.

Figure 3.4
Free symmetric Merge, Externalization, and the Semantics interface, and the respective
moduli spaces.

These two geometric objects, the associahedron and the BHV moduli space,
naturally combine into another space, which accounts for what happens when
we enrich the combinatorial associahedron with metric data. This is again a
geometric object that is very well known in mathematics, where it is identi-
fied with a certain moduli space of curves, M̄or

0,n(R). We review in §3.4.2 the
relation between these three fundamental spaces Kn, BHVn, and M̄or

0,n(R), see
Figure 3.4.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 239

In the subsequent sections §3.4.3 and §3.4.4 we explain more in detail how
the mapping to semantic spaces and Externalization can be seen in this per-
spective. We include a discussion of how Kayne’s LCA algorithm, Cinque’s
abstract functional lexicon, and constraints implemented by syntactic parame-
ters appear in this formulation.

3.4.2 Associahedra and moduli spaces of trees and curves
We recall here some general facts about moduli spaces of abstract and planar
binary trees, and their relation to the moduli space of genus zero real curves
with marked points. For a more detailed account we refer the reader to (11),
(13), and (49).

The Stasheff associahedron Kn is a convex polytope of dimension n − 2,
where the vertices correspond to all the balanced parentheses insertions on an
ordered string of n symbols (equivalently, all planar binary rooted trees on n
leaves) and the edges are given by a single application of the associativity rule.
For example the 1-dimensional associahedron K3 is the graph with a single
edge and two vertices

((ab)c)←→ (a(bc)) .

The 2-dimensional associahedron K4 is similarly a pentagon, while the 3-
dimensional associahedron K5 is illustrated in Figure 3.5. Faces of the associ-
ahedron Kn are products of lower dimensional associahedra. These strata Kni

correspond to the degeneration of a binary tree where some of the internal ver-
tices acquire higher valencies. The description in terms of planar binary rooted
trees has an equivalent formulation in terms of triangulations of an n + 1-gon
by drawing diagonals.

Figure 3.5
The Stasheff associahedron K5, front and back view.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

240 Chapter 3 Algebraic Model

Boardman and Vogt (13) showed that the associahedron Kn can be decom-
posed into Cn−1 cubes of dimension n − 2, where Cn−1 is the Catalan number

Cn−1 =
1
n

(
2n − 2
n − 1

)
.

The decomposition of the associahedron K4 is illustrated in Figure 3.6.

Each vertex of the associahedron can be identified with a planar binary
rooted tree. A way to interpret the polytope points here is as metric structures
on planar binary rooted trees that assign weights in R≥0 to the internal edges of
the tree, with degeneracies along the faces and vertices of the cubic decompo-
sition, see Figure 3.6 for K4 (see the corresponding discussion in (49)). Each
cube in the decomposition parametrizes the (normalized) choices of weights
for the internal edges for the planar tree structure associated to that cube, and
the faces are glued according to the transitions from one tree structure to an
adjacent one, as dictated by the associahedron structure.

Figure 3.6
The Stasheff associahedron K4 with its cubic decomposition and parametrization of
planar metric binary rooted trees.

It was further shown in (49), that the Devadoss–Morava tree spaces gives
a parametrization of planar binary rooted trees with weights on the internal
edges. This parameterization is described in terms of the (open cells of the)
associahedron, and its cubic decomposition can then be related to compactifi-
cations M0,n+1(R) of moduli spaces of real curves of genus zero with (n + 1)-
marked points. The key idea here is that the ordered leaves of a planar binary
rooted trees can be embedded as an ordered set of points in the real line, where
the coordinates of the points are obtained from the weights assigned at the in-
ternal edges of the tree as a function e−W of the sum W of the weights along the
path from the root to one of the leaves (see the example in Figure 3.7). Note

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 241

that, while the open cells of the associahedron correspond to binary trees, the
boundary strata of these cells contain trees with higher valences (correspond-
ing to the limits of binary trees when one or more of the edge lengths go to
zero). Since the trees coming from syntax are binary (see Chapter 1 for our
discussion on why Merge operators with higher arity are excluded) the image
from syntax will lie inside the open cells. The boundary structure is still im-
portant though, because boundaries of cells in the associahedron encode all the
possible structural changes to the underlying hierarchical structures (syntactic
objects).

Figure 3.7
A planar binary rooted tree with weighted internal edges and the associated ordered
configuration of points on the real line, as shown in (49).

As shown by Devadoss in (48), the orientation double cover M
or
0,n+1(R) of

M0,n+1(R) can be decomposed into a collection of n! copies of the associa-
hedron Kn, where the n!/2 associahedra of M0,n+1(R) correspond to the per-
mutations of the (n + 1) points on the real line preserving the cyclic order of
{0, 1,∞}, with gluings corresponding to certain twist operations on the trian-
gulated (n + 1)-gons (see Figure 3.10 for the example of n = 3. Note that for
n ≤ 3, the moduli space M0,n+1(R) is orientable so one does not see the role
of the orientation double cover; see (49) for a more detailed discussion of the
more general case).

One can also consider the moduli space BHVn of abstract binary rooted trees
with n leaves (with no assigned planar structure) along with weighted inter-
nal edges, and their one-point compactification BHV+, constructed by Billera,
Holmes, and Vogtmann, (11). The moduli space BHVn is obtained by consid-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

242 Chapter 3 Algebraic Model

Figure 3.8
The moduli space BHV3 of abstract binary rooted trees and its one-point compactifica-
tion BHV+3 .

ering all the (2n − 3)!! abstract binary rooted trees with n labeled leaves. All
these trees have n − 2 internal edges. For each tree, one considers an orthant
Rn−2
≥0 , which represents all the possible choices of a weight (length) for the

internal edges. These orthants are glued along the common faces (which cor-
respond to shrinking one of the internal edges) and this gives the space BHVn.
The link Ln of the origin in BHVn is an (n − 3)-dimensional simplicial com-
plex. In the case n = 3 it consists of three points. For n = 4 it is the Peterson
graph of Figure 3.9. In general, there are (2n − 3)!! top (n − 3)-dimensional
simplexes of Ln (e.g. 15 edges in the case of L4) that correspond to the differ-
ent trees, and two of them share a face when the corresponding trees give rise
to the same quotient tree when contracting an internal edge.

Figure 3.9
The Peterson graph is the link L4 of the origin in BHV4.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 243

It is shown in (49) that there is a projection map between these moduli
spaces,

Πn : M
or
0,n+1(R) ↠ BHV+n , (3.4.1)

with a finite projection that is generically 2n−1-to-1, obtained by an origami
folding of the cubes of the cubical decomposition of the associahedra in the
moduli space M

or
0,n+1(R), according to the formula

n! ·Cn−1 = 2n−1 · (2n − 3)!! ,

where the left-hand-side lists the Cn−1 cubes of the n! associahedra inside
M

or
0,n+1(R), and the right-hand-side lists the (2n − 3)!! simplexes of dimension

(n− 3) of Ln, and 2n−1 is the multiplicity of the generic fibers of the projection
map. Note that 2n−1 is the number of different planar structures for a given
abstract binary rooted tree on n leaves, since such a tree has n − 1 non-leaf
vertices and the total number of planar embeddings can be obtained by choos-
ing one of two possible planar embeddings (left/right) for each pair of edges
below a given non-leaf vertex. The origami folding quotient takes each (n−2)-
dimensional cube and folds it in half in each direction, obtaining 2n−2 foldings,
with 2 copies of each cube in the orientation double cover, so that one obtains
2n−1 points in each general fiber. We will see this more explicitly in §3.4.3,
applied to our setting.

3.4.3 Head functions, convex semantic spaces, and metric trees
With these facts in hand, now consider again the setting we discussed in our
simple example of §3.2.2.3.

Consider the set of all (2n − 3)!! abstract binary rooted trees with n labeled
leaves. Suppose that the leaves are labeled by a given (multi)set {λi}

n
i=1 of

lexical items and syntactic features in SO0. If this is a multiset instead of a set,
we still interpret the multiple copies of a given item in SO0 as repetitions, not
as copies, in the sense that they can play different roles in structure formation
via applications of Merge–hence we will still regard them as distinct labels.
Thus, we have the following geometric description of our data.

• For any choice of the lexical items associated to the leaves, we obtain a
corresponding copy of the moduli space BHVn.

• The link of the origin Ln ⊂ BHVn can be seen as an assignment of weights
to the internal edges that is normalized (for example by requiring that the
total sum of weights is equal to 1).

• We write BHVn(Λ) for Λ = {λi}
n
i=1 for the copy of BHVn that corresponds to

the given choice Λ of the lexical items assigned to the leaves.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

244 Chapter 3 Algebraic Model

• We similarly write Ln(Λ) for the associated copy of Ln.

Proposition 3.4.1. The choice of a head function h determines simplicial sub-
complexesLn(Λ, h) ⊂ Ln(Λ), BHVn(Λ, h) ⊂ BHVn(Λ), Mn(Λ, h) ⊂ M

or
0,n+1(R),

compatible with the maps relating these moduli spaces. It also determines a
lift of Ln(Λ, h) and BHVn(Λ, h) inside Mn(Λ, h), determined by the planar
structure πh associated to the head function.

Proof. The choice of the head function h selects, for each of these copies
Ln(Λ) ⊂ BHVn(Λ), a simplicial subcomplex Ln(Λ, h) ⊂ Ln(Λ) and the asso-
ciated cone BHVn(Λ, h) ⊂ BHVn(Λ), where the set of top (n − 3)-dimensional
simplexes of Ln(Λ, h) corresponds to the subset of the given (2n − 3)!! trees
that belong to Dom(h).

Let Mn(Λ, h) ⊂ M
or
0,n+1(R) denote the locus in M

or
0,n+1(R) obtained as a pre-

image under the projection map of the image BHVn(Λ, h)+ in the one-point
compactification BHV+n of the cone BHVn(Λ, h),

Mn(Λ, h) := Π−1
n (BHVn(Λ, h)+) . (3.4.2)

A point in BHVn(Λ, h) is a pair (T, ℓ) of an abstract binary rooted tree on
n leaves labeled by the points of Λ together with a set ℓ = (ℓk)n−2

k=1 of weights
ℓi ∈ R≥0 assigned to the internal edges of T . The 2n−1 points in the fiber
Π−1

n (T, ℓ) ⊂ Mn(Λ, h) are given by the points (T π, ℓ), where T π ranges over all
the possible planarizations π of T and the lengths of the internal edges stay the
same.

We have seen that the choice of a head function h determines an associ-
ated planar structure πh for all trees T ∈ Dom(h). Thus, the choice of a head
function determines a lift of the subcomplex BHVn(Λ, h) (and in particular of
Ln(Λ, h) ⊂ Ln(Λ)) to a subcomplex of Mn(Λ, h) ⊂ M

or
0,n+1(R). □

Consider then, as in §3.2.2.3, a semantic space S that is a geodesically con-
vex subspace of a Riemannian manifold, together with a map s : SO0 → S.
Assume that, for points in S, we can evaluate the frequency of semantic relat-
edness in a specified context in terms of a biconcave function P : Sym2(S) →
[0, 1].

Proposition 3.4.2. Let T ∈ Dom(h) ⊂ TSO0 be a tree with n leaves. The data
(s : SO0 → S,P) determine a set ℓ = (ℓk)n−2

k=1 ∈ Rn−2
≥0 of weights assigned to

the internal edges of T . Thus the data (s : SO0 → S,P) determine a point

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 245

(T, ℓ(h,s,P)) ∈ Ln(Λ, h) and a point in the corresponding fiber of the projection
from Mn(Λ, h).

Proof. To see this, we proceed as in §3.2.2.3. For each of the n − 2 vertices v
of T that are neither the root nor one of the leaves, consider the two subtrees
Tv,1 and Tv2 that have root vertices v1, v2 immediately below v, and compute
pv := P(s(Tv,1), s(Tv,2)), where h(Tv,i) is the head leaf of the subtree Tv,i. We
label the (n− 2) internal edges by the target vertex v (where the tree is oriented
away from the root) and we take ℓv = pv.

Thus, we have that, for a tree T ∈ Dom(h) ⊂ TSO0 on n leaves labeled
by Λ, the choice of a head function h, together with the choice of a map s :
SO0 → S and of the function P : Sym2(S) → [0, 1] determines, after an
overall normalization of the weights, a point (T, ℓ(h,s,P)) ∈ Ln(Λ, h), and a
corresponding point (T πh , ℓ(h,s,P)) ∈ Ln(Λ, h) in the fiber above (T, ℓ(h,s,P)) in
Mn(Λ, h) ⊂ M

or
0,n+1(R). □

Remark 3.4.3. Note that in §3.2.2.3 we used the same coordinates

P(s(Tv,1), s(Tv,2))

to assign points s(Tv) = pvs(Tv,1) + (1 − pv)s(Tv,2) or s(Tv) = pvs(Tv,2) +
(1− pv)s(Tv,1) (according to whether the head h(Tv) matches the head of either
of the two subtrees). Thus, according to this construction, the weight of an
internal edges of T obtained as in Proposition 3.4.2 reflects the positions in the
semantic space S of the accessible term below that edge.

As a result, we can view the construction of the character ϕs,P,h of §3.2.2.3
equivalently as the construction of a section.

Corollary 3.4.4. The construction of the character ϕs,P,h of §3.2.2.3 is equiv-
alent to the construction of a partially defined section

σs,P,h,n : BHVn → M
or
0,n+1(R) (3.4.3)

which is defined over

Dom(σs,P,h,n) = BHVn(Λ, h) ,

and a partially defined map

sP,h : TSO0 → ∪nLn(Λ, h) (3.4.4)

with Dom(sP,h) = Dom(h). The construction of the character ϕs,P,h of §3.2.2.3
is equivalent to the construction of the composite map σs,P,h ◦ sP,h.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

246 Chapter 3 Algebraic Model

For the case n = 3, the projection maps are illustrated in Figure 3.10 (see
also (49)).

Figure 3.10
The projections from three associahedra K3 to the moduli space M0,4(R) and to the
BHV+3 moduli space and the embedding map I of syntactic trees to semantic space S
seen from the point of view of moduli spaces.

We have described the construction here in terms of the simple model of as-
signment of semantic values to syntactic objects described in §3.2.2.3. This
can be adapted to other models, so that we can incorporate, as part of the mod-
eling of the syntax-semantics interface, the construction of a partially defined
section

σS,n : Dom(σS) ⊂ BHVn → M
or
0,n+1(R) (3.4.5)

which depends on the model of semantic space S used and on its properties.
Similarly, the map (3.4.4) can be generalized as a map

sS,h,n : TSO0 → Ln ∩ Dom(σS,n) . (3.4.6)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 247

3.4.4 Origami folding and Externalization
In Chapter 1 we gave an account of Externalization as a section of the projec-
tion from planar to abstract binary rooted trees, where the section is language
dependent and is chosen so that the resulting planar structure is compatible
with certain syntactic parameters, through the effect these have on word order.

In terms of the geometry of moduli spaces described here, one can simi-
larly view Externalization as the choice of a section (depending on a specified
language L through its syntactic parameters)

σL,n : BHVn → M
or
0,n+1(R) . (3.4.7)

of the origami folding projection (3.4.1), see (49). The origami folding map
(3.4.1) is then the projection that undoes the effect of externalization and re-
lates the moduli space of curves describing the combined effect of external-
ization and mapping to semantic space to the mapping of the products of
free symmetric Merge, before externalization, to semantic space. The sec-
tion (3.4.7) is defined at the level of the combinatorial trees, as a choice of a
section σL,n : TSO0,n → T

pl
SO0,n

that assigns a planar structure, as discussed
in Chapter 1, and extended to metric trees as the identity on the metric datum
ℓ, since Externalization is decoupled from the metric structure, reflecting our
initial assumption on independence of semantic values from Externalization.
This independence assumption only affects this independence of σL,n on the
metric structure. It does not mean that there would be no interaction with the
semantics channel. One way to model such interaction is by comparing the
two sections σL,n and σS,n on the subdomain Dom(σS,n) ⊂ BHVn where both
are defined and in particular on the target of the map sS,h,n of (3.4.6).

3.4.5 An example
All the above discussion on the relation between Externalization and the syntax-
semantics interface in terms of moduli spaces is quite abstract. Let us illustrate
what is happening with a very simple example. Consider a sentence such as

yellow flowers bloom early

=

α β γ δ

= ((α β) (γ δ))

In the form depicted, this is represented by a planar binary rooted tree on four
leaves labeled by the lexical items in the set Λ = {α, β, γ, δ}. The tree does not
contain exocentric constructions and has a well defined syntactic head. Thus,
we have the associated data (Λ, h) as above. The underlying syntactic object, as
produced by a free symmetric Merge. is the non-planar abstract binary rooted

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

248 Chapter 3 Algebraic Model

tree
{{α, β}, {γ, δ}} =

α β γ δ

=

β α γ δ

=

α β δ γ

=

γ δ α β

The planar tree ((α β) (γ δ)) corresponds to a vertex of the associahedron K4,
as in Figure 3.11. The associahedron considered is one of the 4! = 24 as-
sociahedra that correspond to the 4! permutations of the leaves’ labels. This
assignment of a vertex on one of the 24 associahedra corresponds to left arrow
(free symmetric Merge to Externalization) in the top part of Figure 3.4, for this
example.

Figure 3.11
The selected vertex of the associahedron K4 corresponding to the planar tree
((α β) (γ δ)), as shown in (49).

The abstract tree {{α, β}, {γ, δ}} produced by free symmetric Merge, on the
other hand, is one of the 15 = (2n − 3)!!, for n = 4, possible abstract binary
rooted trees on four labeled leaves. These 15 possible trees correspond to the
15 edges of the link L4 of the origin in the moduli space BHV4. Thus, the
syntactic object {{α, β}, {γ, δ}} selects one of these edges, see Figure 3.12.

Now suppose we have chosen a semantic space S (for simplicity of dis-
cussion, consider using a vector space model, though it is not necessary for
S to be of this kind). Each of the four lexical items has a representation
s(α), s(β), s(γ), s(δ) ∈ S.

The two semantic relatedness measures u1 = P(s(α), s(β)) (relating “yellow”
and “flower”) and u2 = P(s(γ), s(δ)) (relating “blooming” and “early”) in S
provide two real coordinates associated with the accessible terms {α, β} and
{γ, δ}, respectively. These two coordinates fix a point (u1, u2) ∈ [0, 1]2 in a

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 249

Figure 3.12
The selected edge in the link L4 of the origin in the moduli space BHV4 corresponding
to the abstract tree {{α, β}, {γ, δ}}.

square (see Figure 3.13). The selected edge of Figure 3.12 corresponds to
the diagonal of the square given by u1 + u2 = 1. Thus, the mapping of the
result of the free symmetric Merge to semantic space determines a point in the
moduli space BHV+4 . This completes the right arrow (free symmetric Merge to
Semantic Spaces) in the top part of Figure 3.4, for the example of this simple
sentence.

Figure 3.13
The square and the selected edge in the link L4 for corresponding to the abstract tree
T = {{α, β}, {γ, δ}}: the mapping of T to semantic space selects a point in this square, as
in the second figure.

We next see in this example the bottom part of Figure 3.4, that describes
the compatibility between Externalization and the syntax-semantics interface.
First note that the associahedra K4 are tiled with squares (quadrangles), as in
Figure 3.14. The two vertices of the square adjacent to the marked vertex of
the pentagon corresponds to degenerate trees where one or the other of the
internal edges as shrunk to zero length, while the other has normalized length
one. Thus, we see that we can map this square to the square of Figure 3.13
through the same coordinates (u1, u2) describing the lengths of the two internal
edges (compare with Figure 3.10 for the case n = 3).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

250 Chapter 3 Algebraic Model

Figure 3.14
The associahedron K4 tiled with squares (quadrangles), with the selected vertex associ-
ated to ((α β) (γ δ)).

This lifting of the point associated to T in the square of Figure 3.13 to a
corresponding point in the square of Figure 3.13 is the effect of the section
σL,4 described in (3.4.7). To see this, we need to take into consideration the
fact that the 24 associahedra combine together into a single geometric space,
obtained by gluing them along their boundaries. This is done in two steps: first
12 associahedra are glued along their boundaries as in the left-hand-side of
Figure 3.15, forming the space M̄0,5(R). Then the orientation double cover is
formed: in a self-intersecting 3-dimensional visualization, this resulting space
M̄or

0,5(R) can be identified with the great dodecahedron in the right-hand-side
of Figure 3.15 (see also the corresponding discussion and figures in (49)). It is
not easy to see from its 3D representation as great dodecahedron, but the space
M̄or

0,5(R) is a genus 4 hyperbolic surface, and can be seen more directly from
its description in terms of fundamental domain given in (2), as in Figure 3.16
below (see also the figure in (2)).

Figure 3.15
Twelve associahedra K4 assemble into the space M̄0,5(R) and its orientation double
cover gives 24 associahedra assembled into the space M̄or

0,5(R) identified with the great
dodecahedron, as shown in (49).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 251

Figure 3.16
The great dodecahedron M̄or

0,5(R) as a hyperbolic genus 4 surface, and the two different
forms of the 24 associahedron tiles, as shown in (2).

The origami folding projection map Π4 : M
or
0,5(R) ↠ BHV+4 of (3.4.1) folds

together and identifies 8 squares in M
or
0,5(R) to each square in BHV+4 . Thus,

when we lift to M
or
0,5(R) the point assigned to the tree T in one of the squares

of BHV+4 by the mapping of T to semantic space, the lifted point lies on one of
the 8 preimages of the given square of BHV+4 . This choice of one ut of the 8
preimages is the choice of planar structure of the syntactic object determined
by externalization and this gives indeed the section σL,4 described in (3.4.7),
where here L =English.

Figure 3.17
Four squares in adjacent associahedra K4 are folded together (origami folding) in the
projection to BHV+4 so that 8 squares in the double cover M

or
0,5(R) are identified in the

projection Π4 : M
or
0,5(R) ↠ BHV+4 , as shown in (49).

One can then see in this same simple example, that if instead of taking the
planarization T πL = ((α β) (γ δ)) of the syntactic object T = {{α, β}, {γ, δ}},
one would take the planarization T πh determined by the head function, one

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

252 Chapter 3 Algebraic Model

would end up with the different planar tree

T πh =

γ δ β α

= ((γδ)(βα)) .

This means that one ends up on a different one of the 24 associahedra and a
square inside that associahedron, that is still one of the 8 squares that project
to the same (unchanged) square in BHV+4 . The same point in this square in
BHV+4 determined by mapping T to semantic space is then lifted to a corre-
sponding point in a different square inside M

or
0,5(R). This means that we are

considering a different section of the projection Π4. This is the section σS,4
described in (3.4.5). The difference between these two sections is measured
by a transformation γL,4 ◦ σL,4 = σS,4, where applied to our syntactic object T
this gives the permutation γL,4(T) = (3421). As in (3.4.8), this transformation
γL,4 is Kayne’s LCA algorithm for this very simple example.

We have considered a very simple example with n = 4 where the geometry
is straightforward to visualize. The spaces M

or
0,n+1(R) and BHV+n grow signifi-

cantly in combinatorial complexity as n becomes larger, but they are still very
well understood and widely studied geometric spaces. Other more complicated
geometries are likely to arise if the mapping of syntactic objects to semantic
spaces is done in a more sophisticated and informative way than the very sim-
ple type of mappings we considered in this chapter as illustrative examples.

3.4.6 Geometric view of some planarization questions
We conclude this section by briefly commenting on how certain frameworks
where the question of planarization of syntactic objects arises can be also seen
in terms of the geometry described above. We discuss briefly Kayne’s Lin-
ear Correspondence Axiom and Cinque’s Abstract Functional Lexicon, and
we also outline how one can describe the role of syntactic parameters in this
geometric setting.

3.4.6.1 Kayne’s LCA algorithm When the planar structure assigned by
the section σS,n is the planar structure πh determined by a head function, as in
the case of (3.4.3), this means comparing the planar structure πh, for h defined
on Dom(h) ⊂ TSO0 , with the planar structure πL defined by the section σL,n

through the constraints imposed by the syntactic parameters of the language
L. This comparison can be seen as a version of Richard Kayne’s LCA (Linear
Correspondence Axiom), (102), (103). As we observed in (132), Kayne’s LCA
cannot be defined globally on TSO0 , but is only partially defined on the domain
Dom(h) of a head function (the syntactic head), hence it does not play the same
role as Externalization, which is a choice of a globally defined (non-canonical)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.4 Head functions, moduli spaces, associahedra, and Externalization 253

section σL,n. However, on the domain Range(sS,h,n) ⊂ Ln ∩ Dom(h) where
both σL,n and σS,n are defined there exists a covering transformation γL,n of
the projection map

M
or
0,n+1(R)→ BHV+n

that satisfies
γL,n ◦ σL,n = σS,n (3.4.8)

at all points in Range(sS,h,n). This covering transformation γL,n plays the role
of the (partially defined) LCA algorithm.

3.4.6.2 Cinque’s abstract functional lexicon There are other construc-
tions that one can fit into this geometric picture with partially defined sections
of the projection map

M
or
0,n+1(R)→ BHV+n

and covering transformations permuting the 2n−1 points of the fibers of the
projection map. For example, one can view this as the abstract functional
lexicon described by Cinque (39).

In (39), Cinque considers the problem of comparing word order relations
imposed on individual languages by particular syntactic parameters, with a
certain base ordering relation of proximity to the verbal properties of different
morphemes (in a structural sense, rather than in terms of linear ordering), such
as mood, tense, modality aspect, and voice. In (39), a general hierarchy of
functional morphemes and of adverbial classes is identified (see (6) and (7) of
(39)). As observed in (39), with verbal morphemes as heads and corresponding
classes of adverbs as phrases in so-called specifier position, this hierarchy de-
termines a planar embedding (in the way that it appears in (6) and (7) of (39)).
Syntactic parameters, on the other hand, also determine a planar embedding.
While this could be a priori arbitrary, the variability across languages is far
less than the space of combinatorial possibilities would allow. Also, different
word order constraints appear not to be independent, but to exhibit a significant
degree of relatedness. This can be seen both at the theoretical level (see (77))
and at the level of database analysis of syntactic parameters (see (148), (152),
(160)).

In terms of the geometry of moduli spaces described above, one can describe
the difference between the ordering (planar structure) described by Cinque in
(39) and the deviation from it in the word order of specific languages in terms
of covering transformations γL,n of the projection map M

or
0,n+1(R) → BHV+n

that act as permutations of the planar structures, and are language specific.
The degree to which word order constraints deviate from the base structural

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

254 Chapter 3 Algebraic Model

hierarchy described in Cinque can then be measured in terms of how far the γL,n

are from the identity in the group of covering transformations of the projection
map.

3.4.6.3 A geometric view of syntactic parameters Syntactic parameters
fix constraints on the planar structure of Externalization. For an extensive
recent account of syntactic parameters see (164). In Chapter 1 we interpreted
the role of syntactic parameters as constraints on the choice of a language-
dependent section σL,n for the Externalization of free symmetric Merge.

The discussion above shows that in our setting we can also interpret the
role of syntactic parameters in a geometric way, as the choice, for a given
language L, of a collection L 7→ {γL,n}n of covering transformations of the
origami folding projections M

or
0,n+1(R)→ BHV+n , as in (3.4.8). Comparison of

syntactic parameters across languages can be formulated in various computa-
tional forms. This includes the difficult problem of understanding the relation
among parameters, as well as the much lower dimensional space occupied by
actual languages inside the high-dimensional space of possible values of the
hundreds of parameters currently studied (see for example (81), (121), (130),
(106), (160), (175)). In particular, one can focus on the effect of syntactic
parameters on word order constraints. In this case, using the framework we
consider here, one can view this comparison across languages as the compar-
ison between sections σL,n for different languages L, or equivalently as the
properties of the collection of elements γL,nγ

−1
L′,n, for L , L′ in the group of

covering transformations of M
or
0,n+1(R)→ BHV+n .

3.5 Birkhoff factorization and (semi)ring parsing

This section is more technical, at the mathematical level, and is not required in
the successive parts of the book. It can be skipped by readers interested in con-
tinuing directly to the discussion of other models of semantics: in particular,
in §3.6 we will analyze how our model relates to Pietroski’s theory of mini-
malist meaning, (156), and in §3.9 we discuss the relation to Heim–Kratzer
semantics.

In this section we discuss the problem of parsing in semirings, in the setting
of Merge derivations. We focus on semiring parsing, as in (75). Compared to
the semantics models we will be discussing in the following sections, semir-
ing semantics incorporates the idea of truth values and generalizes it to values
in arbitrary (semi)rings, not necessarily Boolean, while Pietroski’s approach
provides an alternative that bypasses the idea of truth values entirely and is
based on a compositional structure modeled on the Minimalism’s Merge oper-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 255

ation. We will return to discuss truth values assignment in the Heim–Kratzer
setting in §3.9, which however uses a different formulation, in terms of spaces
of functions, from the semiring parsing that we consider in this section.

We extend here the setting introduced in the previous sections, with the in-
terface between syntax and semantics modeled by the Birkhoff factorization of
characters of a Hopf algebra, with values in a Rota-Baxter algebra or semiring,
to a more refined description of the characters and the factorization procedure,
that incorporate more detailed properties of semantic parsing and composition-
ality.

In this section we analyze (semi)ring parsing, introducing a version that is
adapted to Minimalism formulated in terms of free symmetric Merge.

Since this is the most mathematically-heavy section in this chapter, we pro-
vide a preliminary outline of the content and a more heuristic explanation of
what is covered in the various subsections, before starting to discuss the more
precise details.

3.5.1 Preliminary discussion
The relation between grammars and semirings was first observed by Chomsky–
Schützenberger in (36). Semiring parsing (see for instance (75)), when formu-
lated in the setting of context-free grammars, considers deduction rules of the
form

A1 . . . Ak

B
C1 . . .Cℓ ,

where the terms Ai (main conditions) are rules R of the grammar or input non-
terminals and the Ci are (non-probabilistic) Boolean side conditions and the
fraction notation means that if the numerator terms hold then the denominator
term also does. To the main condition terms one assigns values in a semir-
ing, combined with the semiring operations, to obtain a value for the deduced
output. The target semiring varies according to the parsing algorithm con-
sidered. The main choices include the Boolean semiring, the tropical semir-
ing, the probability semiring (that is, the familiar case of Viterbi parsing), as
well as the non-commutative derivation forest semiring, that collects all the
possible derivations, with concatenation as multiplication and union as semir-
ing addition. Often, parsing with values in other semirings factor through the
derivations semiring. This setting is specifically constructed in the formal lan-
guage context, and specifically for context-free grammars, though some gen-
eralizations exist in mildly context-sensitive classes like those produced by
tree-adjoining grammars (TAGs).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

256 Chapter 3 Algebraic Model

A natural question arises about what type of algebraic structure replaces this
form of semiring parsing in the setting of Minimalism, and more specifically
the form of Minimalism based on free symmetric Merge.

The main goal of this section is to provide an answer to this question, in
a form that is again based on the Birkhoff factorization procedure, that we
present throughout this chapter as a natural formalism for different forms of
assignments of semantic values in the context of a free symmetric Merge model
of syntax.

Developing this form of “semiring parsing” (where semirings will in fact be
replaced by more general algebraic objects) requires several steps, that we now
briefly summarize.

In §3.5.2 we introduce a ring of Merge derivations, formed by consider-
ing chains of Merge operations, given by the action of Merge on workspaces.
These are assembled into a ring structure, where the linear structure is obtained
by taking the vector space spanned by the derivations (that is, including for-
mal linear combinations) and the multiplication operation is the union of the
workspaces with the corresponding Merge actions. These are the same opera-
tions on the algebra part of the Hopf algebra of workspaces that we introduced
in the first chapter and used earlier in this chapter. We only consider the prod-
uct structure on this ring and not the coproduct, as we have on the Hopf algebra
of workspaces. However, this does not lead to a loss of structure in this case,
because the coproduct is built into the Merge operation on workspaces, so it it
still encoded into the data of this ring of Merge derivations.

In order to illustrate more clearly the properties of this ring of Merge deriva-
tions, in §3.5.2 we return to discuss the notion of Minimal Search and Minimal
Yield in the Merge model of syntax. In Chapter 1 we gave an account of how
Minimal Search is implemented as extraction of leading order term in the ac-
tion of Merge on workspaces and how constraints of Minimal Yield or of no
information loss and no complexity loss can excludes presumptively unwanted
forms of Merge (Sideward and Sideward/Countercyclic) while retaining only
Internal and External Merge. The idea of extraction of the leading order term
that we used in the Minimal Search argument is closely related to Birkhoff
factorization, as originally observed in the context of the renormalization in
physics.

Here we show that, after extending the ring of Merge derivations to a ring of
Laurent series with coefficients in this ring, Minimal Search and the Minimal
Yield and “no complexity loss” constraints that we analyzed in Chapter 1 can
be reformulated as a Birkhoff factorization in this ring–for a character from
the Hopf algebra of workspaces that assigns to a workspace its Merge deriva-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 257

tion and a power that counts the effect of that derivation on the size of the
workspace. The Birkhoff factorization separates out, on one side, some of the
unwanted forms of Merge, while retaining on the other side the fundamental
ones, namely External and Internal Merge. This case of Birkhoff factorization
happens to be the one that is closest to the original form used in physics.

This result on Minimal Yield as Birkhoff factorization in §3.5.2 is not re-
quired for the following parts of this section, and is included to provide some
more direct understanding of the ring of Merge derivations and to connect it to
our original formulation in Chapter 1. This section can be skipped (except for
Definition 3.5.1) by the readers interested in directly accessing the discussion
of how to extend the semiring parsing framework.

The next step is to formulate a parsing where the ring of Merge derivations is
the source rather than the target of a character. This requires endowing the ring
of Merge derivations with additional algebraic structure more closely related
to the Hopf algebra structure of workspaces.

The main construction for the generalization of semiring parsing starts in
§3.5.3. The main viewpoint here is that, in order to formulate semiring parsing
for Merge derivations based on the action of Merge on workspaces, one needs
to replace the setting of Hopf algebras and semirings, that we used in the pre-
vious sections of this chapter to describe simple models of syntax-semantics
interface, with a slightly more flexible form, where the algebraic structures of
Hopf algebra and semiring are replaced by their “categorified” form, which
we refer to, respectively, as Hopf algebroids and semiringoids. The reason for
this extension is very simple. Merge derivations given by actions of Merge
on workspaces only compose when the target workspace of one derivation
agrees with the source workspace of the next. This differs from the situation
we considered in the previous sections where we only considered the Hopf
algebra of workspaces, where the product is the disjoint union (combination
of workspaces) which is always defined without source/target matching condi-
tions.

Thus, just as in passing from the multiplication in a group to the multipli-
cation in a groupoid, that precisely accounts for the fact that arrows compose
only when the target of the first is the source of the second, one can obtain
similar generalizations of the structures of Hopf algebra and Rota–Baxter al-
gebra (or semiring) that we used in the formulation of mapping from syntax to
semantics as Birkhoff factorization in the previous sections.

An extension of the notion of Hopf algebra that accommodates for the need
for source/target matching conditions in the product was developed in the con-
text of algebraic topology with the notion of (commutative) Hopf algebroid

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

258 Chapter 3 Algebraic Model

and bialgebroid. We take that as the starting point in §3.5.3, by constructing
a bialgebroid associated to the ring of Merge derivations introduced in §3.5.2.
This bialgebroid replaces the Hopf algebra of workspaces on the syntax side,
by encoding the Merge derivations in syntax.

In §3.5.4 we then consider the other side of the Birkhoff factorization, namely
the semantics side, where we wish to replace the algebraic datum of a Rota-
Baxter algebra or Rota-Baxter semiring with an analogous categorified ver-
sion. We use a notion of algebroid that is compatible with the notion of Hopf
algebroids and bialgebroids introduced in §3.5.3 and we show that the notion
of algebroid we consider is dual to directed graphs, with the cases of bial-
gebroids being dual to directed graphs that are reflexive and transitive (small
categories) and Hopf algebroids being dual to groupoids.

We also extend the generalization of algebras to algeboids to an analogous
generalization of semirings to a similar categorified structure of semiringoid.
(Note that other different notions of algebroids and semiringoids exist in the
mathematical literature that should not be confused with the version adopted
here.)

In §3.5.4.2 we describe how the notion of Rota–Baxter operator of weight
−1 on an algebra can be generalized to the case of an algebroids and similarly
in §3.5.4.3 we show the analogous generalization of Rota–Baxter semirings of
weight ±1 to semiringoids.

With this, we have both sides of the mapping ready for the case of Merge
derivations with their composition structure. We prove in §3.5.4.4 the exis-
tence of Birkhoff factorizations of characters from Hopf algebroids to Rota–
Baxter algebroids and from bialgebroids to Rota–Baxter semiringoids. The
characters and the factorization can here be described dually in terms of maps
of directed graphs.

We conclude in §3.5.5 by showing that, with the algebraic setting constructed
in the previous subsections, one obtains a form of semiring(oid) parsing that si-
multaneously generalizes the various semiring parsings of (75) and the Birkhoff
factorizations that we described in §3.2.

3.5.2 Minimal Yield as Birkhoff factorization
In Chapter 1 we presented a way to implement Minimal Search and eliminate
unwanted forms of Merge (Sideward and Countercyclic Merge) and retain only
the Internal and External forms of Merge. (We put aside here the question as
to whether these excluded forms of Merge are indeed undesirable, and simply
assume that this is so.) We also discussed the Minimal Yield condition (see
Definition 1.6.1) and its effect on certain counting of size and complexity. In

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 259

the formulation we presented in that first chapter, Minimal Search is imple-
mented by extracting the leading order term with respect to a specific grading
function imposed on the terms of the coproduct of the Hopf algebra, and we
defined Minimal Yield as a condition on different counting functions keeping
track of size and complexity. We show here that there is another natural way of
thinking about these minimality conditions, by formulating them as a Birkhoff
factorization, very similar in form to the one used in quantum field theory, with
respect to a character with values in a Laurent series.

3.5.2.1 Effect of Merge on workspaces For consistency with Chapter 1,
and since here it is not important to keep track of traces in the effect of Internal
Merge, we consider the quotients T/Fv in the coproduct as in the first chapter,
rather than as in §3.1.2.1. As a result, we have the same counting of the effect
of Merge on the various measures of workspace size (number of components,
number of accessible terms, number of vertices, etc). as described in Chapter 1.

The different cases of Merge are given by External Merge (EM), Internal
Merge (IM), and forms of Sideward (SM) and Countercyclic Merge (SM/CM):

• EM: F = T ⊔ T ′ ⊔ F̂ 7→ F′ = M(T,T ′) ⊔ F̂
• IM: F = T ⊔ F̂ 7→ F′ = M(Tv,T/Tv) ⊔ F̂
• SM(i): F = T ⊔ T ′ ⊔ F̂ 7→ F′ = M(Tv,T ′w) ⊔ T/Tv ⊔ T ′/T ′w ⊔ F̂
• SM(ii): F = T ⊔ T ′ ⊔ F̂ 7→ F′ = M(T,T ′w) ⊔ T ′/T ′w ⊔ F̂
• SM/CM(iii): F = T ⊔ F̂ 7→ F′ = M(Tv,Tw) ⊔ T/(Tv ⊔ Tw) ⊔ F̂

where F̂ denotes the part of the workspace that is not affected, and

M(T,T ′) = T T ′ .

The effect of these Merge operations on various forms of size counting is dis-
cussed in Chapter 1, §1.6.1. We recall that we denote by b0(F) the number of
connected components of a workspace F ∈ FSO0 (number of syntactic objects),
by α(F) = #Acc(F) the number of accessible terms in F (the total number of
non-root vertices), by σ(F) = #Acc′(F) = #V(F) the total number of vertices.
For a chain of Merge derivations

Φ = MS N ,S ′N ◦ · · · ◦MS 1,S ′1 ,

we set

δb0 := b0(F) − b0(Φ(F)), δα = α(Φ(F)) − α(F), δσ = σ(Φ(F)) − σ(F) ,

so that the Minimal Yield conditions of Definition 1.6.1 are equivalent to

δb0 ≥ 0, δα ≥ 0, δσ = 1 ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

260 Chapter 3 Algebraic Model

respectively describing the “no divergence”, “no information loss”, and “min-
imality of yield” conditions of Definition 1.6.1. We also consider the weaker
condition of “positive yield” δσ ≥ 0. Similarly, we consider the “no com-
plexity loss” principle that we discussed in Chapter 1, §1.6.1. we compute the
associated function Φ0 : π0(F)→ π0(Φ(F)) and we take as in Definition 1.6.2

δ dega := (deg(Φ0(a)) − deg(a)) for a ∈ π0(F) .

The “no complexity loss” principle corresponds to δ dega ≥ 0 for all a ∈ π0(F).
We will just write δ when we mean either δb0 or δα or δσ or δ dega. This
measure δ will be used in the construction of §3.5.2.2 below. Note that values
of δ ≥ 0 eliminate some of the “undesirable” forms of Merge (Sideward and
Countercyclic), and allow Internal and External Merge.

We show here that the elimination of the forms of Merge, described in terms
of Minimal Yield in Chapter 1, §1.6.1, can also be formulated as a Birkhoff
factorization where one eliminates divergences as in the physical setting.

3.5.2.2 Laurent series ring of Merge derivations We introduce a ring that
organizes derivations in the Minimalist generative grammar defined by free
symmetric Merge, weighted by their effect on the workspace.

Definition 3.5.1. The algebra of free Merge derivations DM is the commu-
tative associative Q-algebra with the underlying Q-vector space spanned by
elements of the form φA where A ⊂ SO × SO is a set of pairs (S , S ′) of syn-
tactic objects, and

φA = (F
MA
→ F′) (3.5.1)

consists of all possible chains of Merge operations

F
MS 1 ,S

′
1

→ F1 → · · · FN−1

MS N ,S
′
N

→ F′ (3.5.2)

with (S i, S ′i) ∈ A. Since the source and target workspaces are assigned, there
are finitely many such possible chains. The algebra multiplication is given by
the operation

φA ⊔ φB = (F ⊔ F̃
MA⊔B
→ F′ ⊔ F̃′) , (3.5.3)

for φA = (F
MA
→ F′) and φB = (F̃

MB
→ F̃′), with unit given by the empty

forest mapped to itself. Let DM[t−1][[t]] denote the associative commutative
Q-algebra of Laurent power series with coefficients inDM.

The meaning of the product (3.5.3) is to perform in parallel different Merge
operations that affect different parts of a workspace. Such operations, if con-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 261

ducted sequentially, would commute with each other hence would be indepen-
dent of the order of execution (unlike operations that affect the same compo-
nents of the workspace), so that composition can be regarded as simultaneous
and parallel rather than sequential, and can be grouped together as a single
operation.

The following fact is well known (see (42), (43), (51), (52)).

Proposition 3.5.2. Given a commutative associative algebra A and the al-
gebra of Laurent series A[t−1][[t]], the linear operator R : A[t−1][[t]] →
A[t−1][[t]] that projects onto the polar part,

R(
∞∑

i=−N

aiti) =
−1∑

i=−N

aiti , (3.5.4)

makes (A[t−1][[t]],R) a Rota–Baxter algebra of weight −1.

Proposition 3.5.3. Consider the map ϕ : H → DM,

ϕ(F) = (L(F)
MA(L(F),F)
−→ F) , (3.5.5)

that assigns to a forest F the set A(L(F), F) of all Merge derivations from the
(multi)set of individual lexical items and syntactic features that form the set
of leaves L(F), to the forest F (the generative process for F). This defines a
character (a morphism of commutative algebras) from the Merge Hopf algebra
H of non-planar binary rooted forests to the algebra of free Merge derivations
DM. The assignment

ϕt(F) = (L(F)
MA(L(F),F)
−→ F) tδ(MA(L(F),F)) , (3.5.6)

where δ is either δb0 or δα or δσ, then defines a morphism of commutative
algebras ϕt : H → DM[t−1][[t]].

Proof. It suffices to check that ϕ(F ⊔ F′) = ϕ(F) ⊔ ϕ(F′), namely that

(L(F) ⊔ L(F′)
MA(L(F)⊔L(F′),F⊔F′)
−→ F ⊔ F′) = (L(F) ⊔ L(F′)

MA(L(F),F)⊔A(L(F′),F′)
−→ F ⊔ F′) .

This is the case since, if the end result of a chain of Merge operations contains
a disjoint union F ⊔ F′ of two trees, then all the individual Merge operations
MTv,Tw in the chain will use syntactic objects Tv Tw where both sets of leaves
L(Tv) and L(Tw) are subsets of L(F) or where both are subsets of L(F′) as
otherwiseMTv,Tw would create a connected component T with L(T)∩L(F) , ∅
and T ∩ L(F′) , ∅ so that the end result would not contain F ⊔ F′. Moreover,
for δ equal to either δb0 or δα or δσ, as discussed in §3.5.2.1 above, we define

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

262 Chapter 3 Algebraic Model

δ(MA), whereMA is a finite set of Merge derivations {ϕ = MS N ,S ′N ◦· · ·◦MS 1,S ′1 }

with fixed source F and target F′, by taking

δα(F
MA
−→ F′) = α(F′) − α(F) , δb0(F

MA
−→ F′) = b0(F) − b0(F′) ,

δσ(F
MA
−→ F′) = σ(F′) − σ(F) ,

where α(F ⊔ F̃) = α(F) + α(F̃) and similarly for b0 and σ, so that (3.5.6) is
also an algebra homomorphism. □

As we will see in Lemma 3.5.5, the character ϕt : H → DM[t−1][[t]] of
Proposition 3.5.3 is not good enough to detect the difference between Inter-
nal/External Merge and Sideward/Countercyclic Merge. However, one can
consider similar characters more suitable for this purpose. A simple modifica-
tion of ϕt that works can be obtained in the following way, where the statement
follows as in Proposition 3.5.3.

Corollary 3.5.4. For T ∈ TSO0 let FT ⊂ FSO0 × FSO0 denote the set of pairs
(F, F′) of forests F with L(F) = L(F′) = L(T) that are intermediate deriva-
tions for T , namely such that there exists a chain of free symmetric Merge
derivations

L(T)
MS 1 ,S

′
1

−→ · · ·
MS i ,S

′
i

−→ F
MS i+1 ,S

′
i+1

−→ · · ·

MS j ,S
′
j

−→ F′
MS j+1 ,S

′
j+1

−→ · · ·
MS m ,S ′m
−→ T ,

for some m ≥ 1, including the case with F = L(T) and F′ = T. Consider the
assignment

ψt(T) =
∑

(F,F′)∈FT

(F
MA(F,F′)
−→ F′) tδ(MA(F,F′)) , (3.5.7)

whereMA(F,F′) is the set of all possible Merge derivations from F to F′ and δ is
either δb0 or δα or δσ. This determines a morphism of commutative algebras
ψt : H → DM[t−1][[t]].

The reason why the choice of the character ψt of (3.5.7) is preferable to the
choice of ϕt of (3.5.6) is explained by the following simple property.

Lemma 3.5.5. The character ϕt : H → DM[t−1][[t]], where δ is either δb0

or δα or δσ, takes values in the subring

DM[[t]] = (1 − R)DM[t−1][[t]]

of formal power series.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 263

Proof. Consider the case of a tree T ∈ TSO0 . The value

ϕt(T) = (L(T)
MA(L(T),T)
−→ T) tδ(T)

represents the complete set of all possible chains of free symmetric Merge
derivations that construct the syntactic object T starting from a (multi)set L =
L(T) of lexical items and syntactic features. If #L = ℓ ≥ 2 then #V(T) = 2ℓ −
1 = σ(T) and α(T) = 2ℓ − 2, with b0(T) = 1, so that we have δb0 = ℓ − 1 ≥ 0,
δα = ℓ − 2 ≥ 0, δσ = ℓ − 1 ≥ 0. Thus, notice that ϕt(T) is always in the
non-polar part DM[[t]] for any tree T , regardless of which type of Merge
operations have been used along the chain of derivations. This means that
(1 − R)ϕt(T) = ϕt(T) for all T . The case of forests is then immediate since
ϕt(F) =

∏
a ϕt(Ta), for F = ⊔aTa and δ(F) =

∑
a δ(Ta) ≥ 0 □

Thus, the character ϕt does not suffice to separate Internal/External Merge
from Sideward and Countercyclic Merge operations on the basis of the count-
ing given by δ. On the other hand, the character ψt, that also considers all
the intermediate derivations from L(T) to T , each weighted according to the
corresponding value of δ will have a non-trivial polar part, when certain Side-
ward/Countercyclic Merge operations are present somewhere in the chain of
derivations.

However, even when using the character ψt that detects the presence of the
so-called undesirable forms of Merge in a derivation, simply applying the pro-
jection onto the regular part

ψt(F) 7→ (1 − R)ψt(F)

does not suffice to eliminate those Sideward/Countercyclic Merge operations
and only retain Internal/External Merge. This is a consequence of the fact that
the projection R onto the polar part is not an algebra homomorphism but a
Rota–Baxter operator. The failure of the Rota–Baxter operator R of (3.5.4) to
be an algebra homomorphism

R((
∞∑

i=−N

aiti)(
∞∑

j=−M

b jt j)) = R(
∞∑

n=−(N+M)

∑
i+ j=n

aib j tn) =
−1∑

n=−(N+M)

∑
i+ j=n

aib j tn

, R(
∞∑

i=−N

aiti)R(
∞∑

j=−M

b jt j) =
−1∑

n=−(N+M)

∑
i+ j=n,i<0, j<0

aib j tn

reflects the fact that terms in a product of series can end up in the polar (respec-
tively, non-polar) part of the product without being in the polar (respectively,
non-polar) part of the individual factor, because of the sum ti+ j of the expo-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

264 Chapter 3 Algebraic Model

nents. This means that simply applying (1 − R) to ϕ(F) will not suffice to get
rid of free Merge derivations that violate Minimal Yield constraints. However,
Birkhoff factorization achieves that result.

Proposition 3.5.6. The inductively constructed Birkhoff factorization (3.1.5)
of the character ψt of (3.5.7) implements a form of Minimal Search, in the
sense that it inductively eliminates those forms of Sideward/Countercyclic Merge
that violate the Minimal Yield properties from the derivations while retaining
compositions of Internal and External Merge.

Proof. This is a direct consequence of Proposition 3.1.7. Taking ψt,+(T) =
(1 − R)ψ̃t(T), with ψ̃t the Bogolyubov preparation of ψt(T) gives an algebra
homomorphism

ψt,+ : H → DM[[t]] ,

where in the inductive construction of

ψ̃t(T) = ψt(T) +
∑

ψt,−(Fv)ψt(T/Fv)

one analyzes in parallel the Merge derivations of accessible terms of T , ensur-
ing that the so-called undesirable forms of Merge are progressively removed
and only derivations containing Internal and External Merge (that is, with
δ ≥ 0) are retained at each step. More precisely, if there is a term in ψt(T)
of the form (F → F′)tδ where the derivation is a form of Sideward or Coun-
tercyclic Merge that violates the Minimal Yield conditions, the forest F′ will
occur as a collection of accessible terms F′ = Fv in T , hence in ψ̃t(T) the term
ψt,−(Fv)ψt(T/Fv) will contain a term R(ψt(F′))ψt(T/Fv) which will contain a
summand equal to −(F → F′)tδ that has the effect of removing the unwanted
derivation, while any term (F → F′)tδ in ψt(T) that only contains derivations
that do not violate the Minimal Yield constraints is not cancelled by anything
coming from the terms ψt,−(Fv)ψt(T/Fv), because such terms are eliminated
when applying R in the inductive construction of ψt,−(Fv). □

In a similar way, we can consider the “no complexity loss” constraints of
Definition 1.6.2 and the function δ dega for a ∈ π0(F) discussed in §3.5.2.1
above. In order to formulate these contraints as a Birkhoff factorization, con-
sider a set of variables tλ for λ ∈ SO0. This is a finite (albeit possibly large)
set. We consider the algebra of Laurent series Q[[tλ]][t−1

λ] in all these vari-
ables, and the algebra DM[[tλ]][t−1

λ]. Assume that we consider the subspace
of V(FSO0) spanned by the forests F = ⊔aTa where all Ta ∈ Dom(h), for a
head function h. We call this subspaceVh. The product and coproduct (⊔,∆c)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 265

of the Hopf algebra of workspaces induce a product and coproduct on the sub-
spaceVh. We can then label the internal vertices of the syntactic objects inVh

using the head function, labeling v ∈ V(T) by hT (v) (meaning the lexical item
λ = λ(hT (v)) in SO0 labeling the leaf hT (v)). Thus, we can correspondingly
assign to an internal vertex of T a variable tλ. We can identify the components
Ta of F with their root vertices and the latter with the correponding labeling by
the head h(Ta), so that we can assign to each a ∈ π0(F) a variable ta := tλ(h(Ta)).
We then set

δ dega(F
Φ
→ F′) = deg(Φ0(a)) − deg(a)

ϕt(F) =
∑
Φ:F→F′

(F
Φ
→ F′)

∏
a∈π0(F)

tδ dega(Φ)
h(Ta) ,

and we can apply the same procedure to this character that takes values in
DM[[tλ]][t−1

λ].

3.5.3 Birkhoff factorization in algebroids
The construction of the ring (algebra) DM of Merge derivations in the previ-
ous sections can be seen as an adaptation to the case of free symmetric Merge
(in the form presented in Chapter 1) of the idea of the derivation forest semir-
ings of (75) , where the original case treated in (75) is based on derivations
in context-free grammars. We now show how to extend this notion from the
setting of context-free semiring parsing to the Minimalist account. To see the
analogy more directly, instead of the algebra we used in §3.5.2.2, one can
construct a slightly different algebraic object encoding the same set of free
symmetric Merge derivations. This will include the data of the Hopf algebra
H , while incorporating not just the workspaces but also the explicit Merge
derivations acting on them.

We recall the notion of commutative bialgebroid and Hopf algebroid, orig-
inally introduced in the context to algebraic topology (see Appendix A1 of
(161)). As elsewhere in this book, we will always assume that all algebras and
vector spaces are over the field Q of rational numbers, unless otherwise stated.

In order to clarify the following definition of Hopf algebroids, it is help-
ful to recall the relation between commutative Hopf algebras and affine group
schemes. The basic idea here is the fact that the set of characters of a commu-
tative Hopf algebras, namely the morphisms of commutative algebras

ϕ ∈ HomCAlg(H ,R) ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

266 Chapter 3 Algebraic Model

with R some commutative algebra, is not just a set, but is in fact a group,
because the coproduct operation ofH determines a product operation

ϕ1 ⋆ ϕ2 ∈ HomCAlg(H ,R) with (ϕ1 ⋆ ϕ2)(x) := (ϕ1 ⊗ ϕ2)∆(x) .

Thus, the commutative Hopf algebra determines an assignment

G : R 7→ G(R) = HomCAlg(H ,R)

of a group G(R) to any commutative algebra R, which is a functor between the
respective categories. Such G is called an affine group scheme. Assigning a
commutative Hopf algebra H is equivalent to assigning the associated affine
group scheme G = GH , so one says that a commutative Hopf algebra is (dual
to) an affine group scheme. The notion of Hopf algebroid developed in (161),
which we recall here, generalizes this relation between commutative Hopf al-
gebras and affine group schemes to the case where, instead of groups, one
works with groupoids, where the product operation is a composition of arrows
that is only possible when the target of the first arrow agrees with the source of
the next. The reason why we need this generalization is that chains of Merge
derivations between workspaces are indeed composable only when the target
workspace of one Merge application is the same as the source workspace of
the next Merge application.

Definition 3.5.7. A commutative Hopf algebroid is (dual to) an affine groupoid
scheme, namely it consists of a pair of commutative algebras A(0) and H (1)

with the property that, for any other commutative algebra R, the sets G(0)(R) =
Hom(A(0),R) and G(1)(R) = Hom(H (1),R) are the objects and morphisms of
a groupoid G. Equivalently, the pair of algebras (A(0),H (1)) is endowed with
homomorphisms ηs, ηt : A(0) → H (1) that give H (1) the structure of a A(0)-
bimodule (dual to source and target maps of the groupoid), a coproduct (dual to
composition of arrows in the groupoid) given by a morphism ofA(0-bimodules

∆ : H (1) → H (1) ⊗A(0) H (1) ,

a counit ϵ : H (1) → A(0), which is also a morphism of A(0-bimodules (dual
to the inclusion of identity morphisms), and a conjugation S : H (1) → H (1)

(dual to the inverse of morphisms in the groupoid). These maps satisfy ϵηs =

ϵηt = 1 (identity morphisms have same source and target), (1 ⊗ ϵ)∆ = (ϵ ⊗
1)∆ = 1 (composition with the identity morphism), (1 ⊗ ∆)∆ = (∆ ⊗ 1)∆
(associativity of composition of morphisms), S 2 = 1 and S ηs = ηt (inversion is
an involution and exchanges source and target of morphisms), and the property
that composition of a morphism with its inverse gives the identity morphism,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 267

namely that
ηtϵ = µ(S ⊗ 1)∆ and ηsϵ = µ(1 ⊗ S)∆,

with µ : H (1) ⊗A(0) H (1) → H (1) extending the algebra multiplication µ :
H (1) ⊗Q H

(1) → H (1). Also one has ∆ηs = 1 ⊗ ηs, ∆ηt = ηt ⊗ 1 (the source
of the composition of arrows is the source of the first and the target of the
composition is the target of the second). A morphism of Hopf algebroids

f : (A(0)
1 ,H (1)

1)→ (A(0)
2 ,H (1)

2)

is a pair of algebra homomorphisms f (0) : A(0)
1 → A

(0)
2 and f (1) : H (1)

1 → H
(1)
2

with f (0) ◦ ϵ1 = ϵ2 ◦ f (1), f (1) ◦ ηs,1 = ηs,2 ◦ f (0), f (1) ◦ ηt,1 = ηt,2 ◦ f (0),
f (1) ◦ S 1 = S 2 ◦ f (1), ∆2 ◦ f (1) = (f (1) ⊗ f (1)) ◦ ∆1.

A commutative bialgebroid is a structure as above, where one does not as-
sume invertibiliy of morphisms, namely where C(0)(R) = Hom(A(0),R) and
C(1)(R) = Hom(H (1),R) are the objects and morphisms of a (small) category
C (a semigroupoid) instead of a groupoid, so that one has the same structure
above but without the conjugation map S . Thus, a commutative bialgebroid is
(dual to) an affine semigroupoid scheme.

Examples of Hopf algebroids arise, for instance, when the field of definition
of a Hopf algebra H is replaced by the ring of functions A of some underly-
ing space. In our setting, the natural modification of the Hopf algebra H of
workspaces is a version where arrows corresponding to the action of Merge
are also incorporated as part of the same algebraic structure. Since these will
in general not necessarily be invertible arrows, the resulting structure will be a
bialgebroid rather than a Hopf algebroid.

Remark 3.5.8. We assign a grading to a bialgebroid (A(0),H (1)) by defining,
for an arrow γ in the semigroupoid the degree as the maximal length of a
factorization of γ, deg(γ) = max{n ≥ 1 | ∃γ = γ1 ◦ · · · ◦ γn}. In the dual algebra
we assign deg(δγ) = deg(γ), with δγ the Kronecker delta, and deg(

∏
i δγi) =∑

i deg(δγi). The coproduct ∆(δγ) = δγ ⊗ 1 + 1 ⊗ δγ +
∑
γ=γ1◦γ2

δγ1 ⊗ δγ2 has
the terms δγ1 , δγ2 of lower degrees. So we setH (1) = ⊕n≥0H

(1)
n withH (1)

0 = Q
and H (1)

n spanned by the elements of degree n, compatibly with product and
coproduct operations.

Lemma 3.5.9. The data A(0) = (V(FSO0),⊔) and H (1) = (DM,⊔), define a
bialgebroid.

Proof. The algebraH (1) = (DM,⊔) dual to the arrowsC(1) is the same algebra
of Merge derivations introduced in Definition 3.5.1. We can identify elements

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

268 Chapter 3 Algebraic Model

X =
∑

i aiφAi inDM with finitely supported functions X =
∑

i aiδφAi
on the set

of derivations of the form (3.5.1), (3.5.2), with δφAi
the Kronecker delta. The

left and right A(0)-module structures that correspond to the source and target
maps are determined by

ηs(F)φA =

 φA s(φA) = F
0 otherwise

ηt(F)φA =

 φA t(φA) = F
0 otherwise

The coproduct ∆ : H (1) → H (1) ⊗A(0) H (1) is given by

∆(δϕA) = δϕA ⊗ 1 + 1 ⊗ δϕA +
∑

ϕA=ϕA1◦ϕA2

δϕA1
⊗ δϕA2

,

where for ϕA2 = (F
MA2
→ F′) and ϕA1 = (F′

MA1
→ F′′) the composition is given by

ϕA1 ◦ ϕA2 = (F
MA1◦A2
→ F′′) ,

where MA1◦A2 = MA1 ◦MA2 denotes the set of all compositions of a chain of
Merge derivations in the set A2 followed by one in A1. □

Remark 3.5.10. Note that the bialgebroid of Lemma 3.5.9 only uses the mul-
tiplication (V(FSO0),⊔) of the Hopf algebraH of workspaces, and the comul-
tiplication of H does not appear in the expression for the coproduct on H (1).
The coproduct of H , however, is also encoded in the bialgebroid, as it is built
into the arrows of H (1), since the Merge operationsMS ,S ′ that occur in the ar-
rows are of the form (3.1.3), so that terms of the coproduct ofH will contribute
to arrows.

3.5.4 Bialgeroids and Rota-Baxter algebroids
In order to simultaneously extend our setting with Rota–Baxter algebras (and
semirings) and Birkhoff factorization of maps from Hopf algebras, and the
setting of semiring parsing in semantics, we introduce a version of Birkhoff
factorization for algebroids.

3.5.4.1 Algebroids and directed graph schemes In our setting, we will
take a different viewpoint on the notion of algebroid than what is more com-
monly used in mathematics. The common definition of an algebroid (over a
field K) is just a K-linear category, where the operation of morphism compo-
sition is the multiplication part of the algebroid and the linear structure on the
spaces of morphisms provides the addition part. However, in view of our use

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 269

above of the notions of Hopf algebroid and bialgebroid, of Definition 3.5.7, it
is natural to think of a commutative algebroid simply in the following way.

Definition 3.5.11. An algebroid is a pair of commutative algebras (A,E) with
two morphisms ηs, ηt : A → E that give E the structure of bimodule over A
and a morphism ofA-bimodules ϵ : E → Awith ϵηs = ϵηt = 1A. A morphism
f : (A1,E1) → (A2,E2) is a pair of morphisms of commutative algebras
fV : A1 → A2 and fE : E1 → E2 with ηs,2 ◦ fV = fE ◦ ηs,1, ηt,2 ◦ fV = fE ◦ ηt,1

and fV ◦ ϵ1 = ϵ2 ◦ fE .

A way of thinking of this notion of algebroid is as dual to directed graphs.
In other words our algebroids are (dual to) affine directed graph schemes, in
the same way that Hopf algebras are (dual to) affine group schemes, Hopf
algebroids are (dual to) affine groupoid schemes, and bialgebroids are (dual
to) affine semigroupoid schems, as we discussed in §3.5.3 above. This can be
seen immediately in the following way.

Lemma 3.5.12. Let (A,E) be a commutative algebroid in the sense of Def-
inition 3.5.11. Then for every other commutative algebra R the sets V(R) =
Hom(A,R) and E(R) = Hom(E,R) are the sets of vertices and edges of a di-
rected graph G(R) with source and target maps s, t : E(R)→ V(R) determined
by the morphisms ηs, ηt : A → E, and where each vertex v ∈ V(R) has a loop-
ing edge ev ∈ E(R) with s(ev) = t(ev) = v. A morphism of algebroids induces a
morphism of directed graphs.

Proof. A directed graph G is a functor from the category 2 to Sets, with two
objects V, E and two non-identity morphisms s, t : E → V . The assignment
G(R) : V 7→ Hom(A,R) and G(R) : E 7→ Hom(E,R) and G(R) : s 7→ η∗s
G(R) : t 7→ η∗t , with η∗i (ϕ) = ϕ ◦ ηi, for ϕ ∈ Hom(E,R), determine such
a functor. The inclusion of the looping edges ev in Hom(E,R) is given by
ev = v ◦ ϵ, with v ∈ Hom(A,R). A morphism of directed graph α : G2 → G1

is a natural transformation of the functors from 2 to Sets, that is a pair of maps
αV : Hom(A2,R) → Hom(A1,R) and αE : Hom(E2,R) → Hom(E1,R) such
that s ◦ αE = αV ◦ s and t ◦ αE = αV ◦ t. A morphism f : (A1,E1)→ (A2,E2)
of algebroids determines such a natural transformation with αV = f ∗V and αE =

f ∗E . The additional property fV ◦ ϵ1 = ϵ2 ◦ fE ensures that a looping edge ev in
Hom(E2,R) is mapped to αE(ev) = eαV (v) in Hom(E1,R). □

Corollary 3.5.13. A bialgebroid (A,E) is a commutative algebroid with the
property that the graphs G(R) are categories (that is, they are directed graphs
satisfying reflexivity and transitivity).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

270 Chapter 3 Algebraic Model

Proof. A directed graph G is a category (with objects the vertices and mor-
phisms the directed edges) if and only if it is the directed graph of a preorder,
namely if it satisfies reflexivity and transitivity. In other word, a directed graph
where every vertex has a looping edge attached to it, and if there is a pair of
edges e, e′ with s(e) = v, t(e) = s(e′) and t(e′) = v′ then there exists an edge ẽ
with s(ẽ) = v and t(ẽ) = v′. The coproduct of the bialgebroid ensures that the
graphs G(R) are transitive, while reflexivity is already a property of directed
graphs determined by algebroids. □

3.5.4.2 Rota–Baxter algebroids The notion generalizing the Rota–Baxter
algebra structure in this setting is given by the following.

Definition 3.5.14. A commutative Rota–Baxter algebroid of weight −1 is a
commutative algebroid (A,E) as in Definition 3.5.11, together with a pair of
maps R = (RV ,RE) with RV ∈ End(A) an algebra homomorphism and RE :
E → E a linear map that satisfies

RE(ηs(a) · ξ) = ηs(RV (a)) · RE(ξ) RE(ηt(a) · ξ) = ηt(RV (a)) · RE(ξ) , (3.5.8)

for all a ∈ A and ξ ∈ E, with · the algebra product in E, and ϵ ◦ RE = RE ◦ ϵ,
and that satisfies the Rota–Baxter relation of weight −1,

RE(ξ) · RE(ζ) = RE(RE(ξ) · ζ) + RE(ξ · RE(ζ)) − RE(ξ · ζ) . (3.5.9)

We moreover require a normalization condition, that RE(1E) = 0 or RE(1E) =
1E, for 1E the unit of the algebra E.

Lemma 3.5.15. The Rota–Baxter structure of Definition 3.5.14 has the follow-
ing properties.

1. The condition (3.5.8) replaces the conditions ηsRV = REηs and ηtRV =

REηt and is implies by these conditions in the case where RE is an algebra
homomorphism.

2. The normalization condition that RE(1) ∈ {0, 1} together with the condi-
tions (3.5.8) and (3.5.9) imply that RE also satisfies

RE(RV (ηs(a))·ξ) = RV (ηs(a))·RE(ξ) RE(RV (ηt(a))·ξ) = RV (ηt(a))·RE(ξ) ,
(3.5.10)

for all a ∈ A and ξ ∈ E, that is, RE is a bimodule homomorphism when E
is viewed as a bimodule over the subalgebra RV (A).

3. If RV ∈ Aut(A) is an algebra automorphism, then (3.5.8) and (3.5.9) with
RE(1E) ∈ {0, 1} imply that RE is a bimodule homomorphism of E as a
A-bimodule.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 271

Proof. (1) If RE is an algebra homomorphism then the conditions ηsRV = REηs

and ηtRV = REηt imply that

RE(ηs(a) · ξ) = RE(ηs(a)) · RE(ξ) = ηs(RV (a)) · RE(ξ)

and similarly for ηt.
(2) If RE satisfies (3.5.9), then the subspaces RE(E) and (1 − RE)(E) of E

are (possibly non-unital) subalgebras. If RE(1) ∈ {0, 1} then either RE(E) ⊂ E
is unital and (1 − RE)(E) is not, or viceversa. If, moreover, RE also satisfies
(3.5.8), then (A,RE(E)) and (A, (1 − RE)(E)) are subalgebroids of (A,E) with
the induced maps ηs, ηt, ϵ. Indeed, the Rota–Baxter identity (3.5.8) ensures that
the product RE(ξ) ·RE(ζ) is in the range RE(E) for all ξ, ζ ∈ E, hence RE(E) ⊂ E
is a (possibly non-unital) subalgebra, and similarly for (1−RE)E. If RE(1) = 0
then (1 − RE)E is unital and RE(E) is not and vice-versa if RE(1) = 1. Note
then that conditions RE(1E) ∈ {0, 1} and (3.5.9) imply that the linear map RE is
a projector, namely R2

E = RE . In fact by (3.5.9) we have

RE(RE(ξ)) = RE(RE(ξ) · 1)) = RE(ξ) · RE(1) + RE(ξ · 1) − RE(ξ · RE(1))

= RE(ξ) · (1 + RE(1)) − RE(ξ · RE(1)) ,

where if RE(1) = 0 or RE(1) = 1 we get R2
E(ξ) = RE(ξ). Applying condition

(3.5.9) to a pair with ξ = ηs(a) gives (using condition (3.5.8))

RE(ηs(a)) · RE(ζ) = RE(RE(ηs(a)) · ζ) + RE(ηs(a) · RE(ζ)) − RE(ηs(a) · ζ)

which gives

ηs(RV (a)) · RE(ζ) = RE(ηs(RV (a)) · ζ) + ηs(RV (a))R2
E(ζ) − ηs(RV (a))RE(ζ) .

Since we are also assuming that RE(1E) ∈ {0, 1}, we have R2
E(ζ) = RE(ζ) so we

obtain
ηs(RV (a)) · RE(ζ) = RE(ηs(RV (a)) · ζ) ,

and similarly with ηt, so that (3.5.10) holds, for all a ∈ A and ζ ∈ E.
(4) If RV is an automorphism of A rather than just an endomorphism, then

this also implies

RE(ηs(a) · ξ) = ηs(a) · RE(ξ) RE(ηt(a) · ξ) = ηt(a) · RE(ξ) , (3.5.11)

for all a ∈ A and ζ ∈ E. □

A simple source of examples of Rota–Baxter algebroids is obtained by con-
sidering functions on the edges of a directed graph, with values in a Rota–
Baxter algebra. This means that, in these examples, the Rota–Baxter operator

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

272 Chapter 3 Algebraic Model

is acting only on the coefficients of functions. The following is a direct conse-
quence of the definition of Rota–Baxter algebroids.

Lemma 3.5.16. Let G be a directed graph and let (R,R) be a Rota–Baxter
algebra of weight −1. Consider pair of algebras (A,E) with A = Q[VG]
(finitely supported Q-valued functions on the set VG of vertices of G) and E =
Q[VG] ⊗Q R, with morphisms ηs, ηt : A → E given by pre-composition with
source and target maps s, t : EG → VG. The maps RV = id onA and RE = 1⊗R
give (A,E) the structure of a Rota–Baxter algebroid of weight −1.

3.5.4.3 Rota–Baxter semiringoids There is a direct generalization of this
notion of Rota–Baxter algebroids, and the class of examples of Lemma 3.5.16
to the case where algebras are replaced by semirings. We will refer to those as
Rota–Baxter semiringoids. The definition and properties are analogous to the
algebroid case, in the same way in which we generalized from Rota–Baxter
algebras to Rota–Baxter semirings in §3.1.4. We will focus in particular on the
analog of the examples of Lemma 3.5.16.

The category of commutative semirings, with initial object the semiring Z≥0

of non-negative integers, is dual to the category of semiring schemes, that is,
affine schemes over Spec(Z≥0). The full subcategory of idempotent commuta-
tive semirings, with initial object B, the Boolean semiring of (3.2.13), is dual
to the category of affine schemes over Spec(B).

Definition 3.5.17. A semiringoid is the datum (A,E) of two commutative
semirings with semiring homomorphisms ηs, ηt : A → E that give E the struc-
ture of bi-semimodule over the semiring A and with a bi-semimodule homo-
morphism ϵ : E → A with ϵηs = ϵηt = 1A. A morphism (A1,E1) → (A2,E2)
of semiringoids is a pair of semiring homomorphisms fV : A1 → A2 and
fE : E1 → E2 with ηs,2 ◦ fV = fE ◦ηs,1, ηt,2 ◦ fV = fE ◦ηt,1 and fV ◦ ϵ1 = ϵ2 ◦ fE .
A Rota–Baxter semiringoid of weight +1 is a semiringoid (A,E) endowed
with a semiring endomorphism RV : A → A and an RE : E → E a Z≥0-linear
map (morphism of Z≥0-semimodules) satisfying

RE(ηs(a)⊙ξ) = ηs(RV (a))⊙RE(ξ) RE(ηt(a)⊙ξ) = ηt(RV (a))⊙RE(ξ) , (3.5.12)

for all a ∈ A and ξ ∈ E, with ⊙ the semiring product in E, and ϵ ◦RE = RE ◦ ϵ,
and that satisfies the Rota–Baxter relation of weight +1,

RE(ξ) ⊙ RE(ζ) = RE(RE(ξ) ⊙ ζ) ⊡ RE(ξ ⊙ RE(ζ)) ⊡ RE(ξ ⊙ ζ) , (3.5.13)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 273

with ⊡ and ⊙ the semiring sum and product in E. The case of a Rota–Baxter
structure of weight −1 is similar, with (3.5.13) replaced by

RE(ξ) ⊙ RE(ζ) ⊡ RE(ξ ⊙ ζ) = RE(RE(ξ) ⊙ ζ) ⊡ RE(ξ ⊙ RE(ζ)) . (3.5.14)

We moreover require the normalization condition, that RE(1E) = 0E or RE(1E) =
1E, for 1E the unit of the multiplicative monoid and 0E the unit of the additive
monoid of E.

When considering semiringoids with commutative idempotent semirings,
one can drop the Z≥0-linearity requirement for RE and only require that RE

is a morphism of B-semimodules (Boolean semimodules).

Remark 3.5.18. Note the the notion of semiringoid we use in Definition 3.5.17
differs from another commonly used notion, where a semiringoid is a small cat-
egory C where all the Hom-sets HomC(X,Y), for X,Y ∈ Obj(C), are commu-
tative monoids with bilinear composition of morphisms, and all the End-sets
EndC(X) = HomC(X, X) are semirings.

We have then an analog for semiringoids of the class of Rota–Baxter alge-
broids of Lemma 3.5.16. Again this follows directly from Definition 3.5.17.

Lemma 3.5.19. Let G be a directed graph and let (R,R) be a Rota–Baxter
semiring of weight +1 (or −1). Consider the pair of semirings (A,E) with
A = Z≥0[VG] (finitely supported Z≥0-valued functions on the set VG of ver-
tices of G) and E = Z≥0[VG] ⊗Z≥0 R, with morphisms ηs, ηt : A → E given by
precomposition with source and target maps s, t : EG → VG. The maps RV = id
on A and RE = 1 ⊗ R give (A,E) the structure of a Rota–Baxter semiringoid
of weight +1 (or −1). In the case where R is a commutative idempotent semir-
ing, we can replace this construction with A = B[VG] (Boolean functions on
VG) and E = B[VG] ⊗B R, to obtain a Boolean Rota–Baxter semiringoid (a
semiringoid over commutative idempotent semirings).

3.5.4.4 Birkhoff factorization in algebroids and semiringoids We then
consider morphisms of algebroids Φ : (A(0),H (1)) → (A,E) from a Hopf al-
gebroid to an an algebroid with a Rota–Baxter structure (RV ,RE) of weight
−1. The target algebroid (A,E) does not have a compositional structure, in
the sense that the directed graph (graph scheme) G dual to the algebroid does
not have, in general, the transitive property: given two directed edges where
the target of the first is the source of the second it is not necessarily the case
that there is also a edge from the source of the first to the target of the second.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

274 Chapter 3 Algebraic Model

The source (A(0),H (1)) has the compositional structure, which is encoded in
the coproduct as bialgebroid, which is the convolution product of the groupoid
algebra H (1). As in the case of algebras, the convolution structure on H (1) to-
gether with the Rota–Baxter structure on (A,E) will perform the factorization
of Φ : (A(0),H (1)) → (A,E) which accounts for the induced compositional
structure on the image.

Lemma 3.5.20. Let (A0),H (1)) be a Hopf algebroid and let (A,E) be an alge-
broid with a Rota–Baxter structure (RV ,RE) of weight −1. Given a morphism
Φ : (A(0),H (1)) → (A,E) of algebroids, there is a pair Φ± with Φ±,V = ΦV

and Φ+,E(f) = (Φ−,E ⋆ ΦE)(f) = (Φ−,E ⊗ ΦE)(∆ f) for all f ∈ H (1), where we
have

Φ−,E(f) = −RE(Φ̃E(f)) with Φ̃E(f) = ΦE(f) +
∑
Φ−,E(f ′)ΦE(f ′′) ,

for ∆(f) = f ⊗ 1 + 1 ⊗ f +
∑

f ′ ⊗ f ′′, and with Φ+,E(f) = (1 − RE)(Φ̃E(f)).

Proof. The argument for showing that the maps Φ±,E : (A0),H (1))→ (A,E±)
with E+ = (1−RE)(E) and E− = RE(E) are algebroid homomorphisms follows
closely the same argument for Rota–Baxter algebras of weight −1, as in The-
orem 1.39 of (43). The factorization identity Φ+,E = Φ−,E ⋆ ΦE follows from
Φ+,E = (1 − RE)Φ̃E and Φ−,E = −REΦ̃E and the expression for Φ̃E in terms of
the coproduct ∆. □

We consider in particular the case where the Rota–Baxter algebroids are as
in Lemma 3.5.16.

Lemma 3.5.21. The Birkhoff factorization of an algebroid homomorphismΦ :
(A(0),H (1))→ (A,E), with (A,E) a Rota–Baxter algebroid as in Lemma 3.5.16
and (A(0),H (1)) a bialgebroid, consists of a map of directed graphs (graph
schemes) α : G → G, with G dual to (A,E) and G dual to (A(0),H (1)), so that
ΦE(f) = f ◦ α for f ∈ H (1), with the factorization ΦE,− mapping f = δγ for γ
an arrow in G to the function ΦE,−(δγ) that acts on a combination

∑
i aiei with

ei ∈ EG as

ΦE,−(δγ)(
∑

i

aiei) = −(
∑
α(e)=γ

RE(ae) +
∑

α(e1)◦α(e2)=γ

RE(RE(ae1)ae2) + · · ·

+
∑

α(e1)◦···◦α(en)=γ

RE(· · · (RE(ae1) · · ·)aen)) . (3.5.15)

Proof. The algebroid (A,E) is associated to a directed graph (graph scheme)
G and the bialgebroid (A0),H (1)) is associated to a semigroupoid G (equiva-
lently a graph that is reflexive, symmetric, and transitive). A morphism Φ :

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 275

(A(0),H (1)) → (A,E) of algebroids is equivalent to the datum of a map of
directed graphs α : G → G. The map ΦE : H (1) → E then is given by
ΦE(f) = f ◦ α. It suffices to consider the case of f = δγ for some γ ∈ G(1), as
in general f ∈ Q[G] will be a product of linear combinations of delta functions
δγ. In the case where the Rota Baxter operator of weight −1 is the identity, the
Bogolyubov preparation is of the form

Φ̃E(δγ) = δγ ◦ α +
∑

γ=γ1◦γ2

δγ1 ◦ α · δγ2 ◦ α + · · · +
∑

γ=γ1◦···◦γn

δγ1 ◦ α · · · δγn ◦ α ,

with n = deg(γ), which is then equal to

Φ̃E(δγ) =
∑

e∈EG :α(e)=γ

δe + · · · +
∑

e1,...,en∈EG : γ=α(e1)◦···◦α(en)

δe1 · · · δen , (3.5.16)

so that we have, for a collection of edges ei ∈ EG,

Φ̃E(δγ)(
∑

i

aiei) =
∑
α(e)=γ

ae +
∑

α(e1)◦α(e2)=γ

ae1 ae2 + · · · +
∑

α(e1)◦···◦α(en)=γ

ae1 · · · aen .

In the case of a Rota Baxter operator RE of weight −1 that is not the identity,
we similarly get (3.5.21). □

In the case of the bialgebroid (A0) = V(FSO0),H (1) = DM) of Merge
derivations as in Lemma 3.5.9, with G the associated semigroupoid, we can
regard the choice of a map of directed graphs α : G → G from some graph G
as a chosen diagram of Merge derivations modeled on G. The algebroid homo-
morphism ΦE(f) = f ◦ α describes all the ways of obtaining a certain Merge
derivation γ inDM as an arrow in G, ΦE(δγ) =

∑
e :α(e)=γ δe. The Bogolyubov

preparation with the identity Rota-Baxter operator lists all the possible ways
of obtaining γ as a composition of Merge derivations through arrows in G, as
in (3.5.16). Consider an element

∑
i λiei as a weighted combination of edges in

the diagram G. For example, if the coefficients Λ = (λe)e∈E are a probability
distribution on the edges of G, the value (using the identity as Rota–Baxter
operator)

Φ̃E(δγ)(
∑

e

λe e) =
∑
α(e)=γ

λe + · · · +
∑

α(e1)◦···◦α(en)=γ

λe1 · · · λen

is the total probability of realizing γ through the diagram E, as a sum of the
probabilities of all the possible ways of obtaining γ as a composition of arrows
in the image of edges of E drawn the assigned probabilities λe.

The setting for algebroids generalizes to semiringoids as in the case of the
generalization from Rota–Baxter algebras to Rota–Baxter semirings.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

276 Chapter 3 Algebraic Model

Corollary 3.5.22. The Birkhoff factorization of Lemma 3.5.20 extends to the
case of Rota–Baxter semiringoids of weight +1, in the form of a morphism
of semiringoids Φ : (A(0),H (1))semi → (A,E) from a subdomain of a bialge-
broid (A(0),H (1)) that has semiringoid structure and is closed under coprod-
uct ∆. The terms of the factorization are as in the case of semirings (Propo-
sition 3.1.9) with ΦE,−(f) = R(Φ̃E(f)) = R(ΦE(f) ⊡ ϕ−(f ′) ⊙ ϕ(f ′′)) with
∆(f) = f ⊗ 1 + 1 ⊗ f +

∑
f ′ ⊗ f ′′.

3.5.5 Parsing semirings and Merge derivations
After this preparatory work, we can now formulate the analog of parsing semir-
ings in the setting of Merge derivations, replacing the usual formulation for
context-free grammars, as in (75) .

Here we consider a map Φ : (A(0),H (1))semi → (A,E), where (A,E) is a
Rota–Baxter semiringoid and (A(0),H (1))semi is a subdomain of the bialgebroid
(A(0) = V(FSO0),H (1) = DM) of Merge derivations that has a semiringoid
structure, so that Φ is a morphism of semiringoids. We assume that the target
(A,E) is of the form as in Lemma 3.5.19, with (R,R) a Rota–Baxter semiring,
such as the max-plus semiring (R ∪ {−∞},max,+) (also known as tropical
semiring) with R given by the ReLU operator, or the semiring ([0, 1],max, ·)
with the threshold Rota–Baxter operators cλ that we considered before. Then
the mapΦmay be viewed as assigning a diagram of Merge derivations, through
a map α : G → G as above, and checking all the possible ways of realizing
some chain of Merge derivations γ through compositions coming from the
chosen diagram, weighted by elements in the given semiring and filtered by
the Rota–Baxter operator that acts as a threshold.

Thus, as above, we start with a chosen a diagram α : G → G of Merge
derivations where we have assigned weights λe ∈ R with values in the parsing
semiring R, for each edge e ∈ EG. For example, if R = ([0, 1],max, ·), we
can think of λe as a probability (or frequency counting) of occurrence of e in
the diagram of derivations. If R = (R ∪ {−∞},max,+) we can think of λe as
being real weights assigned to the edges e of the diagram G. Then the resulting
factorization

ΦE,−(δγ)(
∑

e

λe e) =
∑
α(e)=γ

RE(ae) +
∑

α(e1)◦α(e2)=γ

RE(RE(ae1)ae2) + · · ·

+
∑

α(e1)◦···◦α(en)=γ

RE(· · · (RE(ae1) · · ·)aen) (3.5.17)

measures all the possible ways of obtaining the Merge derivation γ via com-
positions in the chosen diagram with combined weights filtered by R.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.5 Birkhoff factorization and (semi)ring parsing 277

• In the case of R = (R ∪ {−∞},max,+) with R =ReLU, (3.5.5) lists all the
possibilities with weights of the substructures involved that are above the
ReLU threshold.

• In the case of R = ([0, 1],max, ·) with the threshold R = cλ, (3.5.5) lists all
the possible realizations of the derivation γ in the diagram that have proba-
bilities above the threshold λ in the substructures involved.

• In the case of the Boolean semiring B = ({0, 1},max, ·) with R = id, the
factorization (3.5.5) evaluates the truth value (truth conditions) for the real-
ization of a derivation γ through the diagram G given that the arrows of G
have assigned truth values (truth conditions), in such a way that the com-
position of arrows in the derivation corresponds to the AND operation on
the respective truth values and the choices of different paths of derivations
to obtain the same γ correspond to the OR operation on the respective truth
values.

3.5.6 Summary of semiringoid parsing
We summarize here quickly the main outcome of the construction obtained in
this section. The semiringoid parsing strategy can be outlined as the following
steps:

• an algebroid (A,E) used as target of parsing specifies a directed graph G:
this should be seen as a “chosen graphical template” for a possible scheme
of derivations;

• we can also regard this template as a “probabilistic” datum, where we can
consider a distribution

∑
i λiei on the arrows of the diagram G;

• a character Φ : (A(0),H (1))→ (A,E) from a (Hopf) bialgebroid to the target
algebroid induces a map of graphs α : G → G (whereG also a category): this
can be seen as a way of realizing the chosen template G as actual derivations,
that is, composable arrows of the (semi)groupoid;

• for a chosen arrow γ of the semigroupoid G, identified with its dual function
f = δγ, the Bogolyubov preparation (for the trivial Rota–Baxter structure
R = id),

Φ̃E(δγ) =
∑

e∈EG :α(e)=γ

δe + · · · +
∑

e1,...,en∈EG : γ=α(e1)◦···◦α(en)

δe1 · · · δen

lists all the possible ways of obtaining γ as compositions of images of arrows
in G, that is, realizing it in any possible way through the template diagram
of derivations;

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

278 Chapter 3 Algebraic Model

• for a distribution
∑

i λiei on the diagram G and a non-trivial Rota–Baxter
structure RE , the Birkhoff factorization

ΦE,−(δγ)(
∑

i

λiei) = −(
∑
α(e)=γ

RE(λe) +
∑

α(e1)◦α(e2)=γ

RE(RE(λe1)λe2) + · · ·

+
∑

α(e1)◦···◦α(en)=γ

RE(· · · (RE(λe1) · · ·)λen))

selects only those realizations through the template diagram that meet a cer-
tain threshold (for example of probability).

In the specific case of Merge derivations:

• the target of parsing are seimiringoids consisting of functions on a template
graph G of derivations, with values in a parsing semiring, which we can take
to be the semiring (R ∪ {−∞},max,+) with Rota–Baxter structure R given
by ReLU threshold, or the Viterbi semiring ([0, 1],max, ·) with Rota–Baxter
structure given by a thresholds R = cλ;

• the character Φ from the bialgebroid of Merge derivations to the target semi-
ringoid determines the assignment α : G → G of a specified diagram of
Merge derivations, checking all possible ways of realizing some given chain
γ of Merge derivations in G through compositions coming from the chosen
diagram G, weighted by elements in the given semiring and filtered by the
Rota–Baxter threshold R.

This parsing strategy is designed to address questions of this kind: suppose
that one selects a set of arrowsMS ,S ′ (individual Merge applications) or chains
MS N ,S ′N ◦ · · · ◦MS 1,S ′1 with certain probabilities (or more complex diagrams of
such derivations), then can one realize a certain specific transformation F →
F′ of workspaces via Merge, using only the given class of transformations, in
such a way that all the probabilities for all the necessary compositions of these
remain above an assigned threshold.

With this we have shown that we can obtain in this way a form of semir-
ing parsing for Merge derivations that simultaneously generalizes the semiring
parsings of (75) , for example with values in the Boolean or the Viterbi semir-
ing, and also the Birkhoff factorizations of our initial toy models of syntax-
semantics interface discussed in §3.2.

3.6 Pietroski’s compositional semantics

Among the different proposed models of semantics, Pietroski’s compositional
model (see for instance (156), (157)) is closely linked to the structure of syn-
tax as described by Merge. We discuss how this approach relates to our model

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 279

of the syntax-semantics interface. Our main observation here is that, in our
model, it is not necessary to assume an independent existence within seman-
tics of what Pietroski refers to in (156) as the Combine binary operation that
mimics the functioning of Merge in syntax. The type of compositional struc-
ture postulated by Pietroski in (156) for semantics follows in our case from
Merge itself acting on the syntax side of the interface, along with the map
ϕ : H → R together with its Birkhoff factorization.

To see this, we recall briefly the setting of (156), focusing in particular on the
discussion of the Combine operation, that is the aspect more directly connected
to our setting. The general principles for the compositional structure of seman-
tics articulated in (156) include the basic idea that “meanings are instructions
to build concepts,” that can be articulated in the following way, adapting the
arguments of (156) to the terminology we have been using in this chapter. Lex-
ical items are seen as “instructions to fetch concepts.” This corresponds to the
assumption we made in various examples discussed in the previous sections,
of the existence of a map s : SO0 → S from lexical items to a semantic space
S. One then considers i-expressions, generated by I-language, as building in-
structions for the construction of i-concepts, with principles that govern the
combination of i-expressions.

This fits nicely with our proposal of a syntax-driven syntax-semantics in-
terface, where the i-expressions are provided, in our setting, by the syntactic
objects T ∈ Dom(h) ⊂ TSO0 . The corresponding i-concepts are provided
in our setting by and their images s(T) ∈ S, under an extension of the map
s : SO0 → S from SO0 to Dom(h) ⊂ SO as discussed in previous sections,
together with the corresponding ϕ(T) ∈ R, where R is an algebraic structure of
Rota-Baxter type associated to the (topological/metric) space S.

On the side of syntax, the free commutative non-associative magma SO =
Magmanc,c(SO0,M) of (3.1.1) is the main computational structure, with Merge
M as the main binary operation of structure formation. The resulting hierar-
chical structures are the syntactic objects T ∈ SO = TSO0 , identified with
abstract (non-planar) binary rooted trees with leaves labeled by lexical items
in SO0. In Pietroski’s formulation of (156) one considers a parallel form of
binary structure formation operation, acting on the side of semantics.

The compositional rules for the building of i-concepts via i-expressions are
described in (156) in terms of one basic non-commutative binary operation,
Combine. This in turn consists of the composition of two operations, Combine
= Label ◦ Concatenate, where, given two i-concepts α, β that can be combined

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

280 Chapter 3 Algebraic Model

in the I-language, one first forms a concatenation

Concatenate(α, β) = {α, β} =
α β

of the two and then labels the resulting expression by one of the constituents α
or β that plays the role of the head h(α, β) of the combined expression

Combine(α, β) = Label ◦ Concatenate(α, β) = Label(
α β

) = (3.6.1)

h(α, β)

α β

The binary operation Combine is not symmetric because of the head label.
Note that this operation is closely modeled on the Merge operation where,
given two syntactic objects T1 and T2, with the property that

T = M(T1,T2) =
T1 T2

∈ Dom(h) ⊂ SO = TSO0 ,

where M is free symmetric Merge and h is a head function, one can assign
to the abstract tree T a planar structure T πh determined by the head function,
resulting in a planar tree

T πh = Mnc(Th(T),T ′) ∈ T
planar
SO0

,

where T ′ ∈ {T1,T2} is the one that does not contain h(T).

In (156), the operation (3.6.1) is presented, in principle, as a compositional
operation that takes place in the semantic space S, hence requiring this space
to be endowed with its own computational system (at least partially defined),
analogous to the Merge operation in syntax. As a result, we would have two
systems that each have a “Merge” type operation, one for syntax and one for
semantics. Besides an issue here with parsimony (we can get by, given the
model presented here, with just one), this would be different from the case of
other types of conceptual spaces, such as the perceptual manifolds associated
to vision (see for instance (38)).

The most widely studied conceptual spaces and perceptual manifolds are
in the context of vision. It should be noted that there have been significant at-
tempts by mathematicians at formulating a compositional computational model
for vision: among these in particular Pattern Theory, as developed by Grenan-
der, Mumford, et al. (see for instance (78), (79), (146)), that has found various
applications, especially in computer vision. The original approach to Pattern
Theory was based on importing ideas from the theory of formal languages,
especially from the case of probabilistic context-free grammars. This was fur-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 281

ther articulated in Grenander’s proposed “mathematical theory of semantics”
in (80). We will not be discussing this viewpoint in the present chapter, but it
is important to stress here that it is still topological and geometric properties
of the relevant “semantic spaces” that play a fundamental role in that setting
and that there are serious limitation to the extent to which a generative model
can be adapted to vision in comparison to language.

3.6.1 The Combine operation in Pietroski’s semantics
In terms of the syntax-semantics interface, using the terminology in this chap-
ter, a setting such as that proposed by Pietroski in (156) would seem to corre-
spond to postulating the existence of a morphism ϕ : Hnc → HS, that maps a
non-commutative version of the Hopf algebra structure of H (responsible for
the action of Merge on syntax, formulated after planarization) to a (possibly
partially defined) non-commutative Hopf algebra structure HS on the side of
the semantic space S. At least this would be the case if one desires a Com-
bine operation that fully mimics the Merge operation, including the Internal
Merge action. However, this would be a much stronger requirement than what
is strictly needed to achieve the desired type of compositionality of i-concepts.

Indeed, one can view the construction of i-concepts postulated by (156) not
as the result of a compositional structure on the semantic space S itself, but
simply as the extension of the map s : SO0 → S to a map s : Dom(h) → S,
built along the lines of what we discussed in Lemma 3.2.12. In other words,
in this formulation, the i-concept Concatenate(α, β) where α = s(T1) and β =
s(T2) is well defined if T = M(T1,T2) ∈ Dom(h) and in that case is simply the
image

Combine(α, β) := s(M(T1,T2)) ∈ S , (3.6.2)

where the construction of the point s(T) depends on s(T1), s(T2), and on whether
the head function satisfies h(T) = h(T1) or h(T) = h(T2). In other words, it
depends on S only through the existence of a geodesically convex Riemannian
structure and a semantic proximity function P, without having to require any
Merge-like computational mechanism on S itself. It suffices that syntax has
such an operation and that S has a topological proximity relation (expressed in
the case of the construction we presented in Lemma 3.2.12 in terms of a more
specific metric property of convexity).

3.6.2 Concatenate operation
Our form (3.6.2) of the Combine operation is not based on concatenation of
strings of leaves. We show here why it is necessary to use a different construc-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

282 Chapter 3 Algebraic Model

tion not based on concatenation, as the latter is not directly compatible with a
free symmetric Merge.

On ordered strings of elements in the set SO0 of lexical items and syntactic
features, one can consider the concatenation operation defined as follows.

Definition 3.6.1. Let Σ∗(SO0) be the set of ordered sequences of elements in
SO0 of arbitrary (finite) length. The concatenation operation is the associative
non-commutative binary operation

Conc : Σ∗(SO0) × Σ∗(SO0)→ Σ∗(SO0)

(α, β) 7→ Conc(α, β) = α∧β = αβ

that combines the ordered sets α and β into a new ordered set where the string
β follows the string α.

To a planar binary rooted tree T̃ ∈ Tpl
SO0

, with leaves labelled bySO0, one can
associate the corresponding ordered set of leaves (ordered by the planar struc-
ture), L(T̃) ∈ Σ∗(SO0). LetMnc denote the non-commutative, non-associative
binary operation of the free non-commutative, non-associative magma

T
pl
SO0
= SOnc = Magmana,nc(SO0,M

nc) .

We denote as before by Π the canonical projection (morphism of magmas)

Π : Tpl
SO0
→ TSO0

that forgets the planar embedding. Given an abstract tree T ∈ TSO0 , we write
T̃ for any choice of a planar tree T̃ ∈ Π−1(T), in the fiber Π−1(T) of this
projection. We have the following simple property.

Lemma 3.6.2. The map L : Tpl
SO0
→ Σ∗(SO0) with L : T̃ 7→ L(T̃) satisfies

L(Mnc(T̃1, T̃2)) = Conc(L(T̃1), L(T̃2)) .

Proof. This is immediate, as the non-commutative Merge Mnc(T̃1, T̃2) is the
planar tree that has the planar tree T̃1 as the left branch below the root vertex
and T̃2 as the right branch, so that the ordered set of leaves L(Mnc(T̃1, T̃2))
consists of the ordered set L(T̃1) followed by the ordered set L(T̃2) so it agrees
with the result of the concatenation operation. Note thatMnc is non-associative
while Conc is associative, so the map L kills the associators ofMnc. □

When we consider abstract trees that are produced by the free symmetric
MergeM, namely the syntactic objects in

SO = Magmana,c(SO0,M) = TSO0 ,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 283

we know that there is no possible morphism of magmas SO → SOnc. Namely
given a map (of sets)

σ : SO → SOnc

that is a section of the projection Π : SOnc → SO (that is, such that Π◦σ = id,
meaning thatσ is an assignment of planar structure to abstract trees), in general
we have

M
nc(σ(T1), σ(T2)) , σ(M(T1,T2)) . (3.6.3)

This means that necessarily there exist some T1,T2 for which one has the in-
equality (3.6.3).

Definition 3.6.3. A “linearization algorithm” is a map (of sets) σ : SO →
SOnc that is a section of the canonical projection Π : SOnc → SO, namely that
satisfies Π ◦ σ = id,

The observation in (3.6.3) above has the consequence that, in principle, there
may be pairs T1,T2 for which

L(σ(M(T1,T2))) , Conc(L(σ(T1)), L(σ(T2))) = L(Mnc(σ(T1), σ(T2))) ,

where the second equality is just Lemma 3.6.2. Thus, there is a possible ob-
struction to a consistent definition of Conc on the image of a “linearization
algorithm” σ : SO → SOnc. We need to check when an obstruction of this
kind does or does not arise.

Definition 3.6.4. A linearization algorithm given by a section σ : SO → SOnc

of the projection Π : SOnc → SO has well defined concatenation if, for all
T1,T2 ∈ SO,

L(σ(M(T1,T2))) = Conc(L(σ(T1)), L(σ(T2))) . (3.6.4)

It has partial concatenation onD if there is a domainD ⊂ SO suct that, for all
T1,T2 ∈ D, the identity (3.6.4) holds.

Correspondingly, a linearization algorithm does not have well defined con-
catenation if there exists a pair of T1,T2 ∈ SO for which, in Σ∗(SO0),

L(σ(M(T1,T2))) , Conc(L(σ(T1)), L(σ(T2))) ,

hence also necessarily, in Tpl
SO0

,

σ(M(T1,T2)) , Mnc(σ(T1)), L(σ(T2)) .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

284 Chapter 3 Algebraic Model

Lemma 3.6.5. There is no linearization algorithm given by a section σ :
SO → SOnc of the canonical projection Π : SOnc → SO that has well defined
concatenation.

Proof. We need to show that, given any section σ : SO → SOnc, there is a
pair T1,T2 such that

L(σ(M(T1,T2))) , Conc(L(σ(T1)), L(σ(T2))) .

Since σ cannot be a morphism of magmas, we know there exist a pair T1,T2

such that
σ(M(T1,T2)) , Mnc(σ(T1), σ(T2)) .

The two planar trees σ(M(T1,T2)) and Mnc(σ(T1), σ(T2)) are always in the
same fiber over the abstract tree T = M(T1,T2) of the projection map Π that
collapses the 2n−1 different planar structures, with n = #L(T), with L(T) the un-
ordered set of leaves of T . On the other hand, the two planar treesσ(M(T1,T2))
and Mnc(σ(T1), σ(T2)) will have the same ordered set of leaves iff they differ
by an associator (a change of bracketing on the same ordered set). Observe that
a given ordered set of leaves is thus realized by Cn−1 possible planar structures
(with Cn the Catalan numbers), which correspond to the vertices of the associ-
ahedron Kn. These planar structure are exactly those that differ by associators.
Consider the standard identity involving Catalan numbers

n! Cn−1 = 2n−1 (2n − 3)!! (3.6.5)

where (2n − 3)!! counts the number of different possible abstract (non-planar)
binary rooted trees on n labelled leaves (those abstract trees T that have the
same non-ordered set L(T)) and 2n−1 counts the number of possible planar
structures for each of these trees. This total number is equal to the number
Cn−1 of possible bracketing on a fixed ordered set (the total number of planar
trees T̃ with the same ordered set L(T̃)) times the total number n! of possible
orderings of a non-ordered set L(T) of n-leaves. So the identity says that one
can start with the non-ordered set S and count all possible orderings S σ (these
are counted by n! permutations) and for each S σ consider all possible planar
trees T̃ with the ordered set L(T̃) = S σ (these are counted by Cn−1 different
bracketing), or equivalently one can consider all possible abstract trees T with
non-ordered sets L(T) = S (these are counted by the double factorial (2n =
3)!!) and then all possible planar structures T̃ for these trees (counted by the
2n−1) factor. The counting n!Cn−1 can be seen, as discussed in (133) as n!
associahedra glued together to form the orientation double cover of M̄0,n+1(R),

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 285

with its projection to the moduli space BHV+n of abstract metric trees with 2n−1

the size of the fibers. Here we can think of it in the following way.
Given a planar binary rooted tree T̃ on n labelled leaves, the symmetric group

S n acts on the leaves producing other planar trees τ : T̃ 7→ τ(T̃) with the same
tree structure but the labels of leaves permuted. If T̃ is one of the vertices
of one of these n! associahedra Kn counted in the left-hand-side of (3.6.5),
then the orbit under S n determines a corresponding vertex in each of the other
associahedra. Moreover, for each abstract binary rooted tree T on n labelled
leaves, and a choice of planar structure T̃ ∈ Π−1(T), we can consider a group
GT̃ of transformations generated by the involutions γv that flip the two subtrees
T̃v,L and T̃v,R below v in the planar tree T̃ , producing a new planar trees γv(T̃)
with the same underlying abstract T . This has #GT̃ = 2n−1 the number of
possible planar structures on T , as any planarization can be built by repeatedly
deciding, for each vertex below the root, which of the two branches is places
to the left and which to the right. The normal subgroup Aut(T̃) ⊂ GT,π consists
of transformations in GT̃ that preserve T̃ (this will depend on the structure of
the tree T and the choice of labels), so that #(GT̃ /Aut(T̃)) counts the number
of non-isomorphic planar trees in the orbit of T̃ under GT,π (in the fiber over
the abstract tree T), by the orbit-stabilizer theorem

#OrbitGT̃
(T̃) =

#GT̃

#Aut(T̃)
.

Since the total number of planar trees on n labelled leaves is the Catalan num-
ber Cn−1 this gives∑

T

#(GT̃ /Aut(T̃)) =
∑

T

2n−1

#Aut(T̃)
= Cn−1 =

(2n − 3)!!
n!

.

Consider now a linearization algorithm given by a map of sets σ : SO →
SOnc. Given T1,T2 ∈ SO consider the abstract tree T = M(T1,T2) and the
planar trees

T̃σ := σ(T) = σ(M(T1,T2)) and T̃ := Mnc(σ(T1), σ(T2))

These are both planarizations of the same T , hence they are in the same fiber
of multiplicity 2n−1 over T . In particular, this means that there is an element
γ ∈ GT̃ such that γ(T̃) = T̃σ. The cases in which we have an incompatibility
between the linearization algorithm and the asymmetric Merge Mnc are given
by pairs (T̃σ, T̃) such that the transformation γ ∈ GT̃ with γ(T̃) = T̃σ is not in
the subgroup Aut(T̃). Only such pairs (T̃σ, T̃) can be possible sources of a non-
well defined concatenation, because any pair for which γ ∈ Aut(T̃) will have
T̃σ ≃ T̃ , hence L(T̃σ) = L(T̃) as ordered sets. So suppose given a pair (T̃σ, T̃)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

286 Chapter 3 Algebraic Model

Figure 3.18
Projection from the space of planar trees to the space of non-planar trees in the case of
3 leaves: planar trees at different vertices of one of the associahedra K3 (segments) are
not in the same fiber of the projection.

with γ < Aut(T̃). The condition for having L(T̃σ) = L(T̃) as ordered sets is that
T̃σ and T̃ are two different vertices among the Cn−1 vertices of one of the n!
associahedra. But different vertices of the same associahedron do not belong
to the same fiber over T , as the projection map M̄0,n+1(R) → BHV+n is given
by the origami folding of each n − 2 dimensional cube (pair of cubes in the
orientation double cover) in the cubical decomposition of each associahedron
along each of its 2n−2 axes. In particular, each of these cubes contains exactly
one of the associahedron vertices (giving 2Cn−1 cubes in the double cover)
so that different vertices of the same associahedron are never folded together
(the example of n = 3 is illustrated in the figure). So we conclude that every
pair (T̃σ, T̃) such that the transformation γ ∈ GT̃ with γ(T̃) = T̃σ is not in
the subgroup Aut(T̃) is always a violation of the “well defined concatenation”
property. □

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 287

Thus, the associative non-commutative concatenation operation cannot be
well defined on the image of a linearization algorithm. This includes the exter-
nalization procedure σL, which is a section of the projection Π : SOnc → SO.

However, this problem is resolved when one restricts to the domain of a head
function, defined as in Definition 1.13.3 and Definition 1.13.6.

It is shown in (132) that there are exactly 2#Vo(T) possible head functions hT

on an abstract binary rooted tree T , with Vo(T) the set of non-leaf vertices of
T , and that these correspond to the different possible choices of planarization
of T . Thus, a planarization (linearization algorithm in the linguistic terminol-
ogy) is the same thing as the assignment of a head function. Among these
possibilities, the actual syntactic head is a head function that is determined by
the lexical items and syntactic features in SO0 associated to the leaves, in such
a way that, for each accessible term Tv of T , the head hT (v) is the the item
carrying the uniquely determined prominent labeling feature. It is shown in
(133) that the formal properties of Definition 1.13.6 are in fact equivalent fo
the formal properties of the syntactic head described in (21).

As discussed in (132), an assignment h : T 7→ hT that would depend on the
lexical items and syntactic features in SO0 associated to the leaves of the trees
will necessarily be defined on some subdomain Dom(h) ⊂ SO of the set of all
syntactic objects produced by the free symmetric Merge, as in general these
may include structures that don’t admit good labeling. So let’s assume that we
have a given head function h defined on a domain Dom(h) with the properties
of Definition 1.13.6.

We want to check that the partially defined linearization algorithm σh in-
duced by the head function has a partially defined binary associative non-
commutative Conc (concatenate) operation with a modified version of the par-
tially defined property of Definition 3.6.4, as follows.

Lemma 3.6.6. For T1,T2 ∈ Dom(h) such thatM(T1,T2) ∈ Dom(h), we have

L(σh(M(T1,T2))) =

 Conc(L(σh(T1)), L(σh(T2)) h(M(T1,T2)) = h(T1)
Conc(L(σh(T2)), L(σh(T1)) h(M(T1,T2)) = h(T2)

with σh the planar structure determined by the head function h.

Proof. First observe that if T1,T2 in Dom(h) have the property that T =
M(T1,T2) ∈ Dom(h), then the head h(M(T1,T2)) is necessarily either the same
as h(T1) or the same as h(T2). Let σh denote the partially defined section
σh : Dom(h) → Tpl

SO0
of the projection Π : Tpl

SO0
→ TSO0 that assigns to

T ∈ Dom(h) the planar structure determined by the head, by putting below
each vertex v the direction pointing to the leaf hT (v) to the left (head-initial) in

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

288 Chapter 3 Algebraic Model

the planar embedding. (Using the head-final choice of planar structure makes
no difference to the rest of the argument.) Then, given T1,T2 in Dom(h) and
σh(T1) and σh(T2) the corresponding (head-initial) planarizations, only one of
either

M
nc(σh(T1), σh(T2)) or Mnc(σh(T2), σh(T1))

will be in the subsetσh(Dom(h)) ⊂ Tpl
SO0

, depending on whether h(M(T1,T2)) =
h(T1) or h(M(T1,T2)) = h(T2), with either

M
nc(σh(T1), σh(T2)) = σh(M(T1,T2))

or
M

nc(σh(T2), σh(T1)) = σh(M(T1,T2))

in the two cases. If we consider the restriction L : σh(Dom(h)) → Σ∗(SO0)
then we find that

L(σh(M(T1,T2))) =

 L(Mnc(σh(T1), σh(T2))) h(M(T1,T2)) = h(T1)
L(Mnc(σh(T2), σh(T1))) h(M(T1,T2)) = h(T2) .

The statement then follows from Lemma 3.6.2. □

3.6.2.1 The role of idempotents One may worry here that the Combine
operation of Pietroski appears to behave differently from Merge itself. A sim-
ple way in which this difference manifests itself is in the possible presence
of idempotent structures. For example, one expects that Combine(α, α) = α,
while at the level of Merge

M(T,T) = T T , T .

This in itself may not constitute an example because we also need a head func-
tion and a structure of the form M(T,T) might not admit a head function.
However, by the same principle, one expects cases where Combine(α, β) = α
(or β), where the head function is not an issue, and again this seems to be at
odds with the fact that at the level of Merge this never happens since SO is a
free magma, so that for all T,T ′ one has M(T,T ′) , T and M(T,T ′) , T ′.
This, however, does not constitute a problem, as it is taken care of in (3.6.2)
by the structure of the map s : Dom(h)→ S from s : SO0 → S, other than the
one described in Lemma 3.2.12.

In the construction of Lemma 3.2.12 we have assumed that the semantic
space we work with has the structure of a geodesically convex Riemannian
manifold and that, for a syntactic objectM(T,T ′) the image s(M(T,T ′)) is ob-
tained as a form of convex interpolation between the images s(T) and s(T ′). In

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 289

this setting, the location of the point s(M(T,T ′)) on the geodesic arc between
s(T) and s(T ′) depends on a function P(s(T), s(T ′)) measuring syntactic re-
latedness. Depending on the nature of this function P, one expects that there
will be points s, s′ ∈ S for which P(s, s′) = 0 or P(s, s′) = 1, so that the point
s(M(T,T ′)) coincides with one of the endpoints s(T) and s(T ′). This gives rise
precisely to the type of situation where one obtains

Combine(α, β) = α or Combine(α, β) = β ,

even though M(T,T ′) , T and M(T,T ′) , T ′. Note that the function P, that
is responsible for this difference in behavior between Merge and Combine,
does not implement any computational process itself, but is only an evalua-
tor of topological proximity in semantics. The only computational process is
implemented by syntactic Merge.

This case illustrates the situation where, contrary to the case described in
§3.3 (or the possible situation discussed in §3.10 below), the image of syntax
inside semantics is not an embedding. This non-embedding situation is gener-
ally expected when one maps to a semantic model that has a discrete topology
(a Boolean assignment for example). In the case we describe here, where the
function s : Dom(h)→ S is based on geodesic convexity, one could in princi-
ple entirely avoid idempotent cases and assume as in in §3.3 that the semantic
relatedness P(s(T), s(T ′)) may be very close to either 0 or 1 but not exactly
equal to either (see the discussion in §3.3).

3.6.2.2 An example Pietroski’s Combine operation is designed to rule out
improper inferences. We consider here an example to show how it fits with the
formulation we give above.9

Given the sentences “John ate a sandwich in the basement” and “John ate a
sandwich at noon”, these two sentences clearly do not imply that “John ate a
sandwich in the basement at noon”.

In our setting, consider a sentence with a series of adjuncts to a verb, such as
“John ate a sandwich in the basement with a spoon at noon.” We have a Merge-
based inductive construction of the map s : Dom(h) → S from s : SO0 → S,
of the type discussed in §3.3. This means that, if T̃ is the syntactic object
associated to the full sentence, we can view it as a structure of the form

T ′
T T1,...,k

9 We thank Norbert Hornstein for this example.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

290 Chapter 3 Algebraic Model

where a VP T is modified by a series of adjuncts T1,...,k = {T1, . . . ,Tk} (for
simplicity, we do not draw the full tree structure).

Figure 3.19
Example: adjuncts to verbs and semantic points.

With the construction of §3.2.2 and §3.3 of the extension s : Dom(h) → S
of the map s : SO0 → S we obtain points s(T) ∈ S and s(Ti) ∈ S for each
i = 1, . . . , k. When we consider each individual adjunct, the corresponding
point

si := s(T Ti
)

lies on the geodesic arc in S between s(T) and s(Ti), at a distance pi =

Pσ(s(T), s(Ti)) from s(T), where σ is the adjunct syntactic relation. In par-
ticular, there is a convex geodesic neighborhood of the point s(T) in S that
contains all the points si. When we consider the combinations Ti1,...,ir of the
adjuncts Ti, this further determines points

si1...ir = s(
T Ti1...ir

) .

These points are contained in the same neighborhood of s(T) and they are
also contained in the intersection of neighborhoods around the points si with
i ∈ {i1, . . . , ik}. A sketch of this relation is illustrated in Figure 3.19, with

T̃ :=
T T12

.

Dropping the more refined metric/convexity structure, and the fact that the
more precise location of this point depends on syntactic heads and evalua-
tion of semantic proximity of the lexical items involved, if we only retain the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 291

Boolean relations of these neighborhoods and their intersections, we obtain a
map to the Boolean semiring that checks the fact that “John ate a sandwich
in the basement at noon” implies that “John ate a sandwich in the basement”
and that “John ate a sandwich at noon”, while the opposite implications do not
hold, as desired.

Here we can see, however, that the construction of the map s : Dom(h)→ S
that we used in §3.2.2 and §3.3 is only an oversimplified model, and that it
should be refined by directly including coverings by neighborhoods related by
intersections; see the discussion in §3.2.2.5.

3.6.3 Predicate saturation in Pietroski’s semantics and operadic structure
Other important parts of Pietroski’s semantics, in addition to the Combine op-
eration discussed above, consists of predicate saturation and existential clo-
sure, see (156). We propose here a way to fit these aspects in our model,
compatibly with the form of the Combine operation that we just described, us-
ing the formulation of the magma SO of syntactic objects in terms of operads
(which we mentioned briefly in §2.5.1).

We recall briefly the mathematical notion of an operad, introduced in (141),
and we describe how to view syntactic objects as an algebra over an operad.

3.6.3.1 Syntactic objects and operads An operad (in Sets) is a collection
O = {O(n)}n≥1 of sets of n-ary operations (with n inputs and one output), with
composition laws

γ : O(n) × O(k1) × · · · × O(kn)→ O(k1 + · · · + kn) (3.6.6)

that plug the output of an operation in O(ki) into the i-th input of an operation
in O(n). The composition of these operations γ is subjects to requirements
of associativity and unitarity, which we do not write out explicitly here. (We
will return to discuss these more in detail in §3.8.1: see Figure 3.25 for the
associativity relation of operads.) An algebra A over an operad O (in Sets) is
a setA on which the operations of O act, namely there are maps

γA : O(n) ×An → A (3.6.7)

that satisfy compatibility with the operad composition,

γA(γO(T,T1, . . . ,Tm), a1,1, . . . , a1,n1 , . . . , am,1, . . . , am,nm) =

γA(T, γA(T1, a1,1, . . . , a1,n1), . . . , γA(Tm, am,1, . . . , am,nm)) .
(3.6.8)

for T ∈ O(m), Ti ∈ O(ni) and {ai, j}
ni
j=1 ⊂ A, and with γO the composition

in the operad and γA the operad action. This notion means that elements of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

292 Chapter 3 Algebraic Model

the set A can be used as inputs for the operations in O, resulting in an output
that is again an element in A. The category of Sets can be replaced by more
general symmetric monoidal categories. In particular we can consider cases
where A is a topological space, or a vector space, which are suitable for the
setting of semantic spaces. The description of the operadic composition laws
that we mentioned in §2.5.1, in terms of the compositions ◦i : O(n) × O(m)→
O(n + m − 1) is equivalent, for unitary operads, to the description in terms of
the compositions (3.6.6).

In particular, we are interested here in the operad M freely generated by a
single commutative binary operationM, where we haveM(1) = {id},M(2) =
{M}, M(3) = {M ◦ (id × M),M ◦ (M × id)}, etc. Consider again the set of
syntactic objects SO. The magma structure of (3.1.1) can be reformulated as
the structure of algebra over this operad.

Lemma 3.6.7. The set SO of syntactic objects is an algebra over the operad
M freely generated by the single commutative binary operationM.

Proof. We can identify the elements inM(n) with the abstract binary rooted
trees with n leaves (with no labels on the leaves), where each internal (non-
leaf) vertex is labeled by an M operation. The maps (3.6.7) are simply given
by taking γ(T,T1, . . . ,Tn) with T ∈ M(n) and Ti ∈ SO for i = 1, . . . , n to be
the abstract binary rooted tree in TSO0 = SO obtained by grafting the root of
the syntactic object Ti to the i-th leaf of T ∈ M(n). If the syntactic objects Ti

have ni leaves, then the syntactic object γ(T,T1, . . . ,Tn) obtained in this way
has n1+· · ·+nk leaves. Note that this operad action is just a repeated application
of the product operationM in the magma SO, hence the description as algebra
overM and as magma as in (3.1.1) are equivalent. □

3.6.3.2 Semantic spaces and operads The additional structure that we
want to consider here, on the side of semantic spaces, is that of a partial al-
gebra over the operadM.

Definition 3.6.8. Let M be the operad freely generated by a single commu-
tative binary operation M. A semantic space S is a compositional semantic
space if it has the following properties:

1. There is a map s : Dom(h)→ S extending s : SO0 → S.
2. There is an action of the operadM on S

γS :M(n) × Sn → S . (3.6.9)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.6 Pietroski’s compositional semantics 293

3. For T ∈ M(n) and for T1, . . . ,Tn ∈ Dom(h) ⊂ SO such that

γSO(T,T1, . . . ,Tn) ∈ Dom(h)

we have

γS(T, s(T1), . . . , s(Tn)) = s(γSO(T,T1, . . . ,Tn)) . (3.6.10)

The last condition ensures that the structure of SO as an algebra over the
operadM and the structure of S as a partial algebra over the same operadM
are compatible through the map s : Dom(h)→ S from syntax to semantics.

One can more generally consider partial actions of an operad and a corre-
sponding notion of partial algebra over an operad (introduced in (110)), where
the operad action (3.6.7) is defined on a subdomainA0 ⊂ A,

γA : O(n) ×An
0 → A . (3.6.11)

For a compositional semantic space as in Definition 3.6.8 the predicate sat-
uration operation of Pietroski’s semantics, in a form compatible with syntactic
Merge, can be can be interpreted as the operad action (3.6.9) that saturates
the arguments of an n-ary operation by inputs in S0 (a concept of adicity
n combined with n semantic arguments). The partial compositions ◦i corre-
spondingly give the combinations of a concept of adicity n with one semantic
argument that give a concept of adicity n − 1. Note, however, that there is an
important difference here. In this model the operations of adicity n in M(n)
are part of the syntax core computational mechanism. They are not on the se-
mantic side, so they cannot directly be identified with the “concept of adicity
n” described in (156). It is only through the relation (3.6.10) that they acquire
that role.

3.6.3.3 Syntax-driven compositional semantics The notion of composi-
tional semantic space that we described in Definition 3.6.8 is based on two
operad actions, one (that we called γSO) on the side of syntax and one (that
we called γS) on the side of semantics, with the compatibility (3.6.10). This
is similar to the formulation of Pietroski’s semantics in (156). However, we
show now that in fact the operad action γSO on syntax suffices to completely
determine its counterpart γS.

Proposition 3.6.9. Let S+ = S ∪ {s∞} be the Alexandrov one-point compacti-
fication of S, where we denote the added point with the symbol s∞. The action
of the operadM on syntactic objects, described in Lemma 3.6.7, together with
a function s : Dom(h) → S uniquely determine an action of the operadM on

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

294 Chapter 3 Algebraic Model

S by setting

γS(T, s1, . . . , sn) :=


s(γSO(T,T1, . . . ,Tn)) if

si = s(Ti) and
γSO(T,T1, . . . ,Tn) ∈ Dom(h)

s∞ otherwise.
(3.6.12)

for T ∈ M(n) and s1, . . . , sm ∈ S
+.

Proof. We construct γS using γSO and the compatibility relation (3.6.10) using
(3.6.12), In order to show that (3.6.12) does indeed define an operad action on
S, we need to check the compatibility of γS with the operad composition γ in
M, given by the condition (3.6.8). The left-hand-side of (3.6.8) gives

γS(γM(T,T1, . . . ,Tm), s1,1, . . . , s1,n1 , . . . , sm,1, . . . , sm,nm) . (3.6.13)

This is equal to s∞ unless both of the two conditions

• all the si, j = s(Ti, j) for some Ti, j in Dom(h) ⊂ SO;
• the syntactic object

γSO(γM(T,T1, . . . ,Tm),T1,1, . . . ,T1,n1 , . . . ,Tm,1, . . . ,Tm,nm) (3.6.14)

is in Dom(h)

are satisfied, in which case (3.6.13) is equal to

s(γSO(γM(T,T1, . . . ,Tm),T1,1, . . . ,T1,n1 , . . . ,Tm,1, . . . ,Tm,nm)) . (3.6.15)

The compatibility of the action γSO with the operad composition implies that
(3.6.14) is equal to

γSO(T, γSO(T1,T1,1, . . . ,T1,n1), . . . , γSO(Tm,Tm,1, . . . ,Tm,nm)) . (3.6.16)

Note that if the full composition in (3.6.14) is in Dom(h) by the properties of
abstract head functions all the substructures γM(Ti,Ti,1, . . . ,Ti,ni), i = 1, . . . ,m,
are also in Dom(h). Thus, the point (3.6.15) in S is the same as the point

s(γSO(T, γSO(T1,T1,1, . . . ,T1,n1), . . . , γSO(Tm,Tm,1, . . . ,Tm,nm))) =

γS(T, s(γSO(T1,T1,1, . . . ,T1,n1)), . . . , s(γSO(Tm,Tm,1, . . . ,Tm,nm))) =

γS(T, γS(T1, s1,1, . . . , s1,n1), . . . , γS(Tm, sm,1, . . . , sm,nm)) ,

which gives the right-hand-side of (3.6.8). □

The structure of algebra over the operadM on S+ makes S a partial algebra
overM.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.7 Adjunction, embedded constructions, and the Pair-Merge problem 295

Note that we are everywhere somewhat simplifying the picture, as we do not
include the possibility that different syntactic objects in Dom(h) ⊂ SO may
sometime map to the same value in S under s : Dom(h)→ S and also the pos-
sibilities of ambiguities of semantic assignment where s : Dom(h) → S may
sometimes be multivalued. These possibilities would affect the construction
(3.6.12) of γS and would require a modified argument.

3.7 Adjunction, embedded constructions, and the Pair-Merge problem

Our model of the map s : Dom(h)→ S, that extends the assignment s : SO0 →

S of semantic values defined on lexical items, is a very simple model built us-
ing only the head function and proximity relations (and geodesic distance) in
semantic space S. In particular, since we start with the syntactic objects pro-
duced by the free symmetric Merge, the only factor that introduces asymmetry
in this construction is coming from the head function.

We discuss here briefly how one can try, within the limits of such an oversim-
plified model, to address the question of misalignments between hierarchical
syntax and compositional semantics that occur as a consequence of the partic-
ular behavior of adjunction, and in particular what is sometimes referred to as
the invisibility of adjuncts to syntax. This question was posed to us by Riny
Huijbregts.

A proposal for handling this type of problem is to postulate the existence of
an asymmetrical Pair-Merge operation accounting for argument-adjunct asym-
metry (see (33)), in addition to free symmetric Merge. This proposal has
undesirable features, as it requires the introduction of an additional form of
asymmetric Merge dealing with the peculiar behavior of adjunction, while one
expects that the computational mechanism of syntax should just rely entirely
on free symmetric Merge. An alternative proposal (see for instance (149)) in-
volves the use of “two-peaked” structures (see Figure 3.20) with {XP,YP} an
adjunction. This proposal has the drawback that, if one considers such “two-
peaked” structures as part of syntax, then one needs to justify them in terms
of the free Merge generative process, and this is problematic because the ele-
ments of the magma SO = TSO0 do not contain such structures, nor does the
action of Merge on workspaces (as can be also seen in the formalization given
in our chapter 1. The proposal of “two-peaked” structures in (149) is based on
(54), but is not formulable within the generative process of a free symmetric
Merge. We are going to discuss briefly what this means in terms of our model.

The reason why adjunction appears problematic in our setting is that ad-
junction can be seen as an instance of syntactic objects {XP,YP} which do
not have a well defined head function in the sense we have been using above,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

296 Chapter 3 Algebraic Model

{XP,YP} < Dom(h). This creates a problem with our simple model of mapping
to semantics, which is defined only on Dom(h). We want to argue here that this
problem can be to some extent bypassed without the need to significantly alter
the construction of the mapping s : Dom(h) → S, although, of course we ex-
pect that the naive model for this map based on the datum of the head function
may be replaced by some more elaborate versions, incorporating at least the
full Phase Theory discussed in §1.14.

Suppose given a syntactic object of the form {XP,YP} < Dom(h), where
both XP and YP are in Dom(h). In terms of our construction, the fact that the
head function is not well defined on the object {XP,YP} implies that we do
not have a choice of orientation on the geodesic arc between s(XP) and s(YP)
in S and a corresponding point along this arc at a distance P(s(XP), s(YP))
from the image of the head. We do still have the geodesic arc, though, and the
measurement P(s(XP), s(YP)) of syntactic relatedness between its endpoints.
So in terms of this construction, all that a hypothetical asymmetric Pair-Merge
would provide is a choice of orientation on the geodesic arc. Such a datum is
a geometric datum in S and does not necessarily require the existence of Pair-
Merge as an additional part of the computational structure of syntax. One can
extend s : Dom(h) → S to a slightly larger domain that includes adjunctions
just by the requirements that geodesic arcs in S whose endpoints are the two
terms of an adjunction come with a preferred choice of orientation.

This choice has the same effect of a Pair-Merge ⟨XP,YP⟩ signifying that
the first element should be taken to be the “head” while the second element
is to be seen as an “adjunct”. Such choice of orientation then ensures that
we can extend the same construction of s : Dom(h) → S also to adjunc-
tions {XP,YP} < Dom(h). In general one does not expect that this orien-
tation requirement should be extendable to other types of syntactic objects
{XP,YP} < Dom(h) that are not adjunctions. The fact that this mechanism
does not require any modification of the syntactic generative process and only
involves a metric property in S is consistent with the idea that adjuncts are on
a “separate plane” (see (33)).

While this approach can be accommodated within our setting, it leaves open
the question of assigning general criteria for orientations of geodesic arcs in S
that generalize the choice resulting from a had function, incorporating the case
of adjunctions, but not the case of arbitrary {XP,YP} objects.

Thinking in terms of “two-peaked” structures, on the other hand, presents
another possibility for treating this problem of adjunctions in our geometric
setting. Two-peaked structures are not part of the syntactic objects that can be
generated by Merge. Thus, their appearance in S is not the result of mapping

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.7 Adjunction, embedded constructions, and the Pair-Merge problem 297

an object from syntax, and can only be realized as an overlap of structures
in the image of the embedding of syntax into semantics. Given a syntactic
object of the form {XP,YP} < Dom(h), where both XP and YP are in Dom(h),
consider in S the points s(XP) and s(YP) and the geodesic arc between them
(now without any preferred assignment of orientation). Suppose given also a
syntactic object T = {Z, XP} ∈ Dom(h). Since this is in the domain of the
head function, it defines a point s(T) on the geodesic arc between s(Z) and
s(XP), where the geodesic arc is oriented from the end that corresponds to
the head to the other. Thus, we do indeed obtain a “two-peaked” structure, as
in Figure 3.20. Note that, while the geodesic arc between s(XP) and s(YP)
does not have an a priori choice of orientation, the orientation induced by the
head on the geodesic arc between s(Z) and s(XP) induces a unique consistent
orientation on the arc between s(XP) and s(YP).

Figure 3.20
“Two-peaked” structures are not syntactic objects generated by Merge, but can arise
inside S as overlap between images.

It is important to stress here the difference between the type of “two-peaked”
structures we are describing and the proposed “two-peaked” structures in the
syntactic setting, as in (149). Here this structure does not exist in the magma
SO, it only exists in the image of syntax under the map to semantic space S.
In other word, these “two-peaked” structures are not part of the computational
process of syntax and do not need to be justified by any additional form of
Merge. They exist because the images of syntactic objects inside S can inter-
sect, even though the resulting configuration (like the one in Figure 3.20) is not
itself the image of a syntactic object.

A different solution to the Pair-Merge problem was proposed by Riny Hui-
jbregts, (96), based only on the use of Internal and External Merge, with the
asymmetry of Pair-Merge realized through the identification of an ordered pair

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

298 Chapter 3 Algebraic Model

(α, β) with the structure {{α}, {α, β}}, where {α} is an accessible term of the
structure {α, β}.

3.7.1 Adjunctions and hierarchical structures
In relation to our discussion of adjunctions, we also consider here briefly the
question of characterizing the region that unbounded adjunct sequences span
inside the overall structure of recursivity in language, see for instance (158) for
some aspects of this question. In particular, since verbs take a finite number of
arguments but an arbitrarily large number of adjuncts, it appears as if adjuncts
may be able to account for a significant part of compositionality and recursive
complexity in natural language.

We want to give here a mathematical argument characterizing the genera-
tive power of chains of adjunctions, like the ones one can associate to a verb,
and how the region that the resulting structures span among all the possible
hierarchical structures.

It suffices to focus on the case of a verb with a sequence of adjunctions. We
can assume that the overall syntactic object that contains this substructure is in
the domain of a head function, and we can choose the planarization associated
to that head function, so we will be dealing with planar binary rooted trees as
hierarchical structures.

Figure 3.21
Planar trees with a sequence of adjunctions.

In a first instance, a sequence of adjunctions can be seen as appending to a
given hierarchical structure a comb-tree (in the planarization associated to the
head) as in Figure 3.21. Clearly, by increasing the number of such adjunctions,
one can arbitrarily increase the depth of the tree by increasing the length of this
comb-subtree. More generally, one can consider structures of this kind, with a
long comb-subtree, but where some of the tips of the comb contain additional
sub-structures. Thus, the question of how much of the recursive structure is
captured by this type of trees that contain a long comb-subtree.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.7 Adjunction, embedded constructions, and the Pair-Merge problem 299

We will show that we can characterize the generative power of sequences of
adjunctions in terms of the Tamari order and Loday’s operations of left and
right sum on planar binary rooted trees, (115), (116).

In the case of the planar trees, consider again the associahedron that we
already discussed in §3.4. The 1-skeleton of the associahedron is the Hasse di-
agram of the Tamari lattice, or Tamari order (see Figure 3.22 and Figure 3.5).
The oriented arrows in the Tamari order relate planar binary rooted trees ob-
tained by moving one edge from right to left across a vertex (for trees drawn
with the root at the top). The relation T < T ′ if there is an oriented arrow
T → T ′ in the Tamari lattice induces a partial order on the set Tpl

n+1 if planar
binary rooted trees on n+ 1 leaves (n internal vertices), so that Tpl

n+1 is a lattice
with this partial order relation. We write n = deg(T) for T ∈ Tpl

n+1 (note that
for convenience we shift here to grade by number of internal vertices rather
than by number of leaves). We see that, in this diagram, the comb trees that
correspond to the simplest chains of adjunctions occupy the extreme points of
the Tamari lattice.

Figure 3.22
The Tamari lattice (or Tamari order) for four and five leaves.

While we discuss here the case of planar binary rooted trees, observe that,
when considering abstract binary rooted trees, namely the syntactic objects
SO, without any choice of planarization, one can compare the comb-trees with
other trees (with the same fixed set of lexical items at the leaved) in the link of
the origin in the BHV moduli space, as in the case of Figure 3.23. Note that, if
the leaves had no labels, the two trees at the bottom in Figure 3.23 would also

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

300 Chapter 3 Algebraic Model

Figure 3.23
Abstract binary rooted trees with labelled leaves in the moduli space BHV4, as shown
in (11).

be equivalent (as non-planar trees) to the two comb trees at the top, and this
would seem to imply that (abstract) trees realized in a chain of adjunctions can
generate most of the hierarchical structures, but in fact all four of these trees
are inequivalent as trees with labelled leaves.

In (132) we recalled the two associative “over/under” operations on planar
binary rooted trees, where, for T, S ∈ Tpl, the tree S \T (S under T) as the
planar binary rooted tree obtained by grafting the root of T to the rightmost leaf
of S , and S/T (S over T) is defined as the planar binary rooted tree obtained
by grafting the root of S to the leftmost leaf of T , as for example

/ = and \ =

These two operations satisfy S/T ≤ S \T in the Tamari order.
The noncommutative sum of trees (see (115), (116)) is defined as

S +̂T =
⋃

S/T≤T ′≤S \T

T ′

where all deg(T ′) = deg(S) + deg(T). This sum operation is noncommutative,
S +̂T , T +̂S , but it is associative and distributivity with respect to unions,
∪iTi+̂ ∪ j S j = ∪i j(Ti+̂S j). (Unlike (115), we use here the notation +̂ for this
sum of trees rather than just the notation +, as a reminder of the fact that this
operation does not have the usual properties of the sum, for example it does

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.7 Adjunction, embedded constructions, and the Pair-Merge problem 301

not satisfy commutativity). For instance, using the same example as in (116),

+̂ = ∪ ∪

while
+̂ = ∪

This asymmetric (noncommutative) sum of trees can be decomposed as the
combination of two operations (see (115), (116))

S +̂T = S ⊣ T ∪ S ⊢ T ,

where the two operations ⊣ and ⊢ are defined recursively in the form

S ⊣ T =
S L (S R+̂T)

S ⊢ T =
(S +̂T L) T R

where
S =

S L S R and T =
T L T R

with L,R indicating the left/right subtrees of a planar binary rooted tree.
We denote by I (the analog of the integer 1 in the formulation of (115)) the

tree
I :=

Then we have
I+̂I = I ⊣ I ∪ I ⊢ I = ∪

Thus, we see that we can represent simplest chains of adjunctions, in head-
initial form as the planar trees

I ⊣ I ⊣ I ⊣ · · · ⊣ I ⊣ I︸ ︷︷ ︸
N times

or in head-final form as

I ⊢ I ⊢ I ⊢ · · · ⊢ I ⊢ I︸ ︷︷ ︸
N times

.

We focus on the first case, assuming a head-initial linearization determined by
a head function.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

302 Chapter 3 Algebraic Model

Proposition 3.7.1. Consider all possible chains of adjunctions that starts with
a given planar binary rooted tree T and appends to its rightmost leaf a comb-
tree,

T ′

· · ·

(3.7.1)

equivalently written in the form

T = T ′\ I\I\ · · · \I︸ ︷︷ ︸
N0 times

of arbitrary length N, or of the more general form

T = T0\ I\I\ · · · \I︸ ︷︷ ︸
N0 times

\T1\ I\I\ · · · \I︸ ︷︷ ︸
N1 times

\ · · · \Tk\ I\I\ · · · \I︸ ︷︷ ︸
Nk times

(3.7.2)

where the trees Ti with i = 1, . . . , k are of the form

Ti = T L
i

(3.7.3)

The hierarchical structures obtained in this way span, in the case of (3.7.1),
a simplicial subcomplex of the associahedron Kn+N codimension N, for T ′ ∈
Kn. In the case of (3.7.2), they span a simplicial subcomplex of codimension
N0 + · · · + Nk in the associahedron Kn0+···+nk+N0+···+Nk , where T ′i ∈ Kni .

Proof. Consider a chain of adjunctions that starts with a given planar binary
rooted tree T and appends to its rightmost leaf a comb-tree as in (3.7.1). We
can see this as the tree T = T ′ with a an attached comb-tree to the rightmost

leaf of T , that is, as

T ′

· · ·

= T\I\I\I · · · \I .

The operation T +̂I gives the union of all the binary rooted tree S with

T/I ≤ S ≤ T\I

where T\I is the tree representing an adjunction attached to the rightmost leaf
of T and T/I = T .

As discussed in §2.5 of (116), the associahedron Kn+1 can be identified with
a cylinder Kn ×I (with I = [0, 1] the unit interval) over the associahedron Kn.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.7 Adjunction, embedded constructions, and the Pair-Merge problem 303

Figure 3.24
The associahedron K4 as a decomposition of K3 × I with I = [0, 1].

For a more precise description of how to identify the n-dimensional polyhedron
given by the associahedron Kn+2 with a subdivision of the cube In see (169),
(170). The example of K4 as a subdivision of K3 × I is given in Figure 3.24.
In this identification the boundary Kn × {0} has vertices given by the trees T/I
for T a vertex of Kn while Kn × {1} has vertices T\I. The directed segment
I = [0, 1] between two such vertices has intermediate vertices given by the
trees S with T/I ≤ S ≤ T\I. This means that we can identify these segments
with T +̂I with the orientation given by the Tamari ordering. The adjunction
T\I lies at the end Kn × {1} of the segment. In particular, the set Tpl

n of planar
binary rooted trees on n leaves is obtained as

T
pl
n+1 = T

pl
n +̂ I .

Indeed this relation is just saying that the segments T/I ≤ S ≤ T\I cover the
entire set of vertices of the associahedron Kn+1 when T varies over the vertices
of Kn.

Repeated adjunctions T\I\I\I · · · \I of length N therefore map a tree T placed
at one of the vertices of the associahedron Kn to a corresponding vertex in the
associahedron Kn+N viewed as a product of Kn with (a subdivision of) an N-
cube, Kn+N = Kn × I

N , where the subdivision of the cube has set of vertices
T +̂I+̂I+̂ · · · +̂I with oriented edges given by the Tamari order relation. The
adjunctions T\I\I\I · · · \I are located at the topmost vertex (1, 1, . . . , 1) of the
cube IN . This completely characterizes the region of the associahedra that are
realized by simple chains of adjunctions as in (3.7.1).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

304 Chapter 3 Algebraic Model

In a similar way we can consider more general chains of the adjunctions of
the form (3.7.2), with Ti with i = 1, . . . , k of the form (3.7.3). In this case the
first block

S 0 = T0\ I\I\ · · · \I︸ ︷︷ ︸
N0 times

is analyzed as before and determines a vertex S 0 in the associahedron Kn0+N0 ,
for T0 a vertex of Kn0 , that is located at the (1, 1, . . . , 1) vertex of a cube IN0 .
The next step S 0\T1 gives a vertex in the associahedron Kn0+K0+n1 , for T1 a
vertex of Kn1 . We can describe the location of this vertex in the following
way. Given a planar binary rooted tree T ∈ Tpl

n (seen as a vertex of Kn) is
described uniquely by a word wT (I) in I, ⊢, and ⊣ that describes the construction
of T , starting from a copy of the tree I = as repeated applications of the

operations · ⊢ I and · ⊣ I. The word can be inductively constructed from the
relation wT (I) = wT L (I) ⊢ I ⊣ wT R (I), see (116). Here (3.7.3) gives words
wTi (I) that end with ⊢ I. Each step Ti, j in the construction given by the word
wTi (I) determines a vertex in (the subdivision of) the segment I = [0, 1] in the
product Ti, j × I of the vertex Ti, j in K j+1 and the (subdivided) interval. As
long as we do not impose further constraints on the choice of these T ′i , each
of them can range over the vertices of Kni . On the other hand, each step of the
form S \I in (3.7.2) determines a point that is the end S × {1} in S × I, hence
of codimension one with respect to the segment I.

Thus, one sees in particular that chains of adjunctions span high codimen-
sion strata of the associahedra, and this shows geometrically how the gener-
ative power of adjunctions compares to the general landscape of hierarchical
structures. In the case of adjunctions (3.7.1) these occupy a codimension N
locus in Kn+N , while in the case of (3.7.2) determines a locus of codimension
at least N0 + · · · + Nk in the associahedron Kn0+···+nk+N0+···+Nk , where a further
increase in codimension may depend on specific requirements on the form of
the Ti for i = 1, . . . , k that we do not consider explicitly. □

3.8 Language specific conditions and Theta Theory

We discuss briefly here how to incorporate in our model some language-specific
conditions that have direct linguistic reflexes that arise at the interface of the
Merge-based computational model of syntax and the Conceptual-Intensional
(CI) system. One should view this discussion as a further refinement of the
models for semantic assignment that we discussed earlier in Chapter 3, where
we mostly used only information about syntactic heads. Here will we follow
the way in which this aspect of language organized in §5 and §6 of Elements

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 305

(37). We show how the main points outlined there can be interpreted within
the mathematical formalism we are adopting here.

The first topic we discuss is what is called Theta-Theory. We follow an
approach similar to the one we adopted in the discussion of predicate saturation
in §3.6.3, based on the operad structure of syntactic objects and a structure of
algebra over an operad for the space of semantic values.

3.8.1 Theta Theory
As recalled in §5.1 of (37), Theta Theory models thematic relations between
predicates and their arguments. Predicates assign theta roles (θ-roles) to their
arguments and a standard constraint is that there should be a one-to-one cor-
respondence between the theta roles and the arguments the theta roles are as-
signed to.

As discussed in §5.2 of (37), there is a dichotomy in semantics10 separating
argument structure (and θ-role assignments) associated with the products of
External Merge (EM), and that associated with displacement (non-argument
structure, pertaining to information-related properties like Focus) associated
with the products of Internal Merge (IM): in other words, a distinct between the
propositional domains (theta-structure) and the clausal domains (information-
related), respectively.

To see how the External Merge relates to theta positions and theta roles in
our setting, and why Internal Merge does not perform the same role here as
External Merge, we return to the setting discussed in §3.6.3.

In our previous discussion of the syntax-semantics interface, in order to keep
our model as simple as possible and to better illustrate its formal algebraic
properties, we used only the presence of a head function to furnish a minimal
amount of semantic information. A head function h assigns a choice of a leaf
to every accessible term of a syntactic object that is in Dom(h), along with
a consistency condition (see Definition 1.13.6). The selected leaf is meant
to represent the lexical item within that phrase that cannot be omitted (the
usual notion of head). We then applied our abstract notion of head function,
together with some notion of proximity in semantic space, to construct a map-
ping s : Dom(h) → S that extends the semantic assignments to lexical items
s : SO0 → S. However, just having the head (that is, the condition that a
syntactic object is in Dom(h)) does not suffice in general to identify and re-
move ill-formed sentences, and one needs to use additional information on the

10 We prefer to use the term “dichotomy” here instead of the term “duality” used in (37) to avoid
confusion, as the term “duality” in mathematics refers to an involutive operation.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

306 Chapter 3 Algebraic Model

structure of dependants (complements) of the head, in particular through the
assignment of θ-roles. (For example, John slept Bill is not well-formed.)

Given an abstract head function as in Definition 1.13.6, the structure of head
and complement can be formulated, as we discussed in the context of Phase
Theory in §1.14, as in Definition 1.14.2. We can then see how to fit θ-roles
into this setting in the following way.

Consider again the magma of syntactic objects, generated by free symmetric
Merge

SO = Magmana,c(SO0,M) = TSO0 .

The magma operation (T,T ′) 7→ M(T,T ′) corresponds to the External Merge
operation that combines two syntactic objects T,T ′ into a single structure

M(T,T ′) = T T ′

If we do not assign to the leaves of the trees any lexical item labels in SO0,
we obtain the simpler core computational structure that we discussed in §1.10,
namely the free non-associative, commutative magma T = Magmana,c(M),
whose elements are the balanced bracketed expressions in a single variable
x. The elements of this magma are canonically identified with the abstract
binary rooted trees (with no leaf decorations). If Tn ⊂ T denotes the set of
abstract binary rooted trees with n leaves (and no leaf decorations), we can use
these sets as in §3.6.3 to form an operad M with M(n) = Tn along with the
operad compositions obtained by grafting the output root of one tree to one of
the input leaves of another. As we showed in §3.6.3 (see Lemma 3.6.7), the
set of syntactic objects SO is an algebra over the operadM. As described in
Definition 3.6.8, one can then require that assignments of semantic values are
compatible with this operad action.

We first make an observation here regarding the operadM and its action on
SO and on S, as in Lemma 3.6.7 and Definition 3.6.8. Note that, when we
compose via the operad γ(T,T1, . . . ,Tn), with the grafting of the tree Ti to the
leaves of T , we need to choose a bijection between the set {Ti} and the set of
leaves L(T). If the corresponding trees are planar, this bijection is already as-
signed by the ordering of the leaves induced by the planar structure, with the
root of the i-th tree Ti grafted to the i-th leaf of T . This is the case if we con-
sider this operad structure and the corresponding action on S taking place after
Externalization, where all trees have been assigned a planar structure through
a (language-dependent) section σL of the projection from the noncommutative
to the commutative magma; see §1.12 and (1.12.1).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 307

Figure 3.25
The associativity of operad composition.

This is fine in the setting we are discussing here, since we are considering
language specific conditions (LSC) that involve the image under σL of the re-
sults of generative process of free symmetric Merge. At the level of free sym-
metric Merge, on the other hand, one should consider the operad composition
inM and the operad action on SO in the form

γ(T, {Tℓ}ℓ∈L(T))

for T ∈ Tn and Tℓ ∈ Tkℓ , where the root of the tree Tℓ is grafted to the leaf
ℓ ∈ L(T). The associativity of compositions is expressed as

γ(γ(T, {Tℓ}ℓ∈L(T)), {T ′ℓ′ }ℓ′∈L(γ(T,{Tℓ}ℓ∈L(T)))) = γ(T, {γ(Tℓ, {T ′ℓ′ }ℓ′∈L(Tℓ))}ℓ∈L(T)) ,

see Figure 3.25. The symmetric operad structure is given by two equivariance
properties for the actions of the permutation groups Sym(L(T)) of the sets of
leaves of trees. We write T ◦ τ, for τ ∈ Sym(L(T)) for the action that permutes
the leaves of T . This means that, a collection of inputs {aℓ}ℓ∈L(T) to T , with aℓ
the input at the leaf ℓ ∈ L(T), becomes a collection with aℓ as input of τ−1(ℓ)
in T ◦ τ. The first equivariance condition is of the form

γ(T ◦ τ, {Tτ(ℓ)}) = γ(T, {Tℓ}) ◦ τ′ (3.8.1)

for all τ ∈ Sym(L(T)) ≃ S n, with n ∈ #L(T), and S n the symmetric group, and
with τ′ ∈ Sym(L(γ(T, {Tℓ})) ≃ S ∑

ℓ kℓ that permutes the n blocks of kℓ leaves,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

308 Chapter 3 Algebraic Model

Figure 3.26
The two equivariance conditions for symmetric operads.

leaving each block unchanged. The second one is of the form

γ(T, {Tℓ ◦ σℓ}ℓ∈L(T)) = γ(T, {Tℓ}ℓ∈L(T)) ◦ σ , (3.8.2)

for σℓ ∈ Sym(L(Tℓ)) ≃ S kℓ with σ ∈ Sym(L(γ(T, {Tℓ})) ≃ S ∑
ℓ kℓ that permutes

the leaves within each block of kℓ leaves, leaving the position of the blocks
unchanged. These two equivariance conditions for the action of the symmetric
groups are illustrated in Figure 3.26. For a formulation of symmetric operads
in terms of species rather than sets, see (101) and also (19).

We argue here that this same formalism in fact accounts for theta theory, the
role of External Merge in argument structure, and the dichotomy between the
roles of External and Internal Merge. To see this, we first modify the Merge
operadM to incorporate heads and complements.

Lemma 3.8.1. LetMh(n) denote the set of pairs (T, hT) consisting of an ab-
stract binary rooted tree T ∈ Tn (with no labeling at the n leaves) and a
head function hT : Vo(T) → L(T) as in Definition 1.13.6. The collection
Mh = {Mh(n)} is an operad.

Proof. In order to construct the operad compositiom

γMh :Mh(n) ×Mh(k1) × · · · ×Mh(kn)→Mh(k1 + · · · + kn)

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 309

we define the resulting

γMh ((T, hT), (T1, hT1), . . . , (Tn, hTn)) = (T ′, hT ′) ,

where T ′ = γM(T,T1, . . . ,Tn) is the operad composition in M that grafts
the roots of the tree Ti to the leaves of T . We then need to show that the
data hT , hT1 , . . . , hTn combine to define a head function, in the sense of Def-
inition 1.13.6, on the tree T ′ = γM(T,T1, . . . ,Tn). We define hT ′ in the fol-
lowing way. For all vertices of T ′ that are vertices of one of the trees Ti we
set hT ′ (v) = hTi (v). This satisfies the condition on subobjects Tw ⊂ Tv as in
Definition 1.13.6, because it is satisfied by hTi .

For the vertices of T ′ that are non-leaf vertices of T , we define hT ′ (v) in the
following way. The head function on T determines a leaf hT (v) ∈ L(T). Let
Ti(ℓ) denote the tree that is grafted to the leaf ℓ ∈ L(T) in the resulting tree T ′.
Then we set hT ′ (v) := hTi(hT (v)) . Note that this also satisfies the defining property
of head functions, since both hT and hTi(hT (v)) do. This assignment of hT ′ is
compatible with the associativity requirement for the operad composition. □

This incorporates the data of the head function in the operad. We then need
to also incorporate the argument structure and the θ-roles. We will assume the
head function is complemented in the sense of Definition 1.14.2, so that both
head and complement of the head are determined. The natural mathematical
structure that can do this is a modification of the notion of an operad known
as a colored operad. This notion of “colored” is nothing but another mani-
festation of the same principle that generalizes groups to grooupoids, one that
we have already encountered in our discussion of semiring parsing for Merge
derivations, where we needed analogous extensions of the notion of algebras
(or bialgebras, Hopf algebras) and semirings to corresponding algebroids and
semiringoids. The key property of these generalizations is accounting for the
constraint that not all compositions are possible–only those where the type as-
signed to the output of the first operation is the same as that assigned to the
source of the second (composition of arrows where the first target has to agree
with the next source). This is the same idea that leads to generalizing oper-
ads to colored operads (though the terminology used is, for historical reasons,
slightly different). We recall the following definition (see for instance (189)).

Definition 3.8.2. A colored operad is a collection O = {O(c, c1, . . . , cn)} of
sets, with c, ci ∈ Θ for i = 1, . . . , n, whereΘ is a finite set (the color set), and the
ci are color labels assigned to inputs of the n-ary operations in O(c, c1, . . . , cn),

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

310 Chapter 3 Algebraic Model

and c is the color label assigned to the output, with composition laws

γ : O(c, c1, . . . , cn) × O(c1, c1,1, . . . , c1,k1) × · · · × O(cn, cn,1, . . . , cn,kn)
→ O(c, c1,1, . . . , c1,k1 , . . . , cn,1, . . . , cn,kn)

(3.8.3)
that satisfy the same associativity and unity conditions as in the non-colored
case, with one unit 1c ∈ O(c, c) for each color c ∈ Θ. In the symmetric case one
again has the two equivariance conditions discussed above, where the action
T 7→ T ◦ τ maps O(c, c1, . . . , cn) to O(c, cτ(1), . . . , cτ(n)) for τ ∈ S n.

According to (3.8.3), the operad composition is now restricted by the re-
quirement that the grafting of the output to one of the inputs can happen only
if they are labeled by the same color.

We assume here that our model of the semantic space S has images of the
map s : SO0 → S from lexical items that includes labels that encode word
classes. In particular, for an extension s : Dom(h)→ S of this map, the image
s(T) of a syntactic object T ∈ Dom(h) is the class assigned to the phrase by
the word class of the head s(h(T)) (eg VP or NP, etc). The set of colors Θ that
we consider here is the set of θ-roles. More precisely, we include in Θ a label
“predicate” or “argument;” and for the latter, various labels of (familiar) θ-roles
such as “theme,” “agent,” “experiencer,” “locative,” “instrument,” “possessor,”
and the like.

Definition 3.8.3. Let DomΘ(h) ⊂ Dom(h) denote the set of syntactic objects
T ∈ SO that are in the domain of the complemented head function h and that
admit an assignment of labels in Θ to the edges of T , in such a way that they
are compatible, on each substructure given by an accessible term Tv of T with
the head and complement determined by the complemented head function h.

Lemma 3.8.4. The set DomΘ(h) ⊂ SO of Definition 3.8.3 determines a col-
ored operadMh,Θ = {Mh,Θ(θ, θ1, . . . , θn)}.

Proof. Given an element (T, hT) ∈ Mh, consider all possible assignments of
labels θ ∈ Θ to the edges of T , in such a way that the assigned θ-roles are
compatible with the structure of head and complements determined on all the
accessible terms by the head function. This means that the assignments of
θ-roles (thematic role assignment) is built inductively and compatibly on the
substructures Tv assembled together to form the syntactic object T by External
Merge. In other words, one can start with the leaves of T and all the “cherry”
trees Tv consisting of one internal vertex above a pair of leaves, and assign to
the two edges of Tv a predicate and a θ-position depending on the head and

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 311

complement roles assigned to the leaves by the value h(v) of the head function.
This inductive building of substructures with head and complements follows
the phases algorithm that we described in Definition 1.14.3.

One can then proceed to consider accessible terms Tw of T obtained via
External Merge applied to pairs consisting of either two such cherries Tv or
one of these and a leaf, and similarly consider all possible assignments of
labels in Θ to the two edges below the root w, so that the labeling is compatible
with the labels already assigned to the two merged substructures and with the
assignment of head to Tw. Inductively proceeding in the same way, one obtains
the collection of all possible compatible assignments of labels in Θ to all the
edges of T . This results then in an object (T, hT , θT) ∈ Mh,Θ(θ, θ1, . . . , θn),
where θT denotes one choice of such compatible labeling. It is then clear that,
by construction, the sets Mh,Θ(θ, θ1, . . . , θn) form a colored operad with the
composition law induced by the operad Mh, where composition is possible
only when it grafts outputs to inputs with matching θ-labels. □

Note that, as observed in (31), given that the core computational system
of syntax is based on binary Merge, one should not expect n-ary operations
playing a direct role in the assignment of semantic values, hence in particu-
lar, no expectation of seeing n-ary theta-structures. Instances where this seems
to happen (for example VPs with double object constructions) are explained
by additional internal structure, as is familiar in the linguistic literature (113):
an n-ary operation in M(n) will be a composition of binary ones (via inter-
nal syntactic structure). In fact, this is indeed the case in the construction
of Lemma 3.8.4, as all the n-ary theta-structures, that are by construction the
elements (T, hT , θT) ∈ Mh,Θ(θ, θ1, . . . , θn) are formed via the composition of
binary theta-structures through repeated application of binary External Merge.

Note that this also forces a dichotomy in the form referred to in §5.2 of (37),
as a segregation of EM and IM in semantics. Indeed, the compatible operad
actions of M (and the modified Mh) on SO and on semantic space S, as in
Definition 3.6.8 only involve External Merge and account for argument struc-
ture; while Internal Merge is not directly involved in this part of the algebraic
structure and therefore maintains a separate role.

3.8.2 Deriving obligatory control
We now discuss the case of examples of obligatory control like the one con-
sidered in §5.3 of Elements, (37), in particular the sentence “the man tried to
read a book.” As in equation (51) of (37) we consider this sentence as derived

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

312 Chapter 3 Algebraic Model

from the syntactic object

{{the,man}, {tried, {to, {{the,man}, {read, {a, book}}}}}} =

the man
tried

to

the man read
a book

–an abstract (non-planar) tree, obtained via repeated applications of External
Merge

M(
the man

,M(tried ,M(to ,M(
the man

,
read

a book

)))) . (3.8.4)

In terms of the operad action described above, we can think of this as the
element T ∈ M(6) of the form

T =
·
·
·
· · ·

where the dots stand for where inputs from SO are received, in this case from
s(Dom(h)) ⊂ S. In the example discussed above, given inputs T1, . . . ,T6 in S6

one obtains the output given by syntactic object

T1
T2

T3
T4 T5 T6

where

T1 = T4 =
the man

, T2 = tried , T3 = to , T5 = read T6 = a book
.

Note that this description as a result of the operad action is not unique; but
analyzing one such description suffices for our goals here. Since in the input
we have T1 = T4 it means that we are restricting the operation T ∈ M(6) to a
diagonal Diag1,4 ⊂ SO

6 with Diag1,4 = {(T1, . . . ,T6) ∈ SO6 |T1 = T4}.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 313

The fact that we are looking only at the restriction of T ∈ M(6) to this
diagonal ∆1,4 ⊂ SO

6, has an effect on the External Merge derivation that we
outlined above in (3.8.4). Since in our framework the action of Merge is based
on the coproduct in the Hopf algebra of workspaces, we need to check the
effect on the coproduct of restricting the operations of M(n) to a diagonal
DiagI ⊂ SO

n, with I ⊂ {1, . . . , n} the set of coordinates identified

DiagI = {(T1, . . . ,Tn) ∈ SOn |Ti = T j ∈ SO, ∀i, j ∈ I} . (3.8.5)

For convenience of notation in the following, we write the relations Ti = T j

for all i, j ∈ I in the form Ti = T̂ for all i ∈ I, where T̂ varies over T̂ ∈ SO,
namely all the Ti are equal to the same syntactic object. The selection of a
diagonal, as in (3.8.5) can be seen as an application of the FormSet operation
that we discussed in §1.16, which selects the subset {Ti}i∈I, followed by what
is referred to as FormCopy in Elements (37), which imposes the relations Ti =

TJ , for all i, j ∈ I.

Remark 3.8.5. Consider a syntactic object

T = γSO(T ′,T1, . . . ,Tn) with T ′ ∈ M(n) and (T1, . . . ,Tn) ∈ ∆I ⊂ SOn

where, as above, we write Ti = T̂ for all i ∈ I, and varying T̂ ∈ SO. Then
the fact that all the Ti with i ∈ I are the same identical copy of a syntactic
object T̂ modifies the coproduct ∆(T). The reason why is that now the terms of
the coproduct that extract T̂ as accessible terms (or one of the accessible terms
T̂v ⊂ T̂) will necessarily have to do that simultaneously in all the occurrences
of T̂ as accessible terms of T , since these are all identified as the same object.
Thus, we write the coproduct in the form

∆I(T) =
∑

Fv ⊗ T/Fv +
∑

(Fv ⊔ T̂v) ⊗ (T/Fv)//T̂v (3.8.6)

where both sums are over subforests Fv ⊂ T such that T̂ ∩ Fv = ∅, and where
we write T//T̂v to denote the quotient with respect to all occurrences of T̂v in
T as accessible terms of all the identified copies in DiagI.

The form (3.8.6) of the coproduct ∆I(T) on the image of the diagonal

T ∈ M(n)(DiagI) ⊂ SO

differs in the following ways from the coproduct ∆(T) of Lemma 1.2.12:

1. Accessible terms T̂v ⊆ T̂ contained in the identified copies Ti = T̂ for i ∈ I
can only be extracted simultaneously in all these identified locations.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

314 Chapter 3 Algebraic Model

2. The extracted term occurs only once in the left channel of the coproduct
output, as T̂v not as T̂v ⊔ · · · ⊔ T̂v︸ ︷︷ ︸

#I times

.

3. All the occurrences of T̂v in the identified copies Ti are simultaneously
quotiented out in the right channel of the coproduct output leading to co-
product terms of the form

T̂v ⊗ T//T̂v

4. In terms of the coproduct that extract subforests Fv with more than one
component, the extracted term is of the form Fv = T̂v⊔F̂v with F̂v ⊂ T//T̂v

(including the cases where T̂v = T̂ or T̂v = 1).
5. Accessible terms Tv of T that contain some but not all of the identified

copies of T̂ are not extracted by the coproduct, as all copies of T̂ need to be
simultaneously extracted. Such terms can only be extracted in successive
steps of a derivation from a quotient T//T̂ .

We need to ensure that this modified form of the coproduct still satisfies
the coassociativity property that ensures good behavior over derivational iter-
ations.

Lemma 3.8.6. The coproduct ∆I on the image M(n)(DiagI) ⊂ SO of the
diagonal DiagI of (3.8.5) is coassociative,

(∆I ⊗ id) ◦ ∆I(T) = (id ⊗ ∆I) ◦ ∆I(T) ,

for all T ∈ M(n)(DiagI).

Proof. We proceed as in Lemma 1.2.12 to prove coassociativity. When we
compute (∆I ⊗ id) ◦ ∆I(T) we obtain a sum of terms of the form

Fv ⊗ Fw/Fv ⊗ T/Fw.

The only case where these terms differ from the coproduct of Lemma 1.2.12
is when either Fw or Fv contains terms T̂v ⊆ T̂ . If one of the components of
Fw is a term T̂v then the other components F̂w with Fw = T̂v ⊔ F̂w must be
a subforest of T//T̂v. Thus, the corresponding quotient term is of the form
(T//T̂v)/F̂w = (T/F̂w)//T̂v. The extracted term Fv ⊂ Fw similarly may or may
not contain a component equal to an accessible terms T̂u ⊂ T̂v, with quotient

Fw/Fv = T̂v/T̂u ⊔ F̂w/F̂u = T̂v/T̂u ⊔ F̂u

with w = (v, u), so that we can write the terms above in the form

T̂u ⊔ F̂v ⊗ T̂v/T̂u ⊔ F̂u ⊗ (T//T̂v)/F̂v,u

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.8 Language specific conditions and Theta Theory 315

We have included here the case where T̂v = T̂ ; in this case the quotient
has all copies of T̂ completely removed; as well as the case T̂v = 1, where
all copies of T̂ are still present and no accessible term of T̂ is extracted in
Fw. On the other hand, when computing the other side of the coassocia-
tivity constraint (id ⊗ ∆I) ◦ ∆I(T), we obtain a sum of terms of the form
Fv ⊗ (T/Fv)u ⊗ (T/Fv)/(T/Fv)u. The terms where T̂ or accessible terms T̂v ⊂

T̂ are not extracted in both Fv or (T/Fv)u remain of the same form as in
Lemma 1.2.12 and match the corresponding terms in (∆I ⊗ id) ◦ ∆I(T) by
the same argument. So we only need to discuss the terms where T̂ or acces-
sible terms T̂v ⊂ T̂ are present in either Fv or in (T/Fv)u. In fact it suffices to
consider the case of extraction of a single accessible term, so the case where
either Fv = T̂v or where (T/Fv)u = T̂v for some T̂v ⊆ T̂ . If Fv = T̂v, then
T/Fv = T//T̂v is the quotient of all occurrences of T̂v in the identical copies
of T̂ inside T . Then the further extracted term (T//T̂v)u = Fu will not contain
any T̂v or any substructure of it, and the term T̂v ⊗ Fu ⊗ (T/Fu)//T̂v will match
a corresponding term from (∆I ⊗ id) ◦ ∆I(T). The case where (T/Fv)u = T̂v is
analogous. □

We can now analyze more in detail the Merge derivation (3.8.4) of the exam-
ple discussed in equation (51) of Elements (37). We focus on the last External
Merge operation in (3.8.4), as that is where the fact that we are restricting
ourselves to the diagonal Diag1,4 ⊂ SO

6 is relevant. For this External Merge
operation we start with a workspace given by the forest

T̂ ⊔
T2

T3
T̂ T5 T6

=

the man
⊔

tried

to

the man read
a book

We have a term in the coproduct ∆I that is of the form

T̂ ⊔ T//T̂ ⊗ 1 , with T//T̂ =
T2

T3 T5 T6

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

316 Chapter 3 Algebraic Model

where
T =

T2
T3

T̂ T5 T6

This gives a coproduct term of the form

the man
⊔

tried

to
[the man]

read
a book

⊗ 1 .

This is the coproduct term that is targeted by the External Merge producing

M(
the man

,

tried
to

read
a book

) ⊔ 1

=

the man tried
to

read
a book

Remark 3.8.7. Here we see another important instance of the distinction be-
tween copies and repetitions. When we consider elements (T1, . . . ,Tn) ∈
DiagI ⊂ SO

n and we identify all the terms Ti = T̂ for i ∈ I as copies, we
apply the coproduct ∆I in the Merge derivation, that keeps account of the fact
that these occurrences of the term T̂ are all identified as the same. This is
in contrast with the case where the elements (T1, . . . ,Tn) contain repetitions,
namely different components Ti and T j that are isomorphic in TSO0 . In the
case of repetitions one would just apply the coproduct ∆ of Lemma 1.2.12, and
not the coproduct ∆I, as the different Ti and T j, even if isomorphic, are not
coincident and can be independently extracted by the coproduct.

3.9 Heim–Kratzer Semantics

An important model of semantics, in the context of generative linguistics, is
Heim–Kratzer semantics, (86). It is closely related to (though not reducible to)
the Theta Theory that we discuss in §3.8.1.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.9 Heim–Kratzer Semantics 317

The main structure of Heim–Kratzer semantics can be summarized in the
following way (see (86) for a detailed account).

Definition 3.9.1. Semantic types are defined by an inductive construction of
the types τ and corresponding sets Dτ of possible denotations of type τ, where
one takes

• e is the type of individual and De the corresponding set of individuals;
• t is the type of truth values and Dt = {0, 1} is the set of possible truth values;
• ⟨e, t⟩ is the type of functions D⟨e,t⟩ = { f : De → Dt};
• ⟨e, ⟨e, t⟩⟩ is the type of functions

D⟨e,⟨e,t⟩⟩ = { f : De → D⟨e,t⟩} ;

• If σ and τ are types, then ⟨σ, τ⟩ is the type of functions

D⟨σ,τ⟩ = { f : Dσ → Dτ} .

The first two types e and t are referred to as saturated denotations and the
other types are unsaturated denotations, namely functions that have inputs and
outputs in specified types.

One assumes that there is a computational system of syntax that produces,
as input for semantic interpretation, some tree structures. In the setting that we
consider here, this will be the syntactic objects produced by the action of the
free symmetric Merge on workspaces.

As in our setting, one can assume that the leaves of the tree are labelled by
lexical items in SO0. As we have been doing in the previous sections with
other models of semantics, one assigns that there is a map

s : SO0 → S

to a suitable semantic space, where the lexical items are interpreted. We think
of this as the map α 7→ s(α) = [[α]] that assigns to α its denomination. Unlike
our previous examples, though, here the semantic space S considered is some
space of functions. This includes the case of constant (saturated) functions,
which are denominations in De or Dτ. The whole space S is then given by

S =
⋃
τ

Dτ , (3.9.1)

the union of all denominations for all the inductively constructed types. Note
also that, unlike the cases we analyzed in the previous sections, this space S
is only endowed with the discrete topology, so there is no viable notion of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

318 Chapter 3 Algebraic Model

proximity in this case. It resembles mostly the case we discussed in §3.2.5
with the Boolean semiring.

One then proceeds to (partially) extend the map

s : SO0 → S (3.9.2)

to a (partially defined) map

s : Dom(s) ⊂ SO → S . (3.9.3)

The rules for extending the map (3.9.2) is:

1. for T = M(T1,T2), and one of the two values s(Ti) = [[Ti]] in S, say s(T1),
is a function s(T1) ∈ D⟨σ,τ⟩ and the other s(T2) ∈ Dσ, then we assign to T
the value

s(T) = [[T]] = s(T1)(s(T2)) = [[T1]]([[T2]]) ∈ Dτ . (3.9.4)

2. if neither s(T1) nor s(T2) is a function that takes the type of the other
as input, then T < Dom(s) and the expression T is consider to be non-
interpretable.

In case 1) above, we say that the “function and input” relation is satisfied at
the root vertex of T , meaning that the assignments s(T1) and s(T2) at T1,T2

with T = M(T1,T2), are a function and an argument (input) of that function.

Note that, in general, if a syntactic object T is non-interpretable in Heim–
Kratzer semantics, this can be due to a mismatch of the “function and input”
relation at any one of the non-leaf vertices of T , while many other accessible
terms Tv ⊂ T would remain interpretable. Thus, it is useful to have a way
to discern and keep track of the parts of the structure that are interpretable
and the exact locations where interpretability fails. This is exactly the type of
information that is built into the recursive form of the Bogolyubov preparation,
built using the Hopf algebra coproduct, that we already used in the previous
sections.

3.9.1 Boolean characters and HK semantics
To see how to incorporate Heim–Kratzer semantics in our model, we start by
illustrating how Boolean characters and their Bogolyubov preparation, as we
discussed in §3.2.5 related to interpretability.

In (86) an additional rule is given for the case of non-branching nodes, where
the non-branching node inherits the denomination assigned to the vertex im-
mediately below. We do not need this rule as long as we only consider binary
trees. If we use the coproduct ∆ρ in (1.2.8), we also need to consider trees

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.9 Heim–Kratzer Semantics 319

ρC(T) that can have some non-branching nodes: in this case the rule given in
(86) ensures that the result is independent of using the coproducts ∆ρ or ∆d.
In the case of the coproduct ∆c one needs a rule for how to assign a value to
the leaves in T/cFv labelled by Tvi . Since these cancelled deeper copies are
not externalized (as we discussed externalization uses ∆d) but are interpreted
as the syntax-semantics interface) we can take the following additional rule:

• For a tree of the form T/cTv the value at the leaf s(Tvi) is taken to be

s(Tvi) = s(Tv) ,

the same as the value that was assigned to the accessible term Tv of T .

The case of T/cFv is analogous. Now observe that this can give rise to different
(and incompatible) assignments of values, with

s(T/dTv) = s(T/ρTv) , s(T/cTv) .

This is to be expected: as mentioned above, in Internal Merge, the cancella-
tion of the deeper copy is not externalized at the interface with the Sensory-
Motor system but is interpreted at the interface with semantics (Conceptual-
Intensional system), so it is the quotient T/cTv that carries the correct inter-
pretation s(T/cTv) ∈ S. On the other hand, the use of the coproducts ∆ρ

and ∆d has the advantage of making it possible to check the interpretability
of a quotient T/ρTv ot T/dTv in which the substructure Tv has been removed
completely (rather than being kept as a label Tv). This makes it possible to
separately check the interpretability of the substructure Tv and of a remaining
complementary structure in which Tv is entirely removed. This is the same
strategy we already used in the Boolean parsing discussed in §3.2.5.

To see how the Heim–Kratzer semantics model fits with our Birkhoff factor-
ization procedure, consider a character ϕ with values in the Boolean semiring
B = ({0, 1},max, ·), as in §3.2.5, that assigns

ϕ(T) =

 1 T is interpretable in HK semantics
0 otherwise.

Again we consider on B the Rota–Baxter operator given by the identity, so, as
in §3.2.5, the Bogolyubov preparation of this character is given by

ϕ̃(T) = max{ϕ(T), ϕ(Fv1
)ϕ(T/dFv1

), . . . , ϕ(FvN
)ϕ(FvN−1

/dFvN
) · · · ϕ(T/dFv1

)} ,
(3.9.5)

with the maximum over all chains of nested forests of accessible terms. As
discussed in §3.2.5, when ϕ(T) = 0 and T is non-interpretable, the maximizers
of ϕ̃(T) are those chains of accessible terms where all the substructures and

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

320 Chapter 3 Algebraic Model

the respective quotients are themselves interpretable. Thus, ϕ̃(T) explicitly en-
codes in its recursive structure the exact locations of the points in the structure
T where interpretability in Heim–Kratzer semantics fails.

3.9.2 Topologizing HK semantic types
In addition to this kind of construction with Boolean checking of interpretabil-
ity, we can consider ways of combining the setting of Heim–Kratzer semantics
with the view described in the previous sections of semantic spaces embodying
notions of proximity relations. In fact, we have so far assumed that in (3.9.1)
the semantic space S = ∪τDτ is just a set: topological proximity relations are
not included in Heim–Kratzer semantics in the formulation of (86). However,
it is also possible (and in some ways preferable) to assume that all the sets Dτ

of the types τ are also topological spaces, possibly endowed with topologies
that can in general differ from the discrete one. Indeed, considering S merely
as a set does not provide a way of keeping track of when two functions are
closely related, for instance one being a small modification of the other, as
these are topological, not set-theoretic notions.

For example, a topology on the set De of individuals specifies proximity
and relatedness between certain sets of individuals, in a way similar to the
semantic spaces that we described in previous sections. We may assime that
the set De is also a geodesically convex Riemannian manifold, or a vector
space, or another form of topological space with a “continuous” topology. The
set Dt = {0, 1} of truth values should necessarily be considered discrete. Then
one needs to topologize the sets Dτ of functions. To that purpose it is necessary
to somewhat restrict the class of functions that one wants to consider. We will
argue why such a restriction is reasonable in view of their semantic role. We
start by assuming that De has a topology induced by a metric, in which it is
both complete and compact. (The completeness and compactness assumptions
can be weakened, but for simplicity we will restrict to discussing this case.)

We first recall some facts from point-set topology.

• The set C(X,Y) of continuous functions between topological spaces X and
Y is usually topologized with the compact-open topology, which is defined
as the topology generated by the sets UK,U , for K ⊂ X compact and U ⊂ Y
open,

UK,U = { f ∈ C(X,Y) | f (K) ⊂ U} .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.9 Heim–Kratzer Semantics 321

In cases where X is compact and Y is metric with distance function dY , the
compact-open topology is induced by a metric of the form

dC(X,Y)(f , g) = sup
x∈X
{dY (f (x), g(x))} .

• If (X, dX) is a metric space, the set K(X) of all compact subsets of X is also
a metric space with the Hausdorff metric dH defined by

dH(A, B) = max{sup
a

d(a, B), sup
b

d(A, b)} . (3.9.6)

The metric space (K(X), dH) is complete and compact if (X, dX) is.
• In the more general case where X is just a topological space, the set K(X)

can be topologized by the Vietoris topology, which is generated by the so-
called “hit-and-miss” sets (sets that meet a given open set and sets that miss
its complement): for U varying over the open sets of X

V+,U = {K ∈ K(X) |K ∩ U , ∅}
V−,U = {K ∈ K(X) |K ⊂ U} .

When the Hausdorff metric exists, it induces the Vietoris topology. The set
of finite subsets of X is dense in K(X) with this topology.

See §2.4 of (179) for a more detailed discussion of these topologies.

The reason why we reviewed these point-set topology properties here is in
order to topologize the semantic space S of (3.9.1) of Heim–Kratzer semantics
in such a way that its component sets Dτ are endowed with inductively con-
structed topologies that maintain some common properties. The main issues
involved in doing so come from two sources of difficulties in identifying the
best topological properties that can be induced on the HK semantic space S:

• Topologizing types ⟨τ, t⟩ requires some care, as the set of continuous func-
tions f : Dτ → Dt = {0, 1} is too small, only detecting connected compo-
nents of Dτ.

• Even if De is assumed to have very good topological properties, including
metrizability and compactness, these do not propagate to the inductive con-
struction of types: spaces of continuous functions are usually non-compact,
and their metrizability depends on compactness of the source space, so that
property also gets lost in the iteration process.

Proposition 3.9.2. Let De be endowed with a metric topology with respect to
which it is compact and complete. Let Dt = {0, 1} with the discrete topology.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

322 Chapter 3 Algebraic Model

Then the subset

Dc
⟨e,t⟩ := { f : De → Dt | f −1(1) closed in De} . (3.9.7)

also has a metric topology in which it is compact and complete. Moreover, for
all the types τ inductively constructed as in Definition 3.9.1, there are induc-
tively constructed subsets Dc

τ ⊂ Dτ that have compatible topologies, so that
the resulting space S = ∪τDτ of (3.9.1) determines an associated topological
space

Sc =
⋃
τ

Dc
τ . (3.9.8)

This space is Hausdorff, though in general neither compact nor metrizable. We
refer to this as the space of topological semantic types.

Proof. We start by assuming that De is already a topological space, which
is metric, complete, and compact. Thus, we just take Dc

e = De. Similarly,
Dt = Dc

t = {0, 1} with the discrete topology. Then the set D⟨e,t⟩ of all functions
f : De → Dt can be identified with the set of characteristic functions χA of
subsets A ⊂ De, χA(x) = 1 for x ∈ A and χA(x) = 0 for x < A, hence the set
D⟨e,t⟩ can be identified with the power set 2De of all subsets of De. (Notational
warning: some point-set topology literature uses the notation 2X for the set
of closed subsets of X rather than for the set of all subsets. We follow here
the more standard notation with 2X the power set of X.) We want to identify a
subset of D⟨e,t⟩ that can be topologized nicely in terms of the topology of De. A
common choice for this purpose consists of taking the subset Dc

⟨e,t⟩ ⊂ D⟨e,t⟩ of
characteristic functions of closed (hence compact since De is compact) subsets
of De, as in (3.9.7). This is then identified (by identifying the characteristic
function of a set with the corresponding set) with the set K(De) of compact
subsets of De, topologized with the Hausdorff metric dH induced by the metric
d on De, as we recalled above. This metric (K(De), dH) is both complete and
compact since De is. Thus, we have obtained a subset Dc

⟨e,t⟩ ⊂ D⟨e,t⟩ with
topological properties as good as those of the space De. Consider then the case
of the set

D⟨e,⟨e,t⟩⟩ = { f : De → D⟨e,t⟩} .

We consider

Dc
⟨e,⟨e,t⟩⟩ = C(De,Dc

⟨e,t⟩) = { f : De → Dc
⟨e,t⟩ | f continuous} ,

the space of continuous functions from the topological space De with values in
the topological space Dc

⟨e,t⟩, endowed with the compact-open topology. Since
De is compact and Dc

⟨e,t⟩ is metric, Dc
⟨e,t⟩ is metrizable. We can similarly con-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.9 Heim–Kratzer Semantics 323

struct types ⟨en, t⟩ defined as

Dc
⟨en,t⟩ := Dc

⟨e, ⟨e, · · · , ⟨e, t⟩ · · · ⟩︸ ︷︷ ︸
n−times

= C(De,Dc
⟨e, ⟨e, · · · , ⟨e, t⟩ · · · ⟩︸ ︷︷ ︸

(n−1)−times

)

endowed with the compact-open topology. These will also be metrizable. Sim-
ilarly, since Dc

⟨e,t⟩ is also compact, we obtain types ⟨⟨e, t⟩n, t⟩ with

Dc
⟨⟨e,t⟩n,t⟩ := C(Dc

⟨e,t⟩,D
c
⟨⟨e,t⟩n−1,t⟩ = C(Dc

⟨e,t⟩,C(Dc
⟨e,t⟩, · · · C(Dc

⟨e,t⟩,Dt)) · · ·)︸ ︷︷ ︸
n−times

.

These are also metrizable spaces. We also have metrizable spaces

Dc
⟨⟨en,t⟩,t⟩ = K(Dc

⟨en,t⟩) and Dc
⟨⟨⟨e,t⟩n,t⟩,t⟩ = K(Dc

⟨⟨e,t⟩n,t⟩)

with the Hausdorff distance. Similarly, for every type σ in the families con-
structed above, we obtain a type ⟨σ, t⟩ as abpve with Dc

⟨σ,t⟩ = K(Dc
σ) endowed

with the Hausdorff distance. All of these types maintain the metrizability prop-
erty of the topology (though they do not maintain compactness). There are then
other inductive types that do not necessarily preserve metrizability. Consider
any two arbitrary choices τ1, τ2 of types constructed above, τ2 , t, and form
the type τ = ⟨τ1, τ2⟩, with

Dc
⟨τ1,τ2⟩

= C(Dc
τ1
,Dc

τ2
) = { f : Dc

τ1
→ Dc

τ2
| f continuous} ⊂ D⟨τ1,τ2⟩ , (3.9.9)

endowed with the compact-open topology. Unlike the previous classes ⟨en, t⟩,
⟨⟨e, t⟩n, t⟩, now Dc

τ1
is in general non-compact, so even though Dc

τ2
is metriz-

able, the metrizability property need not extend to Dc
⟨τ1,τ2⟩

. Finally, we also
have the case of types ⟨τ, t⟩ with τ any of the types constructed above. We
again take in this case Dc

⟨τ,t⟩ = K(Dc
τ). However, now Dc

τ is not necessarily
metrizable so K(Dc

τ) is not necessarily metrizable and we consider it with the
Vietoris topology. Finally, the topology on the union Sc can be taken to be
disjoint union topology. □

Our choice to topologize types ⟨τ, t⟩ by Dc
⟨τ,t⟩ = K(Dc

τ) rather than by Dc
⟨τ,t⟩ =

C(Dc
τ,Dt) ensures a sufficiently large class of truth-values assignments. For

example, a continuous function f : De → Dt = {0, 1} would have f −1(1) both
open and closed, but if De is connected (which is a reasonable assumption)
then it can only be f −1(1) = De or f −1(1) = ∅, so the only continuous func-
tions would be constant. On the other hand characteristic functions of compact
sets in De are a much more rich and interesting set of functions. The fact that
f is supported on a compact set implies that only knowledge of f in a bounded
region of De is required for truth value checking, which is a reasonable as-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

324 Chapter 3 Algebraic Model

sumption. For τ , t we make the natural choice of topologizing the types
⟨σ, τ⟩ as spaces of continuous functions Dc

⟨σ,τ⟩
= C(Dc

σ,D
c
τ) so that proxim-

ity relations are compatibly preserved throughout the evaluation process that
matches functions with their arguments in the HK interpretation procedure.

3.9.3 Boolean probes and topological HK types
With the construction of topological HK semantic types as in Proposition 3.9.2,
we can revisit and extend the example of Boolean characters that we discussed
in §3.9.1. We present here an analog, in the setting of HK semantics, of the “se-
mantic probes” Υ and associated characters ϕΥ,s that we discussed, for simpler
models of semantic spaces, in §3.2.1 and following sections.

Definition 3.9.3. A probe Υ in topological Heim–Kratzer semantics is a col-
lection Υ = {Υτ}τ of compact subsets Υτ ⊂ Dc

τ. We assign to a probe Υ a
Boolean character ϕΥ,s by setting

ϕΥ,s(T) =

 χΥτ (s(T)) if s(T) ∈ Dc
τ

0 otherwise,
(3.9.10)

where χΥτ ∈ Dc
⟨τ,t⟩ is the characteristic function of the compact set Υτ, and

s(T) ∈ S is the HK interpretation of T , when T is interpretable, and ϕΥ,s(F) =∏
a ϕΥ,s(Ta) for F = ⊔aTa.

The Bogolyubov preparation ϕ̃Υ,s of the character ϕΥ,s then identifies, as in
(3.9.5), nested chains of substructures

FvN
⊂ FvN−1

⊂ · · · Fv1 ⊂ T

where the probe evaluates True on all the FvN
, FvN−1

/dFvN
, . . . T/dFv1 .

Our choice of semantic probes is based on assignments of truth values given
by characteristic functions of compact sets, according to our topological con-
struction of Proposition 3.9.2. To see what kind of information is captured
by this kind of probes, first note that we are using a family of compact sets
Υτ ⊂ Dc

τ. By construction, the spaces Dc
τ are typically spaces of continuous

functions with the compact-open topology, and compact subsets of these are
are characterized by the Arzelà–Ascoli theorem, which we will not discuss
here. Indeed, since the set of finite subsets of Dc

τ is dense in K(Dc
τ), we can

just assume for simplicity that the chosen Υτ ⊂ Dc
τ are finite sets. In that case,

we have fixed a choice of a finite list of functions Υτ in each Dc
τ and we are

probing whether the interpretation of T and of its substructures Tv and quotient
structures T/dTv is realized by functions in this given list. This can be seen as a
way to reduce the complexity of the (enormous) spaces of functions Dτ of the

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.9 Heim–Kratzer Semantics 325

original formulation with more manageable finite approximations. The den-
sity and convergence inK(Dc

τ) then makes it possible to check convergence of
these approximations.

3.9.4 Fuzzy HK semantic types
There is a further extension of the setting of Heim–Kratzer semantics that we
can obtain within our model, which we will call fuzzy Heim–Kratzer semantic
types.

Definition 3.9.4. A fuzzy set (X, f) is a set X together with a function f : X →
[0, 1] that represent a “degree of belonging” of a point x ∈ X to the set X. We
think of a fuzzy structure f : X → [0, 1] as a “degree of confidence” replacing
a {0, 1}-valued truth-value assignment. We will refer here to the interval [0, 1]
as “fuzzy truth-values”.

Here instead of truth-values Dt = {0, 1} and truth-values assignments f :
Dτ → Dt, we consider assignments of fuzzy truth values, where the type t
with Dt = {0, 1} is replaced by a new type f with Df = [0, 1], so that ⟨τ, f⟩ is
the type with D⟨τ,f⟩ = { f : Dτ → Df}, where a denomination f ∈ D⟨τ,f⟩ is a
fuzzy set structure f : Dτ → [0, 1] on the set Dτ. We want to combine both
the fuzzyness of the truth-values with the topological structures described in
§3.9.3. The fuzziness simplifies the construction of topological HK types, as
we no longer need to treat in two different ways the cases ⟨σ, t⟩ and ⟨σ, τ⟩ with
τ , t, as there are many nontrivial continuous fuzzy truth-values assignments
even when continuous functions realizing genuine truth value assignments are
very scarce and only detect connected components.

Definition 3.9.5. Fuzzy topological semantic types are obtained as an induc-
tive construction by taking

• e is the type of individuals with Df,ce = De the set of denominations of indi-
viduals, assumed to be a compact and complete metric space;

• f is the type of fuzzy truth values, with Dc,f
f
= [0, 1], also a compact and

complete metric space with the Euclidean metric;
• ⟨e, f⟩ is the type with Dc,f

⟨e,f⟩ = C(De, [0, 1]) with the compact-open topology;
• for any already constructed types σ, τ the type ⟨σ, τ⟩ has

Dc,f
⟨σ,τ⟩
= C(Dc,f

σ ,D
c,f
τ)

with the compact-open topology;

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

326 Chapter 3 Algebraic Model

• the semantic space of fuzzy topological semantic types is

Sc,f =
⋃
τ

Dc,f
τ (3.9.11)

with the disjoint union topology.

Interpretability is an assignment s : SO0 → S
c,f that extends to a partially

defined s : Dom(s) ⊂ SO → Sc,f following the same rules as in the original
Heim–Kratzer formulation discussed above, but with the sets Dτ replaced by
the topological spaces Dc,f

τ . Fuzzy semantic probes are collections υ = {υτ}τ of
continuous fuzzy set structures υτ : Dc,f

τ → [0, 1] on Dc,f
τ ,

υτ ∈ C(Dc,f
τ ,D

c,f
f

).

There is an associated character ϕυ,s,f with values in the Viterbi semiring

P = ([0, 1],max, ·, 0, 1)

determined by

ϕυ,s,f(T) =

 υτ(s(T)) if s(T) ∈ Dc,f
τ

0 otherwise.
(3.9.12)

With this setting, we can then consider the Rota–Baxter structure on the
Viterbi semiring given by the threshold operators cλ as in Lemma 3.2.11. We
then obtain Birkhoff factorizations for the characters ϕυ,s,f of (3.9.12), with
respect to the threshold Rota–Baxter structure, with the same properties as
discussed in Proposition 3.2.14, where the Birkhoff factorization identifies as
maximizers those accessible terms Tv ⊂ T with values ϕυ,s,f(Tv) above a thresh-
old λ, meaning with a sufficently large degree of confidence as their assigned
fuzzy truth values.

3.10 No, they don’t: transformers as characters

Recently, it has become fashionable to claim that the so-called transformer ar-
chitectures underlying the functioning of many current large language models
(LLMs) somehow “disprove” or undermine the theory of generative linguis-
tics. They don’t. Such claims are vacuous: not only on account that they
lack any accurate description of what is allegedly being disproved, but also
more specifically because one can show, as we will discuss in this section,
that the functioning of the attention modules of transformer architectures fits
remarkably well within the same general formalism we have been illustrating
in the previous sections, and is consequently fully compatible with a gener-
ative model of syntax based on Merge and Minimalism. While this can be

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.10 No, they don’t: transformers as characters 327

discussed more at length elsewhere, we will show here briefly that the weights
of attention modules in transformer architectures can be regarded as another
(distinct from human) way of embedding an image of syntax inside semantics,
with formal properties similar to other examples we talked about earlier in this
chapter.

This does not mean, of course, that LLMs based on such architectures nec-
essarily mimic the interaction between syntax and semantics as it occurs in
human brains. In fact, most certainly that is not the case in anything close
to their present form, given well known considerations regarding the “poverty
of the stimulus,” in human language acquisition (see (10)), compared to what
one may call the “overwhelming richness of the stimulus” in the training of
LLMs. Some have attempted to deal with this issue by limiting the amount
of training data to something argued to align more with the data available
to children (e.g., as in (187) and (93), among others, including an upcom-
ing 2023CoNLL/CMCL “Baby LMChallenge” (3)). However, at least so far
there are still problems with such approaches with regard to both performance
on certain test-bed datasets, and accurately mirroring the developmental trajec-
tory of human language acquisition, with respect to training data sample sizes.
This matter is discussed in more detail in (185).

This is not the main point of the discussion here, however, since several
examples we analyzed in the previous sections are also not meant to model
how syntax and semantics realistically interact in the human brain, but are
presented simply as illustrations of the general formal algebraic properties of
the mathematical model. The point we intend to make here is that attention
modules of transformer architectures can function as another choice of a Hopf
algebra character that fits within the same very general algebraic formalism
we illustrated in the previous sections of this chapter. Therefore, transformer
architectures have no intrinsic incompatibility, at this fundamental algebraic
level, with generative syntax. Note also that we are not going to include here
any discussion with regard to the efficiency of computational algorithms, as we
are interested only in analyzing their algebraic structure. We will only make
some general comments at the end of this section, in relation to the “inverse
problem” of reconstructing syntax from its image inside semantics, that we
already discussed in §3.3.

It should be pointed out that, while we can argue that the attention mod-
ules of transformer architectures in large language models provide a form of
embedding of syntax inside a semantic space, compatible with the general for-
malism we described in this chapter, this does not mean that large language
models in themselves would constitute a theory of language (as has been oc-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

328 Chapter 3 Algebraic Model

casionally claimed): such claims only reflect a profound misunderstanding of
the meaning of the word “theory” in science. We will not engage here in any
detailed discussion of various erroneous claims regarding implications of large
language models for the theory of generative grammar: it is difficult to take
seriously any such claims when they appear to lack technical understanding of
either of these topics and of the workings of scientific theory in general.

A direct comparison of LLMs with the model of the computational process
of syntax as understood by generative linguistics will ultimately be provided
by a comparative study of precise mathematical models of both processes.
Throughout this monograph we have presented a mathematical formulation of
Merge and the generative process of syntax, and mathematical models of what
LLMs compute are also being developed (see for example (72)). In this section
we do not fully elaborate on this comparison, as the development of the appro-
priate mathematical description is still ongoing, but we will discuss how the
architecture of LLMs can be described withing our model of syntax-semantics
interfaces.

3.10.1 Attention modules
For our purposes, it suffices to consider the basic fundamental functioning of
attention modules in transformers, that we recall schematically as follows.

We assume, as in our previous setting in §3.2, a given function s : SO0 → S

from lexical items and syntactic features to a semantic space S that is here
assumed to be a vector space model. Thus, we can view elements ℓ ∈ SO0 as
vectors s(ℓ) ∈ S. In attention modules, in the case of so-called self-attention
that we focus on here, one considers three linear transformations: Q (queries),
K (keys), and V (values), Q,K ∈ Hom(S,S′) and V ∈ Hom(S,S′′), where
S′ and S′′ are themselves vector spaces of semantic vectors (in general of
dimensions not necessarily equal to that of S).

One usually assumes given identifications S ≃ Rn, S′ ≃ Rm, S′′ ≃ Rd with
Euclidean vector spaces, with assigned bases, and one works with the corre-
sponding matrix representations of Q,K ∈ Hom(Rn,Rm) and V ∈ Hom(Rn,Rd).
The target Euclidean space S′ is endowed with an inner product ⟨·, ·⟩, that can
be used to estimate semantic similarity.

The query vector Q(s(ℓ)), for ℓ ∈ SO0, can be thought of performing a role
analogous to the semantic probes discussed in our toy models of §3.2. As
in that case, we think of queries (or probes in our previous terminology) as
elements q ∈ S∨ where S∨ is the dual vector space S∨ = Hom(S,R), so that
a query matrix can be identified with an element in S∨ ⊗ Rm ≃ S∨ ⊗ S′ =

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.10 No, they don’t: transformers as characters 329

Hom(S,S′), that we can regard as an m-fold probe Q evaluated on the given
semantic vector s(ℓ).

In a similar way, we can think of the key vector K(s(ℓ)), for ℓ ∈ SO0, also
as an element K ∈ Hom(S,S′), that we interpret in this case as a way of
creating an m-fold probe out of the given vector s(ℓ). Thus, the space S′ of
(m-fold) probes plays a dual role here, as given probes to be evaluated on an
input semantic vector s(ℓ), and as new probes generated by the semantic vector
s(ℓ). This dual interpretation explains the use of the terminology “query” and
“key” for the two given linear transformations. The values vector V(s(ℓ)) can
be viewed as a representation of the semantic vectors s(ℓ) inside S′′, such as,
for example, an embedding of the set s(L), for a given subset L ⊂ SO0, into a
vector space S′′, of dimension lower than S. One refers to d = dimS′′ as the
embedding dimension.

Next, one considers a set L ⊂ SO0. Usually, this is regarded as an ordered
set, a list (also called a string), that would correspond to an input sentence.
However, in our setting, it is more convenient to consider L as an unordered
set. In terms of transformer models, one then focuses on bi-directional archi-
tectures like BERT. To an element ℓ ∈ L one assigns an attention operator
Aℓ : L ⊂ S → S′, given by

Aℓ(s(ℓ′)) = σ(⟨Q(s(ℓ)),K(s(ℓ′))⟩) ,

where σ is the softmax function σ(x)i = exp(xi)/
∑

j exp(x j), for x = (xi).
Note that for simplicity of notation, we are ignoring here the usual rescaling

factor that divides by the square root of the embedding dimension, since that
has no influence on the algebraic structure of the model, even through it has
computational significance. We write Aℓ,ℓ′ := Aℓ(s(ℓ′)) and refer to it as the
attention matrix. The matrix entries Aℓ,ℓ′ are regarded as a probability measure
of how the attention from position ℓ is distributed towards the other positions
ℓ′ in the set L. One then assigns an output (in S′′) to the input s(L) ⊂ S, as
the vectors yℓ =

∑
ℓ′ Aℓ,ℓ′V(s(ℓ′)), where for each ℓ ∈ L, we have yℓ = (yℓ)d

i=1 ∈

S′′ ≃ Rd.
Observe that in writing A as a matrix one uses a choice of ordering of the set

L, but the linear operator Aℓ itself is defined independently of such an ordering.
Compatibly with the fact that we want to use free symmetric Merge as gener-
ator of syntactic objects, we indeed focus here on the case of bidirectional,
non-causal attention, where the non-trivial entries of the attention matrix are
not limited to items occurring in a specified linear order (i.e. the matrix is not
necessarily lower or upper diagonal in a chosen basis/ordering). The resulting

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

330 Chapter 3 Algebraic Model

yℓ is symmetric in the ordering of L, so linear ordering also does not play a
role in the output.

3.10.1.1 Heads and heads In transformer architectures, one usually has
several such attention modules running in parallel, and one refers to this set-
ting as multi-head attention. In this case, the vectors Q(s(ℓ)) = ⊕iQ(s(ℓ))i,
K(s(ℓ)) = ⊕iK(s(ℓ))i, and V(s(ℓ)) = ⊕ jV(s(ℓ)) j are split into blocks, that cor-
respond to a decomposition S′ = ⊕N

i=1S
′
i , and similarly for S′′, with the inner

product of S′ compatible with the direct sum decomposition, inducing inner
products ⟨·, ·⟩S′i . One can then compute attention matrices, for i = 1, . . . ,N,

A(i)
ℓ,ℓ′
= σ(⟨Q(s(ℓ))i,K(s(ℓ))i⟩S′i)

that one refers to as attention distribution with attention head i.

It is important to keep in mind that there is an unfortunate clash of notation
here, between this meaning of “head” as “attention head” versus the usual
syntactic meaning of “syntactic head”, represented in the present chapter by
the notion of “head function” in Definition 1.13.6.

For simplicity, and to avoid confusing notation, we will not consider here
multiple attention heads, and work only with a single attention matrix, that
suffices for our illustrative purposes, while we will be referring to the term
head only in its syntactic meaning as a head function.

3.10.2 Maximizing attention
Since for fixed ℓ ∈ L the values Aℓ,ℓ′ give a probability measure on L, we can
consider characters with values in the semiring R = ([0, 1],max, ·). For exam-
ple, it is natural to look for where the attention from position ℓ is maximized.
Thus, we can define a character on a subdomain

ϕA : H semi → R

by setting
ϕA(T) = max

ℓ∈L(T)
Ah(T),ℓ ,

if T ∈ Dom(h) and zero otherwise.

Remark 3.10.1. Note that, in order to make ϕ well defined for all T ∈ TSO0 ,
we need a uniform choice of the operator Aℓ for an ℓ ∈ L(T), that is to say, we
need a consistent way of extracting the choice of a leaf from each tree. This
corresponds to the choice of a head function h in the sense of Definition 1.13.6.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.10 No, they don’t: transformers as characters 331

Once a head function h is chosen, the attention matrix determines an associ-
ated attention vector Ah(T),ℓ for ℓ ∈ L(T). In particular, we can choose the head
function to be the same as the syntactic head, although this is not necessary
and any choice of a head function will work for this purpose. Note that head
functions are not everywhere defined on TSO0 . This implies that the choice of
attention vector cannot be made compatibly with substructures simultaneously
across all trees T ∈ TSO0 . There is some maximal domain Dom(h) ⊂ TSO0 over
which such a consistent choice can be made. This issue does not arise in the
construction of attention matrices from text, as sentences in text will always
have a syntactic head, but it can be relevant when sentences are stochastically
generated from a template (such as those used in tests of linguistic capacities
of LLMs, as in (187), (93)).

3.10.3 Attention-detectable syntactic relations
Recent investigation of attention modules and syntactic relations (such as c-
command, see (127)) indicate that syntactic trees and examples of specific syn-
tactic relations such as syntactic head, prepositional object, possessive noun,
and the like, are embedded and detectable from the attention matrix data. We
show that this result is to be expected, given our model.

We consider the problem of detection of syntactic relations in the following
form.

Definition 3.10.2. Suppose given a syntactic relation ρ, which we write as
a collection ρ = ρT of relations ρT ⊂ L(T) × L(T), with ρT (ℓ, ℓ′) = 1 is
ℓ, ℓ′ ∈ L(T) are in the chosen relation and ρT (ℓ, ℓ′) = 0 otherwise. We say that
ρ is exactly attention-detectable if there exist query/key linear maps Qρ,Kρ ∈

Hom(S,S′) and there exists a head function hρ as in Definition 1.13.6 such
that

ρT (hρ(T), ℓmax,hρ) = 1

for all T ∈ Dom(hρ), where

ℓmax,hρ = argmaxℓ∈L(T)Ahρ(T),ℓ ,

with A the attention matrix built from Qρ,Kρ.
The relation ρ is approximately attention-detectable if there exist query/key

linear maps Qρ,Kρ ∈ Hom(S,S′) and there exists a head function hρ as in
Definition 1.13.6 such that

1
#D

∑
T∈D

ρ(hρ(T), ℓmax,hρ) ∼ 1

for some sufficiently large setD ⊂ Dom(hρ) of trees.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

332 Chapter 3 Algebraic Model

Here the existence of query/key linear maps Qρ,Kρ as above is relative to a
specified context, such as a corpus, a dataset.

In the case of approximately attention-detectable syntactic relations, we think
of the subset D as being, for instance, a sufficiently large syntactic treebank
corpus, or a corpus of annotated syntactic dependencies (for size estimates see
(127)). Cases where the existence of query/key linear maps Qρ,Kρ and a head
function hρ with the properties required above can be ensured can be extracted
from the experiments in (127).

3.10.4 Threshold Rota-Baxter structures and attention
Using a threshold Rota-Baxter operator cλ of weight +1, we obtain

ϕA,−(T) = cλ(max{ϕA(T), cλ(ϕA(Fv)) · ϕA(T/Fv), . . . ,
cλ(ϕA(FvN)) · ϕA(FvN−1

/FvN) · · · ϕA(T/Fv1
)}) .

As above, for simplicity we focus on the case of chains of subtrees TvN ⊂

TvN−1 ⊂ · · · ⊂ Tv1 ⊂ T rather than more general subforests. Note that h(T/Tv) =
h(T) for the quotient given by contraction of the subtree, hence

max
ℓ∈L(T/Tv)

Ah(T),ℓ ≤ max
ℓ∈L(T)

Ah(T),ℓ .

The value ϕ−(T) corresponds then to the chains of nested accessible terms of
the syntactic object T for which all the values

ϕA(Tvi) = max
ℓ∈L(Tvi)

Ah(Tvi),ℓ

are above the chosen threshold λ and all the complementary quotients Tvi−1/Tvi

have

ϕA(Tvi−1/Tvi) = max
ℓ∈L(Tvi−1 /Tvi)

Ah(Tvi−1),ℓ = max
ℓ∈L(Tvi−1)

Ah(Tvi−1),ℓ = ϕA(Tvi−1) .

The first condition implies that one is selecting only chains of accessible terms
inside the syntactic object T where the maximal attention from the head of
each subtree in the chain is sufficiently large, while the second condition means
that, among these chains one is selecting only those for which the recipient of
maximal attention from the head of the given subtree is located outside of the
next subtree. This second condition guarantees that when considering the next
nested subtree and trying to maximize for its attention value, one does not spoil
the optimizations achieved at the previous steps for the larger subtrees.

A similar procedure can be obtained by additionally introducing direct im-
plementation of some syntactic constraints. We can see this in the following
way.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.10 No, they don’t: transformers as characters 333

A syntactic relation ρ determines a character ϕρ on trees T ∈ Dom(h) ⊂ TSO0

with values in the Boolean ring B = ({0, 1},max, ·) where

ϕρ(T) = max
ℓ∈L(T)

ρ(h(T), ℓ) .

This Boolean character detects whether the syntactic relation ρ is realized in
the tree T or not.

Using a character

ϕA,ρ(T) = max
ℓ∈L(T)

ρ(h(T), ℓ) · Ah(T),ℓ ,

with values in P = ([0, 1],max, ·), one maximizes the attention from the tree
head over the set of ℓ ∈ L(T) that already satisfy the chosen syntactic relation
with respect to the head of the tree. The corresponding Birkhoff factorization
with threshold Rota-Baxter operators again identifies chains of subtrees that
maximize the attention (above a fixed threshold), in a way that is recursively
compatible with the larger trees as before, but where now maximization is done
only on the set where the relation is implemented. Subtrees with ϕρ(Tv) = 0
do not contribute even if their value of maxℓ Ah(T),ℓ is sufficiently large.

Thus, comparison between the case with character ϕA and with character
ϕA,ρ identify attention-detectability of the syntactic property considered and,
if detectability fails, at which level in the tree (in terms of chains of nested
subtrees) the attention matrix maximum happens outside of where the syntactic
relation holds.

As shown in (185), the current performance on syntactic capacities of LLMs
trained on small scale data modeling falls significantly short of the human per-
formance, when tested on LI-Adger datasets that include sufficiently diverse
syntactic phenomena. This suggests a good testing ground for syntactic recov-
erability as outlined above and a possible experimental testing for aspects of
the inverse problem of the syntax-semantics interface.

3.10.4.1 Syntax as an inverse problem: physics as metaphor The ques-
tion of reconstructing the computational process of syntax, in LLMs based on
transformer architectures, can be seen in the same light as the situation we il-
lustrated in a simpler example in §3.3, where one views the image of syntax
embedded inside a semantic space, and considers the inverse problem of ex-
tracting syntax as a computational process working from these images, which
live in a semantic space that is not itself endowed with the same type of com-
putational structure. Here, the image of syntax is encoded in the key/query
vectors that live in vector spaces that organize semantic proximity data, and in
the resulting attention matrices. Inverse problems of this kind are usually ex-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

334 Chapter 3 Algebraic Model

pected to be computationally hard. This does not mean that the computational
mechanism of syntax cannot be reconstructible, but that a significant cost in
complexity, growing rapidly with the depth of the trees, may be involved.

Early results showed that RNN language models performed poorly on tests
of grammaticality aimed at capturing syntactic structures, on a testbed dataset
of pairs of sentences that differ only in their grammaticality, (138), while (82)
showed that language models based on RNNs can perform well on predicting
long-distance number agreement even in the absence of semantic clues (that
is, when tested on nonsensical but grammatical sentences). Results like this
appear to indicate that syntax can, in principle, be extracted and disentangled
from its image inside semantics. It was shown in (174) that Syntactic Ordered
Memory (SOM) syntax-aware language models outperform the Chat-GPT2
LLM in syntactic generalization tests. However, this entire area remains a
matter of contention, dependent in part on the testbed dataset used, as described
more fully in (184) and (185).

A more systematic comparison of different language model architectures and
their performance on syntactic tests in (92) revealed substantial differences in
syntactic generalization performance by model architecture, more than by size
of the dataset. One can suggest that the indicators of poor performance on
syntactic tests, along with any other difficulties, might also reflect the compu-
tational difficulty involved in extracting syntax as an inverse problem from its
image through the semantic interface, stored across values of the weights of
attention matrices, rather than in a direct syntax-first mapping.

In this chapter we have used physics as a guideline for identifying mathe-
matical structures that can be useful in modeling the relation between syntax
and semantics. We conclude here by using physics again, this time only as a
metaphor, for describing the relation of syntax as a generative process and the
functioning of LLMs.

The generative structure underlying particle physics is given by the Feyn-
man diagrams of quantum field theory. Disregarding epistemological issues
surrounding the interpretation of such diagrams as events of particle creation
and decay, we can roughly say that, in a particle physics experiment, what one
detects is an image of such objects embedded into the set of data collected by
detectors. Detecting a particle, say the Higgs boson (the most famous recent
particle physics discovery), means solving an inverse problem that identifies
inside this enormous set of data the traces of the correct diagrams/processes
involving the creation of a Higgs particle from an interaction of other particles
(such as gluon fusion or vector-boson fusion) and its subsequent decay into
other particles (such as vector-boson pairs or photons). The enormous compu-

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

3.10 No, they don’t: transformers as characters 335

tational difficulty implicit in this task arises from the need to solve this type of
inverse problem, involving the identification of events structure (for example
a Higgs decay into photons involving top quark loop diagrams) from the mea-
surable data, and a search for the desired structure in a background involving
a huge number of other simultaneous events. The direct map from quantum
field theory consists of the Higgs boson production cross sections, which are
calculated from perturbative expansions in the Feynman diagrams of quantum
chromodynamics and quantum electrodynamics, involving significant higher-
order quantum corrections. Such perturbative QFT computations are where
the algebraic formalism recalled at the beginning of this chapter plays a role.
The inverse problem, instead, consists of measuring, for various possible de-
cay channels, mass and kinematic information like decay angles of detectable
particles of the expected type, produced either by the expected decay event
or by the background of productions of the same particle types due to other
events, and searching for an actual signal in this background.

We can use this story as a metaphor, and imagine the generative process of
syntax embedded inside LLMs in a conceptually similar way, its image scat-
tered across a probabilistic smear over a large number of weights and vectors,
trained over large data sets. This view of LLMs as the technological “particle
accelerators” of linguistics, where signals of linguistic structures are detectable
against a background of probabilistic noise, suggests that such models do not
invalidate generative syntax any more than particle detectors would “invali-
date” quantum field theory; quite the contrary in fact.

While LLMs do not constitute a model of language in the human brain, they
can still, in the sense described here, provide an apparatus for the experimental
study of inverse problems in the syntax-semantic interface. Here however it
is essential to recall again the physics metaphor. Data and technology without
theory do not constitute science, understood as a model of the fundamental
laws of nature that has both strong predictive capacity and a high level of
concise conceptual clarity in its explanatory power. The relation between the
computational process of syntax and the topological relational nature of se-
mantics is a problem of a conceptual nature. In this sense, the large language
models may contribute a technological experimental laboratory for the analy-
sis of some aspects of this problem, rather than a replacement for the necessary
theoretical understanding of fundamental laws in the structure of language.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4 Summary of Mathematical Concepts

We collect here some mathematical background and some fundamental mathe-
matical definitions that are used elsewhere in the chapter. We will not cover in
this summary basic definitions such as vector spaces, metric spaces, continuity,
manifolds, as those are already widely in use in the computational linguistics
setting and can easily be located in introductory mathematics textbooks. We
also do not define here mathematical structures such as formal languages, that
are well known to linguists (though not always to mathematicians). We will
instead focus on those mathematical structures that we use extensively in this
book and that are not part of the usual background of linguists and are less easy
to access in the mathematical literature.

4.1 Categories

In mathematics, the formalism of category theory allows for a description of
different types of mathematical structures in terms of objects carrying the de-
sired structure and ways of transforming them.

Definition 4.1.1. A (small) category C consists of a set of objects X,Y, · · · ∈
Obj(C) and sets of morphisms MorC(X,Y) (also written as HomC(X,Y)). Mor-
phisms have a composition rule

◦ : MorC(X,Y) ×MorC(Y,Z)→ MorC(X,Z),

given by ◦ : (f , g) 7→ g ◦ f , satisfying associativity,

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Every object has an identity morphism 1X ∈ MorC(X, X). These are units for
composition, in the sense that 1Y ◦ f = f = f ◦ 1X for any f ∈ MorC(X,Y).

Morphisms are also referred to as “arrows” and written with the function
notation f : X → Y , even though they are not necessarily functions. (For

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

338 Chapter 4 Summary of Mathematical Concepts

example, when discussing externalization in Chapter 1, we considered a case
where morphisms are not functions but “correspondences”.)

Examples of categories the reader will come across in this book include the
category of vector spaces, with morphisms given by linear maps; the category
of magmas, with morphisms given by “magma homomorphisms” (functions
compatible with the magma product operation); the category of (commutative)
algebras, with “algebra homomorphisms” (functions that are compatible with
the linear structure and the product of algebras); etc.

Morphisms describe how objects can transform. In turn, categories them-
selves can transform, and transformations of categories are described by the
notion of functor.

Definition 4.1.2. Given categories C, C′, a functor F : C → C′ maps objects of
the first category to objects of the second, Obj(C) ∋ X 7→ F(X) ∈ Obj(C′), and
it also maps morphisms f ∈ MorC(X,Y) to morphisms F(f) : F(X)→ F(Y) in
MorC′ (F(X), F(Y)), compatibly with composition, F(g ◦ f) = F(g) ◦F(f), and
identity, F(1X) = 1Y .

Functors themselves can transform into other functors. The suitable notion
describing transformations of functors is given by natural transformations.

Definition 4.1.3. Given two functors F1 : C → C′ and F2 : C → C′ between
the same pair C,C′ of categories, a natural transformation η : F1 → F2 is
a collection of morphisms ηX ∈ MorC′ (F1(X), F2(X)), in the category C′, one
for every object X ∈ Obj(C). These morphisms ηX : F1(X) → F2(X) satisfy
the compatibility condition ηY ◦ F1(f) = F2(f) ◦ ηX , for all morphisms f ∈
MorC(X,Y). This compatibility is equivalently expressed as the commutativity
of the diagram

F1(X)
F1(f) //

ηX

��

F1(Y)

ηY

��
F2(X)

F2(f) // F2(Y)

for all X,Y ∈ Obj(C) and for all f ∈ MorC(X,Y), that is, ηY◦F1(f) = F2(f)◦ηX .

In §1.12.3 we also make use, briefly, of the notion of 2-category.

Definition 4.1.4. A 2-category is a (small) category where the sets of mor-
phisms (called 1-morphisms) MorC(X,Y) of morphisms are themselves the ob-
jects of a category whose morphisms (called 2-morphisms, describing mor-
phisms between morphisms) have two different forms of composition, verti-
cal and horizontal, where vertical composition ◦1 has a fixed pair of source
and target objects, while horizontal composition ◦0 follows the composition of

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.2 Hopf algebras 339

1-morphisms (see Figure 4.1 illustrating the two types of compositions of 2-
morphisms). An “exchange relation” expresses the compatibility between the
two compositions,

(α ◦0 β) ◦1 (γ ◦0 δ) = (α ◦1 γ) ◦0 (β ◦1 δ) .

Figure 4.1
Vertical and horizontal composition of 2-morphisms in a 2-category.

4.2 Hopf algebras

One of the main mathematical structures that we use in this book is Hopf alge-
bras. We present here a short summary of their properties and the mathematical
definition.

4.2.1 Main idea
The notion of Hopf algebra, along with the slightly weaker notion of bialgebra,
is a very useful tool in mathematics to handle problems that require accounting
for all possible ways of decomposing certain objects into constituent building
blocks, and compatible ways to assemble the building blocks together. Typi-
cally they arise in a multitude of combinatorial problems, where these opera-
tions of composition/decomposition allow for the appropriate enumeration of
possibilities.

More precisely, the decomposition operation is called a coproduct: it is an
operation that has one input and two outputs. The input is the object one wants
to decompose, and the output is its decomposition into an extracted building
block and what remains. Since in general there are multiple possible decom-
positions, corresponding to different building blocks that can be extracted, all
these different possibilities are listed together as a formal sum. This is the
reason why one considers as underlying structure a vector space V spanned
by the objects one is analyzing, as a formal device where such formal sums
of possibilities make sense. We will assume everywhere that we work with

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

340 Chapter 4 Summary of Mathematical Concepts

vector spaces over the field Q of rational numbers. One can then write the list
of possible decompositions as a vector in the tensor productV⊗V, where the
two sides of the tensor product list, respectively, the extracted terms and their
complements. It is important to note here that the use of a tensor product vec-
tor space here is only signifying the fact that we are dealing with two outputs
(in the case of the coproduct) or two inputs (in the case of the product). Thus
one thinks of the coproduct as an operation ∆ : V → V ⊗ V that takes an
element of V and disassembles it into its constituents, and the product as an
operation m : V ⊗V → V that takes two elements ofV and assembles them
together into a new element.

In fact, since coefficients of such enumerations of possibilities are usually
integers, it is possible to work with Z-modules rather than vector spaces in
all the cases that are of interest to us. We use the vector space notation only
because that is usually more familiar. Thus, the coproduct lists (as a formal
sum) all the possible decompositions of a given object as a building block (or
more general a set of building blocks) and its complement.

The other operation, the product describes a way of combining together ob-
jects of the assigned type (and in particular their building blocks) to form new
objects within the same class. Product and coproduct are related by consis-
tency conditions, that make the composition/decomposition operations com-
patible with each other. Moreover, one usually requires a condition (associa-
tivity for the product, coassociativity for the coproduct) that guarantees that
these operations behave well under iteration. (There are however also cases
that are interesting to consider even though these associativity conditions do
not necessarily hold.)

It is customary to write the properties of operations and their compatibility
in the form of “commutative diagrams”. This means that following the arrows
around the diagrams in two different ways yields the same result. Since follow-
ing the arrows means composing the corresponding operations, this commuta-
tivity of the diagram results into an identity between different compositions of
operations, which is either a compatibility conditions between different opera-
tions or a property of a given operation.

The main reason why the notion of Hopf algebra is relevant in the context
of the generative process of syntax is the fact that the action of Merge on
workspaces uses the extraction of accessible terms from syntactic objects and
this extraction is precisely the operation that the coproduct of a Hopf algebra
(or bialgebra) performs.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.2 Hopf algebras 341

4.2.2 Formal definition
A Hopf algebraH is a vector space over a field K (which we can assume to be
the field Q of rational numbers), endowed with

• a multiplication m : H ⊗K H → H ;
• a unit u : K→ H ;
• a comultiplication ∆ : H → H ⊗K H ;
• a counit ϵ : H → K;
• an antipode S : H → H

which satisfy the following properties. The multiplication operation is asso-
ciative, namely the following diagram commutes

H ⊗K H ⊗K H
m⊗id //

id⊗m
��

H ⊗K H

m
��

H ⊗K H
m // H

which as mentioned above equivalently reads as the identity m ◦ (m ⊗ id) =
m ◦ (id ⊗ m), which is the usual associativity condition for multiplication,
m(m(x, y), z) = (xy)z = x(yz) = m(x,m(y, z)). The unit and multiplication
are related by the commutative diagram

H ⊗K H

m

��

K ⊗K H

u⊗id
99

&&

H ⊗K K

id⊗u
ff

xx
H

where the two unmarked downward arrows are the identifications induced by
scalar multiplication. Unit and counit are compatible via the commutative dia-
gram

H

ϵ

K

u
>>

id // K

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

342 Chapter 4 Summary of Mathematical Concepts

The coproduct is coassociative, namely the following diagram commutes

H ⊗K H ⊗K H H ⊗K H
∆⊗idoo

H ⊗K H

id⊗∆

OO

H
∆

oo

∆

OO

and the comultiplication and the counit are related by the commutative diagram

H ⊗K H

ϵ⊗id

yy

id⊗ϵ

&&
K ⊗K H H ⊗K K

H

ff ∆

OO

88

where the two unmarked upward arrows are the identifications given, respec-
tively, by x 7→ 1K ⊗ x and x 7→ x ⊗ 1K, with 1K the unit of the field K. The
operations ∆ and ϵ are algebra homomorphisms, and m and u are coalgebra
homomorphisms, namely one has a commutative diagram

H ⊗H
m //

∆⊗∆

��

H
∆ // H ⊗H

H ⊗H ⊗H ⊗H
id⊗τ⊗id

// H ⊗H ⊗H ⊗H

m⊗m

OO

where τ : H ⊗ H ⊗ H ⊗ H → H ⊗ H ⊗ H ⊗ H is the permutation that
exchanges the two middle factors. This diagram expresses the compatibility
between product and coproduct, and commutative diagrams for the behavior
of unit and counit with respect to coproduct and product,

H ⊗H
m //

ϵ⊗ϵ

##

H

ϵ

~~
K

and H ⊗H H
∆

oo

K
u⊗u

cc

u

>>

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.3 Rooted Trees 343

using the identification K ⊗K = K. The antipode S : H → H is a linear map
such that the following diagram also commutes

H ⊗K H
m // H H ⊗K H

moo

H ⊗K H

id⊗S

OO

H
∆
oo

u◦ϵ

OO

∆
// H ⊗K H

S⊗id

OO

4.2.3 Bialgebras and Hopf algebras
The notion of bialgebra is very similar to that of Hopf algebra recalled above.
Indeed, a bialgebra satisfies all the same properties, except for the existence
of the antipode. In most cases we are interested in, the bialgebra structure is
the most important thing. However, it is convenient to think in terms of Hopf
algebras, because there is a class of cases, which includes those of interest to
us, where the bialgebra structure already suffices to also have an antipode and
therefore the full Hopf algebra properties. This is called the graded connected
case.

In any graded bialgebraH = ⊕n≥0Hn withH0 = K (the connected property)
and the graded structure compatible with product and coproduct, it is possible
to construct an antipode map inductively by

S (X) = −X −
∑

S (X′)X′′, (4.2.1)

for any element X of the bialgebra, with coproduct ∆(X) = X ⊗ 1 + 1 ⊗ X +∑
X′ ⊗ X′′, where the X′ and X′′ are terms of lower degree.

4.3 Rooted Trees

Binary rooted trees form another class of mathematical objects that plays a
crucial role in our setting.

A tree T is a finite graph whose geometric realization is simply connected
(no loops), defined by a set of vertices V , and a set of edges E. The valence of
a vertex is the number of edges incident to it.

A tree T is rooted, if it has a distinguished element vr ∈ V , the root vertex.
We can assume then that the edges in E are oriented with the uniquely defined
orientation away from the root. One can then say that a vertex is below another
vertex if there is an oriented edge from the second to the first. The source and
target maps s, t : E → V assign to each edge of the tree its source and target
vertices. The leaves of the tree are the univalent vertices. They are also the
sinks (they have no outgoing edges).

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

344 Chapter 4 Summary of Mathematical Concepts

A rooted tree is binary if below every non-leaf vertex there are exactly two
other vertices. Equivalently, every non-root and non-leaf vertex has valence
three, the root has valence two, and the leaves have valence one.

The tree is vertex-decorated if there is a map LV : V → DV to a (finite) set.
It is edge-decorated if similarly there is a map LE : E → DE to a finite set of
possible edge decorations. We will assume the trees are vertex-decorated, and
we will simply refer to them as decorated trees.

A rooted tree is planar if it is endowed with an embedding of its geometric
realization in the plane. Assigning planar embedding is equivalent to assigning
a linear ordering of the leaves. Rooted trees without an assignment of a planar
structure are referred to as abstract (or sometimes as on-planar) binary rooted
trees.

Consider the vector space Vk spanned by the planar binary rooted trees T
with k internal vertices (equivalently, with k + 1 leaves). It has dimension

dimVk = (#DV)k (2k)!
k!(k + 1)!

, (4.3.1)

where #DV is the cardinality of the set DV of possible vertex labels.
The difference between planar and abstract binary rooted trees plays a cru-

cial role in the Minimalist Model of syntax, with abstract trees describing
the syntactic objects, the hierarchical structures produced by free symmetric
Merge, while the planar trees correspond to the result of externalization, with
the resulting linear ordering of the leaves corresponding to sentences viewed
as ordered strings of words.

4.4 Other algebraic structures

In addition to the notion of Hopf algebra that we recalled above, there are some
other algebraic structures that play a role in our work and that we will recall
here briefly. These include algebras and rings, ideals, modules, semirings.

4.4.1 Main idea
The notion of vector space has become widely used in (computational) lin-
guistics. Encoding words as vectors makes it possible to assign to a given
lexical item a collection of numbers (the vector coordinates with respect to an
assigned basis) that encode, for example, the degree of relatedness of that word
to a certain list of concepts, of properties, or to other words. Moreover, vectors
in a vector space can be added, and formal sums in the vector space spanned
by a given set are often an efficient way to encode a list of possibilities in that
set. In fact, this role of sums as lists of possibilities is the one that we make
extensive use of in this work and our main reason for using vector spaces.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.4 Other algebraic structures 345

Familiar constructions in vector spaces include considering subspaces and
quotient spaces, which can be seen as kernels and cokernels of linear maps
between vector spaces. A quotient operation is always regarded as a way of
eliminating a part of a structure, and subspaces correspond to extract substruc-
tures (where in this case the type of structure we are considering is just that of
linear space).

This simple and familiar picture can be generalized in various ways. In vec-
tor spaces, linear combinations are weighted sums where the weights (coef-
ficients) are scalars in a field K (usually either the field of real numbers, or
the smaller field of rational numbers, or the larger field of complex numbers).
However, one may want weighted sums where the weights are more structured
than just being numbers, while maintaining the main “linearity” properties of
vector spaces and linear maps acting on them. This can be done by replac-
ing the field K of scalars with a more general ring R of coefficients. Instead
of vector spaces over K one then has modules over the ring R. Examples of
rings include rings of functions (polynomials, power series, Laurent series),
so for instance if the weights one wants to use in weighted sums depend on
adjustable parameters, one is working with a module over a ring of functions
(of those parameters), rather than with a vector space. Certain rings also have
a simultaneous vector space structure (for example polynomials with real co-
efficients), where the addition operation as a ring and the addition operation as
a vector space coincide. These are called (associative) algebras.

The construction of subspaces and quotient spaces for vector spaces become
more delicate in the case of algebras, as not all subalgebras have corresponding
quotient algebras. Those that do are called ideals. (Things get somewhat more
involved if the multiplication operation in the algebra is noncommutative as
we will review briefly below.)

Semirings are another different but closely related algebraic structure. These
are also well known in linguistics, since the work of Chomsky–Schützenberger
(36). The semiring of formal power series with coefficients in the semiring
of non-negative integers is used in the Chomsky–Schützenberger enumera-
tion theorem, which proves that, for a language L that admits an unambiguous
context-free grammar, the power series GL(x) =

∑∞
k=0 ak xk, with ak = #Wk(L)

the number of words of length k in the language, is algebraic over the field
of rational functions Q(x), that is, it satisfies a polynomial equation over this
field. Here the difference between ring and semiring structure lies in the re-
striction of coefficients to be non-negative integers. More general semirings
that are of familiar use in linguistics, in the context of semiring parsing, in-
clude the Boolean semiring (which just consists of 0 and 1 with the Boolean

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

346 Chapter 4 Summary of Mathematical Concepts

operations) or the Viterbi or probabilistic semiring which replaces the 0 and 1
Boolean values with a probabilistic version with values p ∈ [0, 1]. We discuss
various semirings and forms of semiring parsing in §3.

4.4.2 Rings, Algebras, Ideals, Modules, Semirings
We review here the formal definitions of the algebraic structures that we men-
tioned in §4.4.1 and that we use throughout the book.

A ring R is a set equipped with two operation, addition and multiplication,
where addition is associative, commutative, has a zero element, and additive
inverses, while multiplication is associative (not necessarily commutative) and
has a unit element 1; there is a relation between these two operations given by
the distributive property (multiplication distributes over sum) x(y+z) = xy+ xz
and (y + z)x = yx + zx. The ring Z of integers, the ring Z[x] of polynomials
with integer coefficients, the ring Z[[x]] of formal power series with integer
coefficients are all examples of commutative rings. The ring Mn(Z) of n × n
matrices with integer coefficients is an example of a noncommutative ring. The
difference between a ring and a field lies in the fact that a field is a commutative
ring where all non-zero elements also have a multiplicative inverse.

A subring R′ ⊂ R is a subset preserved by the ring operations of R, namely
such that the ring operations of R induce a ring structure on R′. A left-ideal I ⊂
R is a subset with the property that combinations of the form r1x1 + · · · + rnxn

with any xi ∈ I and any ri ∈ R are contained in I, that is, RI ⊂ I. A
right-ideal has the same property with respect to combinations of the form
x1r1 + · · · + xnrn. A two-sided ideal I ⊂ R is simultaneously a left and a
right ideal. In a commutative ring there is no difference between left and right
ideals. Quotient rings R/I can be obtained only when the substructure that one
quotients out is a two-sided ideal I ⊂ R.

An algebraA is a vector space (over a field K) endowed with a multiplication
operation m : A × A → A, as we have described in the first part of the
structure or Hopf algebras and bialgebras in §4.2, namely with associativity of
multiplication m(m(x, y), z) = (xy)z = x(yz) = m(x,m(y, z)) described by the
commutative diagram

A⊗K A⊗K A
m⊗id //

id⊗m
��

A⊗K A

m

��
A⊗K A

m // A

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.5 Point set topology 347

and multiplicative unit with commutative diagram

A⊗K A

m

��

K ⊗K A

u⊗id
99

&&

A⊗K K

id⊗u
ee

xx
A

In terms of the relation to the definition of ring recalled above, we can think
of this notion of associative algebra as a ring that is also a vector space, where
addition and multiplication give the ring structure and the same addition op-
eration together with scalar multiplication by the field give the vector space
structure. For example, the ring of polynomials Q[x] is also an algebra over
Q. In the text of this book we also occasionally consider algebras where the
multiplication operation is not required to satisfy the associativity property
(nonassociative algebras).

A left module over a ring (or over an associative algebra) is a generalization
of the notion of a vector space (over a field). Namely a module M over a
ring R has an addition operation that is associative, commutative, and with 0
element, and scalar multiplication x 7→ rx by elements r of the ring R, with
r(x + y) = rx + ry, (r + s)x = rx + sx, (rs)x = r(sx), 1x = x. A right module
has the same structure but with scalar multiplication from the right x 7→ xr. A
bimodule is simultaneously a left and a right module (it has a left and a right
action of R that commute with each other). For commutative rings there is no
difference between left and right modules.

A semiring S is a set with a sum ⊕ and a product ⊙ operation. The sum
is associative and commutative and has a zero element, but is now no longer
required to have additive inverses. The product is associative with unit element,
and satisfies 0⊙ s = 0 for any s ∈ S and distributivity s⊙ (s1 ⊕ s2) = (s⊙ s1)⊕
(s ⊙ s2) and (s1 ⊕ s2) ⊙ s = (s1 ⊙ s) ⊕ (s2 ⊙ s).

4.5 Point set topology

We recall here some basic concepts and terminology regarding topological
spaces, that we use occasionally in the text.

Definition 4.5.1. A topological space (X,TX) is a set X together with an as-
signed collection TX of subsets (the open sets) satisfying

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

348 Chapter 4 Summary of Mathematical Concepts

1. TX is closed under arbitrary (finite or infinite) unions: ∪αUα is in TX if
Uα ∈ TX for all α;

2. TX is closed under finite intersections: U1 ∩ · · · ∩ UN ∈ TX if Ui ∈ TX

for all i = 1, . . . ,N;
3. X and ∅ are in TX .

A closed set C ⊂ X in a topological space is the complement C = X ∖U of an
open setU ∈ TX .

An open covering (often also refereed to as “a covering”) of a topological
space X is a collection {Uα}α∈I (either finite or infinite) of open setsUα ∈ TX

with the property that every point of X is covered by at least one of the open
sets, namely such that

X =
⋃
α∈I

Uα .

A finite covering is an open covering consisting of finitely many open sets,
{U1, . . . ,UN}. An open covering of a subset A ⊂ X of a topological space is
similarly defined, with open sets in the induced topology.

A warning about terminology: the word “covering” in the sense of “open
covering” as intended here should not be confused with a different use of the
same word in topology, namely “covering” in the sense of “covering space”,
which is another topological space Y with a continuous surjection Y ↠ X, that
is a locally trivial fibration with discrete fibers.

We do use the notion of covering space, and the more general notion of
branched covering when we discuss the origami folding map (3.4.1) in the
context of semantic spaces and externalization, so we review it briefly here.
As mentioned above, a covering space Y of a space X is a topological space
with a continuous surjection π : Y ↠ X such that there is a discrete set D and
pen sets Uα ⊂ X such that

π−1(Uα) ≃ Uα × D .

The discrete set D is the set of branches of the covering map π. Namely locally
(over the open sets Uα) the projection map consists of a discrete set of disjoint
copies of Uα. The group of covering transformations of a covering space π :
Y ↠ X is the set of symmetries (homeomorphisms, or diffeomorphisms if X
and Y are smooth manifolds) of Y that preserve the projection map π, namely

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.5 Point set topology 349

invertible transformations γ : X → X that form a commutative diagram

Y
γ //

π

��

Y
π

��
X

The origami folding map (3.4.1) restricted to the open set that corresponds to
the binary trees is a covering space. When one includes the boundary strate
consisting of trees where one of the length values goes to zero (which makes
them trees with some n-ary vertices with n ≥ 3) the map is a branched covering
(the branching happening at the folds of the “origami folding”). A branched
covering is a continuous surjection π : Y ↠ X which is a branched covering
on a dense open set U ⊂ X, with some of the branches colliding together over
the set X ∖ U, called the branch locus.

The notion of open coverings and finite coverings is the key to another im-
portant concept in topology, compactness. A subset K ⊆ X in a topological
space is compact if from any open coverings {Uα}α∈I of K one can always ex-
tract a finite subcovering (i.e. there’s always a way to cover K with just finitely
many open sets).

A topological space is connected if it cannot be decomposed into a disjoint
union of open sets. The stronger notion of path connectedness requires that,
for any two points in the space, there is a continuous path between them that is
also entirely contained in the space.

Definition 4.5.2. A metric space (X, dX) is a set together with a function dX :
X × X → R≥0 satisfying dX(x, y) = 0 if and only if x = y; dX(x, y) = dX(y, x)
for all x, y ∈ X and

dX(x, z) ≤ dX(x, y) + dX(y, z) ,

for all x, y, z ∈ X, the triangle inequality of distances. A Cauchy sequence
{xn}n∈N of points in a metric space (X, dX) is a sequence with the property that
for any ϵ > 0 there is an n0 ∈ N such that for all n,m ≥ n0, the distances satisfy
dX(xn, xm) < ϵ. A metric space (X, dX) is complete if any Cauchy sequence
converges, namely there is an x ∈ X such that d(xn, x)→ 0 as n→ ∞.

A metric space is also a topological space with the topology generated by the
open sets Br(x) = {y ∈ X | dX(x, y) < r}. A topological space X is metrizable if
the topology TX is induced by a metric in this way. Not all topological spaces
are metrizable: there are necessary and sufficient conditions for metrizability.
We encounter some issues regarding metrizability, for example, in §3.9.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

350 Chapter 4 Summary of Mathematical Concepts

A particularly useful class of metric spaces are Riemannian manifolds. These
are smooth manifolds (topological spaces that can be locally approximated by
flat Euclidean spaces through tangent spaces), endowed with a metric. Con-
nected Riemannian manifolds are path connected and among paths one can
select those that have minimal length, with the length measured using the Rie-
mannian metric: these paths are called geodesics. A Riemannian manifold M
is geodesically complete if the geodesic arcs γ : [0, 1]→ M at any given point
γ(0) = x ∈ M extend indefinitely (i.e. to a curve γ : R → M). A Rieman-
nian manifold M is geodesically convex if for any pair x , y of points in M
there is a unique length minimizing geodesic arc γ : [0, 1] → M contained
in M that connects the two points, γ(0) = x, γ(1) = y. We often assume that
our models of semantic spaces are geodesically convex Riemannian manifolds
(but for example in §3.9 we also need to consider topological spaces that are
not Riemannian manifolds).

4.6 Further remarks on Birkhoff factorization

We have discussed in Chapter 3 how to adapt a technique originally devel-
oped in theoretical physics to assign semantic values to syntactic objects in
a way that recursively checks consistency over substructures. In this section
we provide further details that can help putting this idea in context, both in
comparison with previous approaches used in linguistics (specifically in the
context-free setting) and in the context of how these ideas developed within
theoretical physics.

The problem of checking consistency of semantic values across substruc-
tures has played a significant role in linguistics. Methods used to address
this question range widely, including Knuth’s semantics of context-free lan-
guages, (104), and generally attribute-grammars based on underlying context-
free grammars augmented with attributes and semantic rules, as well as pre-
group grammars and Lambek calculus (see for instance (112), and (167) for a
recent version in a vector space model of semantics). Relations between earlier
versions of Minimalism and Lambek calculus were analyzed in (8).

There are two main aspects in which the approach we are describing here
differs from these methods:

• instead of being based on an underlying description of grammar in terms of
formal languages (especially context-free) the method we introduce here is
designed to use a generative process encoded in a Hopf algebra structure;

• the procedure of checking of consistency across substructures is packaged
into a single map, which recursively modifies an initial chosen assignment

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.6 Further remarks on Birkhoff factorization 351

Figure 4.2
Example: the generative grammar for the Feynman graphs of the ϕ2A physical theory
(figure from (134)).

of semantic values so as to incorporate the consistency checking for sub-
structures.

In the setting of theoretical physics, one is also considering a generative
process that recursively produces hierarchical structures. These combinatorial
hierarchical structures are the Feynman graphs of a given quantum field theory.
The form of the action functional of the theory determines the corresponding
class of graphs. As in linguistics, there are two different ways in which one can
model this generative process. One of them is in terms of formal languages,
see (134), the other is in terms of Hopf algebras, see (42), (51). In the case
of formal languages, an example of generative grammar for Feyman diagrams
(for the so-called ϕ2A physical theory) is given in Figure 4.2. An example of
the encoding of the generative structure of Feynman graphs through the Hopf
algebra coproduct is given in Figure 4.3.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

352 Chapter 4 Summary of Mathematical Concepts

Figure 4.3
Example: the generative structure of Feynman graphs encoded in the coproduct of the
Hopf algebra.

One should think of the formal languages description of Feynman graphs as
the analog of descriptions of (older formulations of) Merge and Minimalism
given in terms of Merge grammars (MGs) and multiple context-free gram-
mars (MCFGs), see (180), (186). An important aspect of the formal language
description of Feynman graphs is that the graph grammars involved are usu-
ally context-sensitive. Thus, the assignment of physical values to Feynman
graphs in a way consistent over substructures cannot be directly modeled on
attribute-grammars or other forms of semantic parsing developed in the setting
of context-free grammars.

The Hopf algebra description, on the other hand, is the direct analog of the
formulation of Minimalism that we presented in this book, based on Merge
and the Strong Minimalist Thesis. In physics, this Hopf algebra formulation
is crucial in order to bypass the problem described above and obtain a good
recursive method for assigning meaningful physical values to the Feynman
graphs in a way consistent with substructures.

The two descriptions of the generative process of Feynman graphs in terms
of graph grammars and of Hopf algebras are not equivalent in terms of com-
putational structure: this can be seen as in Example 3.2 of (134) where one
finds that the Lie algebra associated to the Hopf algebra of Feynman graphs
is not isomorphic to the Lie algebra associated to the graph grammar. Indeed,
one can see from this type of comparison that the Hopf algebra description has
greater succinctness than the graph grammar description in terms of generative
power. This can be seen as an analog of the result of (6) on the greater suc-
cinctness of the Merge description of Minimalism over its formulation in terms
of MCFGs. For computational implementations of the generative process and
the Hopf algebra calculations for Feynman graphs, see for instance (15).

As we discussed in Chapter 3, the key idea for the assignment of values con-
sistently across substructures lies in the construction of a recursive procedure,
which in physics goes under the name of Bogolyubov preparation, that starts
from a given assignment of values to the hierarchical combinatorial structures,

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.6 Further remarks on Birkhoff factorization 353

given in the form of a map ϕ : H → R, where H is the Hopf algebra that
describes the generative process of the Feynman graphs and R is a chosen tar-
get space for evaluation (in general a ring, for example of Laurent series, or
more generally a semiring, as in the setting of semiring parsing). The only
requirement that is made of the map ϕ : H → R is that formal combina-
tions go to formal combinations (linearity) and that independent objects go to
independent values. In physics this last requirement is multiplicativity over
connected components of the Feynman graph. In our linguistic setting, con-
nected components are different syntactic objects in a workspace and this same
multiplicative property is simply saying that, as long as two such objects are
not combined together by the action of Merge their semantic assignments are
independent and not subject to compatibility constraints. Given such an as-
signment of values ϕ : H → R, one proceeds to modify it recursively, in such
a way that the checking of compatibility of values across substructures is built
into the resulting modified function ϕ̃ : H → R (the Bogolyubov preparation
of ϕ). This recursive construction uses the coproduct ∆ of the Hopf algebra
H to extract all the possible substructures and compare them with the associ-
ated quotient (what remains once the substructure is removed). It also uses a
decomposition of the target algebra R into two subalgebras R± (such decom-
position is called a Rota–Baxter structure and the operator R that realizes the
decomposition is called a Rota–Baxter operator). Precise definitions of these
terms are recalled in Chapter 3: here we describe their properties and their role
in the construction. The two parts R± of the target R represent, respectively,
the cases of a meaningful assignment (in physics a finite value rather than a
meaningless infinity) and the cases that one want to disregard as meaningless.
In our setting, rather than the divergences and finite values of physical theories,
we are using the Rota–Baxter operator to filter the target space R by levels of
agreement with a given semantic hypothesis (or probe). The inductive form of
ϕ̃ : H → R is structured in the following way. One replaces the original map
x 7→ ϕ(x), for x ∈ H with a sum of inductive correction terms

ϕ̃(x) = ϕ(x) +
∑

ϕ−(x′)ϕ(x′′) ,

where the sum is over the decompositions of x into the two terms x′ and x′′

according to the coproduct of the Hopf algebra

∆(x) = 1 ⊗ x + x ⊗ 1 +
∑

x′ ⊗ x′′ ,

and the ϕ− is defined recursively by

ϕ−(x) = −T (ϕ̃(x)) .

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

354 Chapter 4 Summary of Mathematical Concepts

Note that this recursive definition works provided the Hopf algebra can be
filtered into graded pieces (for example, the syntactic objects by the number of
leaves of the tree, or equivalently the length of the sentence they represent) and
all the terms x′ and x′′ in the coproduct expression are in degrees lower than
x, so that all the ϕ−(x′) occurring in the definition of ϕ̃(x) have already been
computed when ϕ̃(x) and ϕ−(x) are computed. The recursion parameter is the
degree in the Hopf algebra. The factorization then consists in separating out
the two parts

ϕ−(x) = −R(ϕ̃(x)) and ϕ+(x) = (1 − R)(ϕ̃(x)) .

The first map ϕ− : H → R− collects together (as a formal sum) all the in-
stances where “something goes wrong” in one of the substructures, detected
by the corresponding term ϕ−(x′) compared with the term ϕ(x′′) of the value
assigned when that substructure is removed. The other term ϕ+ : H → R+ is
an assignment of values where all the instances where something goes wrong
have been removed. The separation of ϕ̃ into ϕ± is called a Birkhoff factoriza-
tion of ϕ because ϕ± satisfy the product relation

ϕ(x) = ((ϕ− ◦ S) ⋆ ϕ+)(x) = ⟨ϕ− ◦ S ⊗ ϕ+,∆(x)⟩ ,

where S is the antipode of the Hopf algebra. Again one uses here the fact that
the Hopf algebra is graded and that S is defined inductively in terms of the
coproduct decomposition into terms of lower degree,

S (x) = −x −
∑

S (x′)x′′ .

The second line in Figure 4.3 shows this inductive form of the coproduct in the
case of Feynman graphs.

In the specific examples we usually discuss in Chapter 3 we focus on comput-
ing the term ϕ−(x) that detects the presence of inconsistencies. In fact, in most
of the cases we discuss explicitly the target R with the Rota–Baxter structure is
a semiring rather than a ring or algebra, as in the original physics setting. This
means that the form in which the factorization is written is slightly changed.
The main difference is that the factorization we consider does not explicitly
make use of the antipode (this fact is related to the absence of additive inverses
in the semiring) and takes the form

ϕ+ = ϕ− ⋆ ϕ

rather than ϕ = (ϕ− ◦ S) ⋆ ϕ+. For this reason we do not discuss in de-
tail the form of the antipode in our Hopf algebra of workspaces, though it

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

4.6 Further remarks on Birkhoff factorization 355

is completely specified by the same recursive formula written here above,
S (x) = −x −

∑
S (x′)x′′.

There are ways of relating this Hopf algebra approach to other forms of pars-
ing. Some of them are discussed in Chapter 3. Other relevant comparisons can
be found in the work of Kock (105) on inductive data types and combinato-
rial Dyson–Schwinger equations, which can be used as a ground for compar-
ison between approaches like attribute-grammars or Lambek calculus and the
Hopf algebra formulation. As we discuss briefly in Chapter 1 combinatorial
Dyson–Schwinger equations are a way of encoding the generative process as
the solution of a fixed point equation in a Hopf algebra, and they are known to
correspond to construction of Hopf subalgebras and Hopf ideals, (58).

The Hopf algebra that we used in Chapter 2 to describe the older formulation
of Minimalism as in Stabler’s Computational Minimalism (180) is given by the
Loday–Ronco Hopf algebra. There are several well known and closely related
Hopf algebras that we expect will play a significant role in the further study of
Externalization and of the syntax-semantics interface. These include the Hopf
algebras of integer binary relations of (159), closely related to the associahe-
dra we discussed in Chapter 3 and the permutohedra which we expect will be
related to the study of the geometry of syntactic parameters, the Malvenuto–
Reutenauer Hopf algebra of permutations, closely related to the Loday–Ronco
Hopf algebra. They also include a class of Hopf algebras known as “Hopf alge-
bras of words” (see (45)) which also include the Malvenuto–Reutenauer Hopf
algebra. We expect that further study of the interplay between the core compu-
tational structure of syntax and the two channels of Externalization (Sensory-
Motor system) and of syntax-semantics interface (Conceptual-Intensional sys-
tem) will involve several of these algebraic structures and their interplay.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography

[1] M. Aguiar, F. Sottile, Structure of the Loday–Ronco Hopf algebra of trees, Journal
of Algebra, Vol.295 (2006) 473–511.

[2] F. Apéry, M. Yoshida, Pentagonal structure of the configuration space of five points
in the real projective line, Kyushu J. Math. 52 (1998) N. 1, 1–14.

[3] BabyLM Challenge, Association for Computational Linguistics, 2023.
https://babylm.github.io/

[4] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press,
1998.

[5] C. Bergbauer, D. Kreimer, Hopf algebras in renormalization theory: locality and
Dyson-Schwinger equations from Hochschild cohomology, in “Physics and Number
Theory”, pp. 133–164, IRMA Lect. Math. Theor. Phys. 10, Eur. Math. Soc., 2006.

[6] R.C. Berwick, Mind the gap, in “50 Years Later: Reflections on Chomsky’s As-
pects”, pp. 1–13, MITWPL, 2015.

[7] R.C. Berwick, N. Chomsky, Why only us? MIT Press, 2017.

[8] R.C. Berwick, S. Epstein, On the Convergence of ‘Minimalist’ Syntax and Catego-
rial Grammar, in “Algebraic Methods in Language Processing 1995”, pp. 143—148,
Universiteit Twente, 1995.

[9] R.C. Berwick, A.D. Friederici, N. Chomsky, J.J. Bolhuis, Evolution, brain, and the
nature of language, Trends Cogn. Sci. (2013) 17(2) 89–98.

[10] R.C. Berwick, P. Pietroski, B. Yankama, N. Chomsky, Poverty of the Stimulus Re-
visited, Cognitive Science, Vol. 35 (2011) N. 7, 1207–1242.

[11] L. Billera, S. Holmes, K. Vogtmann, Geometry of the space of phylogenetic trees,
Advances in Applied Mathematics 27 (2001) 733–767.

[12] P. Blasiak, Combinatorial route to algebra: the art of composition & decomposi-
tion, Discrete Math. Theor. Comput. Sci. 12 (2010), no. 2, 381–400.

[13] J. Boardman, R. Vogt. Homotopy invariant algebraic structures on topological
spaces, Lecture Notes in Mathematics 347, 1973.

[14] N.N. Bogoliubov, D.V. Shirkov, The Theory of Quantized Fields, Intersci. Monogr.
Phys. Astron., 1959.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

358 Bibliography

[15] M. Borinsky, Feynman graph generation and calculations in the Hopf algebra of
Feynman graphs, Computer Physics Communications, Vol.185, N.12 (2014) 3317–
3330.

[16] A. Borowiec, W.A. Dudek, S. Duplij, Basic concepts of ternary Hopf algebras,
arXiv:0306208, Journal of Kharkov National University, ser. Nuclei, Particles and
Fields, v. 529, N 3(15) (2001) pp. 21–29.

[17] Ch. Brouder, A. Frabetti, QED Hopf algebras on planar binary trees. J. Algebra
267 (2003) N.1, 298–322.

[18] D. Calaque, K. Ebrahimi-Fard, D. Manchon, Two interacting Hopf algebras of
trees: A Hopf-algebraic approach to composition and substitution of B-series, Ad-
vances in Applied Mathematics 47 (2011) 282–308.

[19] F. Chapoton, Operads and algebraic combinatorics of trees, Séminaire
Lotharingien de Combinatoire 58 (2008), Article B58c [27 pages]

[20] N. Chomsky, The Minimalist Program, MIT Press, 1995.

[21] N. Chomsky, Bare phrase structure, in H. Campos, P. Kempchinsky (eds.) “Evolu-
tion and Revolution in Linguistic Theory”, Georgetown University Press, 1995.

[22] N. Chomsky, On Phases, in “Foundational Issues in Linguistic Theory: Essays in
Honor of Jean-Roger Vergnaud” (R. Freidin, C.P. Otero, M.L. Zubizarreta, Eds.),
pp. 133–166, MIT Press, 2008.

[23] N. Chomsky, Problems of projection, Lingua, Vol.130 (2013) 33-49.

[24] N. Chomsky, Problems of projection: Extension, in “Structures, Strategies and Be-
yond: Studies in honour of Adriana Belletti” (E. Di Domenico, C. Hamann, S. Mat-
teini, Eds.) John Benjamins Publishing, 2015, pp. 1–16

[25] N. Chomsky, Some Puzzling Foundational Issues: The Reading Program, Catalan
Journal of Linguistics Special Issue (2019) 263–285.

[26] N. Chomsky, The UCLA lectures, 2019. lingbuzz/005485

[27] N. Chomsky, Simplicity and the form of grammars, Journal of Language Modeling,
Vol.9 (2021) N.1, 5–15.

[28] N. Chomsky, Minimalism: where are we now, and where can we hope to go, Gengo
Kenkyu, Vol. 160 (2021) 1–41.

[29] N. Chomsky, Genuine explanation and the Strong Minimalist Thesis, Cognitive
Semantics, Vol.8 (2022) 347–365.

[30] N. Chomsky, Working Toward the Strong Interpretation of SMT, lecture series The-
oretical Linguistics at Keio-EMU, 2023.

[31] N. Chomsky, The Miracle Creed and the Strong Minimalist Thesis, preprint, 2023.

[32] N. Chomsky, Displacement, preprint, 2023.

[33] N. Chomsky, Beyond Explanatory Adequacy. In “Structures and Beyond: The Car-
tography of Syntactic Structures, Volume 3”, (ed. Adriana Bellett)i, pp. 104–131.
Oxford University Press, 2004.

[34] N. Chomsky, Lectures on Government and Binding, Dordrecht: Foris Publications,
1982.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography 359

[35] N. Chomsky, H. Lasnik, The theory of Principles and Parameters, in “Syntax: An
international handbook of contemporary research”, pp.506–569, de Gruyter, 1993.

[36] N. Chomsky, M.P. Schützenberger, The algebraic theory of context-free languages,
in (P. Braffort and D. Hirschberg, Eds.) “Computer Programming and Formal Sys-
tems”. North-Holland, 1963, pp. 118–161.

[37] N. Chomsky, T.D. Seely, R.C. Berwick, S. Fong, M.A.C. Huybregts, H. Kitahara,
A. McInnerney, Y. Sugimoto, Merge and the Strong Minimalist Thesis, Cambridge
Elements, Cambridge University Press, 2023.

[38] S.Y. Chung, D.D. Lee, H. Sompolinsky, Classification and geometry of general
perceptual manifolds, Phys. Rev. X 8 (2008), 031003.

[39] G. Cinque, Cognition, universal grammar, and typological generalizations, Lingua,
Vol. 130 (2013), 50–65.

[40] G. Cinque, On Linearization. Toward a Restrictive Theory, The MIT Press, 2023.

[41] C. Collins, E. Stabler, A Formalization of Minimalist Syntax, Syntax 19 (2016) N.1,
43–78.

[42] A. Connes, D. Kreimer, Hopf algebras, Renormalization and Noncommutative ge-
ometry, Comm. Math. Phys 199 (1998) 203–242

[43] A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields, and Mo-
tives, Colloquium Publications, Vol.55, American Mathematical Society, 2008.

[44] C.W. Coopmans, K. Kaushik, A.E. Martin, Hierarchical structure in language and
action: A formal comparison, Psychological Review, 130, 935-952, 2023.

[45] M. D. Crossley, Some Hopf algebras of words, Glasg. Math. J. 48 (2006), no. 3,
575–582.

[46] C. Curto, V. Itskov, Cell groups reveal structure of stimulus space, PLoS Comput.
Biol. (2008) 4(10), e1000205 [13 pages].

[47] C. Delaney, M. Marcolli, Dyson-Schwinger equations in the theory of computation,
in “Feynman amplitudes, periods and motives”, pp. 79–107, Contemp. Math. 648,
Amer. Math. Soc., 2015.

[48] S.L. Devadoss, Tessellations of moduli spaces and the mosaic operad, in Homotopy
Invariant Algebraic Structures, Contemporary Mathematics 239 (1999) 91–114.

[49] S.L. Devadoss, J. Morava, Navigation in tree spaces, Adv. in Appl. Math. 67
(2015), 75–95.

[50] P. Diaconis, C.Y.A. Pang, A. Ram, Hopf algebras and Markov chains: two exam-
ples and a theory. J. Algebraic Combin. 39 (2014), no. 3, 527–585.

[51] K. Ebrahimi-Fard, D. Kreimer, The Hopf algebra approach to Feynman diagram
calculations, J. Phys. A 38 (2005), no. 50, R385–R407.

[52] K. Ebrahimi-Fard, D. Manchon, The combinatorics of Bogoliubov’s recursion in
renormalization, in “Renormalization and Galois theories”, pp. 179–207, IRMA
Lect. Math. Theor. Phys., 15, Eur. Math. Soc., Zürich, 2009.

[53] H. Edelsbrunner, J. Harer, Computational Topology: An Introduction, American
Mathematical Society, 2010.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

360 Bibliography

[54] S.D. Epstein, H. Kitahara, D. Seely, Structure building that can’t be, in “Ways of
Structure Building” (M. Uribe-Etxebarria, V. Valmala, eds.), pp. 253–270, Oxford
University Press, 2012.

[55] E. Van Everbroeck, M. Polinsky, G.W. Cottrell, Does English need its pronouns?
Simulating the effect of Pro-Drop on SVO languages, AAAI Symposia, Spring 2004,
SS-04-05-013.

[56] M.B.H. Everaert, M.A.C. Huybregts, N. Chomsky, R.C. Berwick, J.J. Bolhuis,
Structures, Not Strings: Linguistics as Part of the Cognitive Sciences, Trends in
Cognitive Sciences, Vol.19 (2015) N.12, 729–743.

[57] E. Fedorenko, P.J. Hsieh, A. Nieto-Castañón, S. Whitfield-Gabrieli, N. Kanwisher,
New Method for fMRI Investigations of Language: Defining ROIs Functionally in
Individual Subjects, J Neurophysiol. Vol. 104 (2010) N.2, 1177–1194.

[58] L. Foissy, Classification of systems of Dyson–Schwinger equations in the Hopf al-
gebra of decorated rooted trees, Advances in Math. 224 (2010) 2094–2150.

[59] L. Foissy, Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002)
193–239.

[60] S. Fong, R. Berwick, J. Ginsburg, The combinatorics of merge and workspace
right-sizing, Evolinguistics Workshop, 2019.

[61] S. Fong, J. Ginsburg, On constraining Free Merge, The 43rd Meeting of the Kansai
Linguistics Society. Konan University: Kobe, Japan, 2018.

[62] S. Fong, J. Ginsburg. On the computational modeling of English relative clauses,
Open Linguistics. 9: 1-35, 2023. DOI: https://doi.org/10.1515/opli-2022-0246.

[63] S. Fong, M. Oishi, On the nature of FormSet, preprint, 2023.

[64] A.D. Friederici, Language in Our Brain: The Origins of a Uniquely Human Ca-
pacity, The MIT Press, 2017.

[65] A.D. Friederici, N. Chomsky, R.C. Berwick, A. Moro, J.J. Bolhuis, Language,
mind and brain, Nat. Hum. Behav. (2017) 1(10) 713–722.

[66] S. Gakkhar, M. Marcolli, Syntactic structures and the general Markov models,
arXiv:2104.08462.

[67] A.J. Gallego, R. Orús, Language design as information renormalization,
arXiv:1708.01525v5.

[68] X. Gao, L. Guo, H. Zhang, Rota’s program on algebraic operators, rewriting sys-
tems and Gröbner-Shirshov bases, arXiv:2108.11823.

[69] P. Gärdefors, Conceptual spaces: the geometry of thought, The MIT Press, 2000.

[70] P. Gärdefors, The geometry of meaning: semantics based on conceptual spaces,
The MIT Press, 2014.

[71] H.M. Gärtner, J. Michaelis, A Note on Countercyclicity and Minimalist Grammars,
in “Proceedings of FGVienna: The 8th Conference on Formal Grammar”, Gerald
Penn (ed.), pp. 95–109, CSLI Publications, 2008.

[72] S. Gaubert, Y. Vlassopoulos, A proposal for the mathematical structure computed
by large language models, preprint 2024.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography 361

[73] L. Gerritzen, R. Holtkamp, Hopf co-addition for free magma algebras and the non-
associative Hausdorff series, J. of Algebra, Vol. 265 (2003) 264–284.

[74] S. Gerth, P. beim Graben, Unifying syntactic theory and sentence processing dif-
ficulty through a connectionist minimalist parser, Cogn. Neurodyn. Voo.3 (2009)
297–316.

[75] J. Goodman, Semiring parsing, Computational Linguistics, Vol.25 (1999) N.4,
573–605.

[76] P. beim Graben, S. Gerth, Geometric representations for Minimalist Grammars, J.
Log. Lang. Inf. Vol.21 (2012) 393–432.

[77] J. Greenberg, Some universals of grammar with particular reference to the order of
meaningful elements, in Greenberg, J. (Ed.), “Universals of Language”, MIT Press,
1963, pp. 73–113.

[78] U. Grenander, Elements of Pattern Theory, Johns Hopkins University Press, 1996.

[79] U. Grenander, M.I. Miller, Pattern Theory: From Representation to Inference, Ox-
ford University Press, 2007.

[80] U. Grenander, Patterns in Mathematical Semantics, Chapter 9 in “Regular Struc-
tures: Lectures in Pattern Theory, Vol.III”, Springer, 1981, 451–538.

[81] C. Guardiano, G. Longobardi, Parameter theory and parametric comparison, in
I.G. Roberts (Ed.) “Oxford Handbook of Universal Grammar”, Oxford University
Press, 2017, pp. 377–398.

[82] K. Gulordava, P. Bojanowski, E. Grave, T. Linzen, M. Baroni, Colorless green
recurrent networks dream hierarchically, in Proceedings of NAACL-HLT, 2018,
1195–1205.

[83] L. Guo, Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Com-
bin. 29 (2009), 35–62.

[84] H. Haider. On Minimalist theorizing and scientific ideology in grammar theory,
2018. doi:10.13140/RG.2.2.15886.82242

[85] B. Hanin, D. Rolnick, Complexity of linear regions in Deep Networks, Proceedings
of Machine Learning Research, 97:2596-2604, 2019.

[86] I. Heim, A. Kratzer, Semantics in Generative Grammar, Blackwell Publishing,
1998.

[87] R. Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (4)
(2003) 368–383.

[88] R. Holtkamp, Rooted trees appearing in products and co-products, in “Combina-
torics and physics”, 153–169, Contemp. Math., 539, Amer. Math. Soc., 2011.

[89] R. Holtkamp, A pseudo-analyzer approach to formal group laws not of operad type,
J. Algebra, Vol. 237 (2001) 382–405.

[90] N. Hornstein, Move!: A minimalist theory of construal, Wiley-Blackwell, 2001.

[91] N. Hornstein, J. Nunes, K.K. Grohmann, Understanding Minimalism, Cambridge
University Press, 2005.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

362 Bibliography

[92] J. Hu, J. Gauthier, P. Qian, E. Wilcox, R.P. Levy, A systematic assessment of syn-
tactic generalization in neural language models, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 1725–1744.

[93] P. Huebner, E. Sulem, F. Cynthia, D. Roth. BabyBERTa: Learning more grammar
with small-scale child-directed language, Proceedings of the 25th Conference on
Computational Natural Language Learning, (2021), 624-–646, Online. Association
for Computational Linguistics.

[94] M.A.C. Huijbregts, Empirical cases that rule out Ternary Merge, notes,
04/19/2021.

[95] M.A.C. Huijbregts, Special and general theory of Merge with special and general
thanks to Noam. Syntax Interface Lectures, Utrecht University, 2019.

[96] M.A.C. Huijbregts, Merge based Morphology and Phonology, preprint, 2024.

[97] S. Indurkhya, Automatic Inference of Minimalist Grammars using an SMT–Solver,
in “Proceedings of the Society for Computation in Linguistics 2020”, Association
for Computational Linguistics, 2020, pp. 457–460.

[98] S. Indurkhya, Parsing as deduction revisited: using an automatic theorem prover
to solve an SMT model of a Minimalist parser, Proceedings of the 26th Conference
on Computational Natural Language Learning (CoNLL), 157–175, Association for
Computational Linguistics, 2023.

[99] S.A. Joni, G.C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl.
Math. 61 (1979) 93–139.

[100] D.E. Johnson and S. Lappin, A critique of the minimalist program, Linguistics
and Philosophy, 20, 1997, 273—333.

[101] A. Joyal, Foncteurs analytiques et espèces de structures, in “Combinatoire
énumérative” (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture
Notes in Math., pp. 126–159. Springer, 1986.

[102] R.S. Kayne, The Asymmetry of Syntax, MIT Press, 1994.

[103] R.S. Kayne, Temporal/Linear order, antisymmetry and externalization, Research
in Generative Grammar 45 (2023) N.2. 1–22.

[104] D.E. Knuth, Semantics of context-free languages, Mathematical Systems Theory,
Vol.2 (1967) 127–145.

[105] J. Kock, Combinatorial Dyson-Schwinger equations and inductive data types,
arXiv:1512.07884.

[106] K.Kohl, An analysis of finite parameter learning in linguistic spaces, S.M. thesis,
Cambridge, MA, Massachusetts Institute of Technology, 1999.

[107] M. Komachi, H. Kitahara, A. Uchibori, K. Takita, Generative procedure revisited.
Reports of the Keio Institute of Cultural and Linguistic Studies, 50 (2019) 269–283.

[108] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories,
Adv. Theor. Math. Phys. 2 (1998) N.2, 303–334.

[109] D. Kreimer, W.D. van Suijlekom, Recursive relations in the core Hopf algebra,
Nuclear Phys. B 820 (2009), no. 3, 682–693.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography 363

[110] I. Križ, J.P. May, Operads, Algebras, Modules and Motives, Astérisque No. 233,
1995.

[111] N. LaCara, The Linear Correspondence Axiom, LIN331 Syntactic Theory, course
at the University of Toronto, 26 July 2018.

[112] J. Lambek, Pregroup grammars and Chomsky’s earliest examples, J. Log. Lang.
Inf. 17 (2008) 141–160.

[113] R. Larson. On the double object construction. Linguistic Inquiry 1988, 19:3, 335-
391.

[114] J.L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften,
Vol. 301, Springer, Second Edition, 1998.

[115] J.L. Loday, Arithmetree, Journal of Algebra 258 (2002) 275–309.

[116] J.L. Loday, Dichotomy of the addition of natural numbers, in “Associ-
ahedra, Tamari lattices and related structures”, 65–79, Progr. Math., 299,
Birkhüser/Springer, 2012.

[117] J.L. Loday, M. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139
(1998) N.2, 293–309.

[118] J.L. Loday, M. Ronco, Order structure on the algebra of permutations and of
planar binary trees, J. Alg. Combin. Vol. 15 (2002) N.3, 253–270.

[119] J.L. Loday, M. Ronco, Combinatorial Hopf algebras, in “Quanta of maths”, Clay
Math. Proc. 11, pp. 347–383, Amer. Math. Soc., 2010.

[120] G. Longobardi, C. Guardiano, Evidence for syntax as a signal of historical relat-
edness, Lingua, 119 (2009) 1679–1706.

[121] G. Longobardi, A. Treves, Grammatical Parameters from a gene-like code to self-
organizing attractors: a research program, preprint, 2023.

[122] Yu.I. Manin, Renormalization and computation I: motivation and background, in
“OPERADS 2009”, 181–222, Sémin. Congr., 26, Soc. Math. France, Paris, 2013.

[123] Yu.I. Manin, Renormalisation and computation II: time cut-off and the Halting
problem, Math. Structures Comput. Sci. 22 (2012), no. 5, 729–751.

[124] Yu.I. Manin, Complexity vs Energy: Theory of Computation and Theoretical
Physics, 3Quantum: Algebra Geometry Information (QQQ Conference 2012), J.
Phys.: Conf. Ser. 532 (2014) 012018

[125] Yu.I. Manin, Neural codes and homotopy types: mathematical models of place
field recognition, Mosc. Math. J. 15 (2015), no. 4, 741–748.

[126] Yu.I. Manin, M. Marcolli, Semantic Spaces, Math. Comput. Sci. 10 (2016), no. 4,
459–477.

[127] C.D. Manning, K. Clark, J. Hewitt, U. Khandelwal, O. Levy, Energent linguistic
structure in artificial neural networks trained by self-supervision, PNAS, Vol. 117
(2020) N. 48, 30046–30054.

[128] M. Marcolli, Information algebras and their applications, in “Geometric Science
of Information”, pp. 271–276, Lecture Notes in Comput. Sci., 9389, Springer, 2015.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

364 Bibliography

[129] M. Marcolli, Pareto optimization in categories, arXiv:2204.11931.

[130] M. Marcolli, Syntactic parameters and a coding theory perspective on entropy
and complexity of language families, Entropy 18 (2016), no. 4, Paper No. 110, 17
pp.

[131] M. Marcolli, N. Chomsky, R.C. Berwick, Mathematical Structure of Syntactic
Merge, arXiv:2305.18278.

[132] M. Marcolli, R.C. Berwick, N. Chomsky, Old and New Minimalism: a Hopf al-
gebra comparison, arXiv:2306.10270.

[133] M. Marcolli, R.C. Berwick, N. Chomsky, Syntax-semantics interface: an alge-
braic model, preprint 2023.

[134] M. Marcolli, A. Port, Graph grammars, insertion Lie algebras, and quantum field
theory, Math. Comput. Sci. 9 (2015) no. 4, 391–408.

[135] M. Marcolli, N. Tedeschi, Entropy algebras and Birkhoff factorization, J. Geom.
Phys. 97 (2015), 243–265.

[136] M. Marcolli, R. Thorngren, Thermodynamic semirings, J. Noncommut. Geom. 8
(2014), no. 2, 337–392.

[137] A.E. Martin, L.A.A. Doumas, Tensors and compositionality in neural systems,
Phil. Trans. R. Soc. B 375 (2019) 20190306 [7 pages].

[138] R. Marvin, T. Linzen, Targeted Syntactic Evaluation of Language Models, Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, 1192–1202.

[139] A. Masuoka, Quotient Theory of Hopf algebras, in (J. Bergen, S. Montgomery,
Eds.), “Advances in Hopf Algebras”, Marcel Dekker, 1994, pp. 107–133.

[140] D.W. Matula, A natural rooted tree enumeration by prime factorization, SIAM
Rev. 10 (1968), 273.

[141] J.P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics.
Vol. 271, Springer 1972.

[142] J. Michaelis, Transforming linear context free rewriting systems into minimalist
grammars, in “Logical Aspects of Computational Linguistics (NY, 2001)” (P. de
Groote, G. Morrill, and C. Retoré, Eds.), Lecture Notes in Artificial Intelligence,
Vol. 2099, Springer, pp. 228–244.

[143] J. Milnor, J. Moore, On the structure of Hopf algebras, Ann. Math. (2) Vol.81
(1965) 211–264.

[144] A. Moro, The Boundaries of Babel, Second Edition, MIT Press, 2015.

[145] A. Moro, Dynamic Antisymmetry, Linguistic Inquiry Monographs, MIT Press,
2000.

[146] D. Mumford, A. Desolneux, Pattern Theory: The Stochastic Analysis of Real-
World Signals, CRC Press, 2010.

[147] A.F. Neto, A bijection between rooted trees and fermionic Fock states: grafting
and growth operators in Fock space and fermionic operators for rooted trees, Journal
of Physics A, Vol. 46 (2013) N. 43 [19 pages]

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography 365

[148] A. Ortegaray, R.C. Berwick, M. Marcolli, Heat kernel analysis of syntactic struc-
tures, Math. Comput. Sci. 15 (2021), no. 4, 643–660.

[149] Y. Oseki, Eliminating Pair-Merge, Proceedings of the 32nd West Coast Confer-
ence on Formal Linguistics, (ed. Ulrike Steindl et al.), pp. 303–312. Cascadilla Pro-
ceedings Project.

[150] C.Y.A. Pang, Markov chains from descent operators on combinatorial Hopf alge-
bras, arXiv:1609.04312.

[151] C.Y.A. Pang, The eigenvalues of hyperoctahedral descent operators and applica-
tions to card-shuffling, Electron. J. Combin. 29 (2022), no. 1, Paper No. 1.32, 50
pp.

[152] J.J. Park, R. Boettcher, A. Zhao, A. Mun, K. Yuh, V. Kumar, M. Marcolli, Preva-
lence and recoverability of syntactic parameters in sparse distributed memories, in
“GSI 2017: Geometric Science of Information”, Lecture Notes in Computer Sci-
ence, Vol 10589, Springer 2017, 265–272.

[153] F. Patras, L’algèbre des descentes d’une bigèbre graduée. J. Algebra, 170 (1994)
N.2, 547–566.

[154] M. Piattelli-Palmarini, G. Vitiello, Linguistics and some aspects of its underlying
dynamics, Biolinguistics, Vol. 9 (2015) 96–115.

[155] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, ABP
1995.

[156] P.M. Pietroski, Minimalist meaning: internalist interpretation, Biolinguistics, 2
(2008) 4, 317–341.

[157] P.M. Pietroski, Conjoining Meanings. Semantics Without Truth Values, Oxford
University Press, 2018.

[158] P.M. Pietroski, Function and Concatenation, in “Logical form and Language”,
Pxford University Press, 2002, 91–117.

[159] V. Pilaud, V. Pons, The Hopf algebra of integer binary relations,
arXiv:1807.03277.

[160] A. Port, T. Karidi, M. Marcolli, Topological analysis of syntactic structures, Math.
Comput. Sci. 16 (2022), no. 1, Paper No. 2, 68 pp.

[161] D. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Pure
and Applied Mathematics, 121. Academic Press, Inc., Orlando, FL, 1986. xx+413
pp.

[162] L. Rizzi, Labeling, maximality and the head – phrase distinction, The Linguistic
Review, Vol. 33 (2016) N.1, 103–127.

[163] B. Roark, R. Sproat, Computational Approaches to Morphology and Syntax, Ox-
ford University Press, 2007.

[164] I. Roberts, Parameter Hierarchies and Universal Grammar, Oxford University
Press, 2019.

[165] G.C. Rota, Baxter operators, an introduction, in (Joseph P.S.Kung, Ed.), “Gian-
Carlo Rota on Combinatorics, Introductory papers and commentaries”, Birkhäuser,
1995, pp. 504–512.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

366 Bibliography

[166] G.C. Rota, Hopf algebra methods in combinatorics, in “Problèmes combinatoires
et théorie des graphes” (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp.
363–365, Colloq. Internat. CNRS 260, CNRS, Paris 1978.

[167] M. Sadrzadeh, Pregroup grammars, their syntax and semantics,
arXiv:2109.11237.

[168] S. Samchuck-Schnarch, An introduction to operad theory, preprint, 2020.

[169] S. Saneblidze, R. Umble, A Diagonal on the Associahedra,
arXiv:math/0011065v2

[170] S. Saneblidze, R. Umble, Diagonals on the permutahedra, multiplihedra and as-
sociahedra, Homology Homotopy Appl. 6 (2004) N.1, 363–411.

[171] K. Scharp, Replacing Truth, Oxford University Press, 2013.

[172] P. Schauenburg, H.J. Schneider, On generalized Hopf Galois extensions, Journal
of Pure and Applied Algebra, Vol.202 (2005) 168–194.

[173] W. Schmitt, Hopf algebras of combinatorial structures, Canad. J. Math. 45 (1993),
no. 2, 412–428.

[174] Y. Shen, S. Tan, A. Sordoni, S. Reddy, A. Courville, Explicitly modeling syntax
in language models with incremental parsing and a dynamic oracle, Proceedings of
the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 1660–1672.

[175] K. Shu, M. Marcolli, Syntactic structures and code parameters, Math. Comput.
Sci. 11 (2017), no. 1, 79–90.

[176] P. Smolensky, Tensor product variable binding and the representation of symbolic
structures in connectionist systems, Artificial Intelligence, Vol. 46 (1990), N. 1–2,
159–216.

[177] P. Smolensky, Harmony in linguistic cognition, Cognitive Science, Vol.30 (2006)
779-801.

[178] D. Spector, Supersymmetry and the Möbius inversion function, Communications
in Mathematical Physics, Vol.127 (1990) 239–252.

[179] S.M. Srivastava, A course on Borel sets, Springer, 1998.

[180] E.P. Stabler, Computational perspectives on minimalism, in “Oxford Handbook of
Linguistic Minimalism” (C. Boeckx, ed.), Oxford University Press, 2010, 616–641.

[181] Y. Takano, Exploring Merge: A new form of sideward movement, The Linguistic
Review, Vol. 37 (2020) N.1, 7–45.

[182] M. Takeuchi, Quotient spaces for Hopf algebras, Comm. Algebra 22 (1994), N.7,
2503–2523.

[183] N. Tennant, A new unified account of truth and paradox, Mind, Vol. 124 (2015)
N. 494, 571–605.

[184] H. Vazquez. The acceptability delta criterion: Testing knowledge of language us-
ing the gradience of sentence acceptability, Proceedings of the Fourth BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP, 479-–495, Punta
Cana, Dominican Republic (2021), Association for Computational Linguistics.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Bibliography 367

[185] H. Vazquez, A. Heuser, C. Yang, J. Kodner. Evaluating neural language models
as cognitive models of language acquisition, GenBench23 (2023).

[186] K. Vijay-Shanker, D. Weir, The equivalence of four extensions of context free
grammar formalisms, Mathematical Systems Theory, 27 (1994) 511–545.

[187] A. Warstadt, S. Bowman. What artificial neural networks can tell us about hu-
man language acquisition, Algebraic Structures in Natural Language (2022) 17—60.
CRC Press.

[188] S. Weinzierl, Hopf algebras and Dyson-Schwinger equations, arXiv:1506.09119.

[189] D. Yau, Colored Operads, American Mathematical Society, 2016.

[190] K. Yeats, Rearranging Dyson-Schwinger Equations, Memoirs of the American
Mathematical Society, 211, American Mathematical Society, 2011.

[191] E. Zardini, Truth without contra(di)ction, Review of Symbolic Logic, Vol. 4
(2011) N. 4, 498–535.

[192] Y. Zhang, X. Gao, Hopf algebras of planar binary trees: an operated algebra
approach, Journal of Algebraic Combinatorics, 51 (2020) 567–588.

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Index

2-category, 107, 108, 338

accessible terms, 5, 8, 10, 19, 25–30, 33,
46–48, 56, 60, 110, 182, 183, 198

counting, 62
extraction, 31, 35, 42, 45, 48, 56, 77,
80, 96, 142, 186
matching, 43, 44, 184
n-ary, 99
nested, 215, 231, 332
search, 54

adjoining rule, 189
adjunctions, 15, 289, 290, 295, 296,

298–304
admissible cut

elementary, 161
admissible cuts, 29, 30, 37, 53, 66, 68,

97, 134, 138, 140, 144, 153, 157,
161, 163, 169, 183, 185, 186

elementary, 153, 163, 165
admissible pruning, 157, 158
adverbial classes, 253
affine directed graph scheme, 269
affine group scheme, 73, 266
affine groupoid scheme, 266
affine semigroupoid scheme, 267
agreement/disagreement, 210, 218–220
Alexandrov one-point compactification,

293
algebra of free Merge derivations, 260
algebraic variety, 116
ambiguities, 96, 295
antipode

inductive construction, 35, 36, 152, 183,
199, 203, 343

argument, 310
argument structure, 311
argument-adjunct asymmetry, 295
articulatory-perceptual, 197, 235
artificial grammars, 208
Arzelà-Ascoli theorem, 324
associahedron, 15, 237–241, 248, 252,

286, 299, 302–304
associative, 27, 35, 36, 72, 93, 140, 152,

154, 158, 174, 183, 191, 203, 260,
261, 282, 287, 300, 341, 345–347

associator, 282
at most n-ary forests, 36
at most n-ary tree, 97
attention, 330, 332, 333

multi-head, 330
attention head, 330
attention matrix, 329–331, 334
attention modules, 16, 326–328, 330, 331
attention vector, 331
attention-detectable, 331, 333

Bare Phrase Structure, 12, 127
BERT, 329
Berwick, 4, 148
BHV moduli space, 238, 242, 243, 246,

249, 252–254, 285, 299
bialgebra, 34, 35, 110, 152, 183, 343
bialgebroid, 258, 265, 267, 277
biconcave function, 220
bidirectional architectures, 329

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

370 Index

Billera-Holmes-Vogtmann (BHV), 241
bimodule, 109, 347
binary branching, 15
binary set formation, 7, 17, 115, 177,

180, 188
Binding Theory, 77

conditions B and C, 77
Birkhoff factorization, 185, 201, 202,

206, 207, 211, 214–216, 219, 224,
229–231, 255, 256, 258–260, 264,
268, 274, 276, 278, 279, 319, 326,
333, 354

Bogolyubov preparation, 13, 201, 206,
207, 231, 232, 264, 275, 277, 318,
319, 324, 352

Boolean semimodules, 273
Boolean semiring, 231, 345
Broca’s area, 208

c-command, 121, 122, 187, 189, 331
asymmetric, 122

Calder mobiles, 2, 8
Catalan numbers, 95, 284
Chomsky, 1, 3, 4, 8, 12, 13, 17, 20–24,

40, 52, 54, 71, 88, 124, 127, 134,
135, 137, 138, 141, 147, 188

Chomsky-Schützenberger, 5, 91, 255,
345

Cinque’s abstract functional lexicon, 239,
253

clausal domain, 305
cleft sentences, 52
co-correspondences, 109
coalgebra, 149, 167, 173
coarse graining, 193
coassociative, 78, 110, 133, 183, 203,

314, 342
coassociativity, 32, 33, 35, 59, 73, 78, 80,

134, 137, 183, 314, 340
cocommutative, 72, 110, 203
cocycle, 144, 145, 175, 176
coideal, 13, 149, 151, 165, 167, 169, 173,

176, 179, 182, 186, 188
coindexing, 49, 77
combinatorial Hopf algebra, 34–36, 73,

83

Loday-Ronco, 34
Combine operation, 15, 279–281, 288,

289
commutative, 7, 20, 22–24, 27, 35, 36,

61, 72–74, 88, 89, 93, 102, 105, 109,
110, 113, 118–121, 140, 177, 180,
181, 183, 190, 191, 198, 199, 203,
204, 206, 207, 257, 260–262,
265–267, 269, 270, 272, 273, 279,
292, 306, 338, 346, 347

commutative diagram, 108, 113, 114,
338, 340–342, 346, 349

compact open topology, 320, 323–325
complement, 127, 129, 131, 132, 219,

306, 310
complexity, 146
compositionality, 197, 198, 205, 211,

215, 230, 255, 281, 298
computability, 196
computer implementations, 4
computer vision, 210
Concatenate operation, 279, 282
concatenation, 281, 282, 287

well defined, 283, 286
concept of adicity n, 293
conceptual manifolds, 280
conceptual spaces, 198, 210, 280
conceptual-intensional system, 12, 15,

79, 197, 198, 235, 236, 304, 319, 355
conflated minimalist grammars, 164
context-free grammars, 148, 191, 255,

265, 276, 350, 352
unambiguous, 91, 345

context-free languages, 5, 91, 350
context-sensitive grammars, 352
convex combinations, 204, 209, 219, 222,

223
convex cone, 221
convex polytope, 239
convexity, 209–211, 220, 225, 233, 281,

290
geodesic, 209, 219, 221, 225, 233, 235,
244, 281, 288–290, 320, 350
interpolation, 209, 288

copies, 11, 79, 80, 82, 193, 313, 314
cancellation, 25, 31, 32, 34, 42, 56, 59,
60, 78–80, 96, 184, 185

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Index 371

deeper, 31, 48, 53, 56, 78–80, 199
coproduct

diagonals, 313
non-primitive part, 32, 139
primitive part, 31, 137

coproduct channels, 9, 10, 32, 33, 35–37,
42, 43, 48, 49, 56, 78, 80, 82, 133,
137, 138, 169, 183, 218, 314

correspondences, 107, 115, 338
cosine similarity, 14, 220, 226, 228, 230,

231
cospans (category theory), 108
cost function, 53, 55–57, 145, 184, 185
countercyclic movement, 71
covering space, 348

branched covering, 348, 349
covering transformations, 253, 254, 348
criterial position, 164

degree/grading, 61, 69
dependants, 306
derivation forest semiring, 255, 265
descent operators, 83
Devadoss-Morava tree spaces, 240
diagonals, 140, 312, 313
dichotomy, 15, 308
dichotomy in semantics, 305, 311
direct sum, 109
discrete topology, 317
displacement, 305
double-object construction, 15
dual Hopf algebra, 73, 74
Dyson-Schwinger equation, 12, 13, 40,

90, 142–145, 147, 172, 173, 175,
178–180, 192, 355

economy principle, 59, 78
equations of motion, 90, 142
exocentric, 126
Externalization, 1, 2, 7, 8, 11, 12, 15, 18,

21, 31, 78, 79, 95, 101–107, 109,
113–116, 118–121, 136, 148–150,
176, 187, 189, 197–199, 235–239,
247, 249, 251, 252, 254, 287, 306,
319, 338, 344, 348, 355

feature checking, 167, 172, 185
Feynman diagrams, 193, 334
Feynman graphs, 14, 32, 35, 90, 143,

144, 147, 152, 172, 202, 351–354
Feynman integrals, 143, 193, 196, 202,

204
Feynman rule, 90, 204
filler-role binding relation, 192
First Factor, 105
fixed point equation, 89, 144
Fock space, 192, 193
Focus, 305
focus position, 52
formal languages, 91, 143, 148, 190, 202,

255, 280, 337, 350–352
FormCopy, 30, 140, 313
FormSet, 12, 20, 32, 44, 137–142, 144,

183, 313
Fredholm pairs, 118
frontal operculus, 208
functional magnetic resonance imaging,

208
functional morphemes, 253
functor (category theory), 338
Fuss-Catalan numbers, 95
fuzzy set, 325, 326

Gärdenfors meeting of minds, 210
generalized phrase structure grammar,

148
generative enterprise, 1
generative grammar, 260, 328, 351
generative linguistics, 16, 137, 143, 147,

148, 193, 197, 198, 202, 232, 316,
326

generative model, 281, 326
generative power, 298, 299, 304, 352
generative process, 77, 127, 143–145,

148, 149, 177–180, 188–190, 193,
197, 201, 202, 211, 235, 236, 261,
295, 296, 307, 334, 335, 340,
350–352

generative syntax, 193, 195, 327, 335
grafting, 39, 53, 57, 137, 141, 149, 154,

156, 157, 161, 162, 166, 167, 175,
177, 178, 184, 189, 199, 292, 300,
306, 307, 309–311

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

372 Index

grafting and merging, 40
graph grammars, 352
graphs

reflexivity/transitivity, 269
strongly connected, 87

Grassmannian, 117, 118
great dodecahedron, 250
Grenander, 280
Grenander’s mathematical semantics, 281
groupoid, 257, 258, 266, 274

Hausdorff metric, 321–323
Hausdorff topological space, 322
head function, 122–127, 129, 130,

133–136, 200, 212, 213, 227, 233,
244, 287, 296, 305, 330

complemented, 129–131, 310
domain, 126, 134–136, 189, 200, 212,
213, 227, 233, 252, 287, 310
raising, 135, 136

head movement, 131
head-initial, 288
Heim-Kratzer semantics, 15, 205, 211,

231, 254, 255, 316–321, 324–326
hierarchical, 1, 6, 60, 101, 143, 144, 147,

148, 152, 172, 180, 182, 200, 205,
207, 208, 226, 236, 237, 241, 253,
279, 295, 298, 300, 302, 304, 344,
351, 352

hit-and-miss topology, 321
Hochschild cocycle, 144, 175
homotopy types, 208
Hopf algebra, 5, 9–11, 13, 14, 24, 28, 32,

34–36, 46, 53, 55, 60, 61, 71–77, 82,
90, 91, 110, 133, 140, 141, 143–145,
147–152, 154, 155, 157–160, 164,
166, 169, 172–176, 178–186,
191–193, 196, 199, 201–207, 211,
230, 236, 255–259, 261, 265–269,
281, 309, 313, 318, 327, 339, 340,
343, 344, 346, 350–355

cocycle ∧Ω-Hopf algebra, 176
connected, 35
Connes-Kreimer, 32, 35, 36, 143, 144,
155, 184, 192
Connes-Kreimer noncommutative, 159

generalized quotient, 151, 173
grading, 34, 61
Loday-Ronco, 150–152, 155, 158–160,
165, 166, 169, 175, 176, 178, 180, 181,
184–186, 355
Malvenuto-Reutenauer, 155, 355
of Feynman graphs, 32, 352

Hopf algebra Markov chain, 12, 84, 86,
87

Hopf algebra of words, 355
Hopf algebroid, 257, 258, 265–267, 269,

273, 274
Hopf ideal, 173, 179, 180, 355
Hopf-Galois extensions, 173
Huijbregts, 16, 26, 64, 92, 99, 164, 188,

295, 297
hyperbolic surface, 250
hyperplane arrangement, 14, 229
hyppocampal place cells, 208

i-concepts, 279, 281
i-expressions, 279
I-language, 195, 196, 279, 280
ideal, 151, 165, 173
idempotents, 288
improper inference, 289
inaccessible, 130–133
inductive types, 15, 317, 321–323

data, 355
fuzzy, 325
topological, 322

insertion, 53, 74
interface channels, 2, 15, 79, 137, 197,

198, 236, 247, 355
internal edges, 240–245, 249
Internal Merge

composition, 47
internal vertices, 24, 26, 36, 53, 71, 74,

89, 100, 106, 113, 125, 135, 136,
154, 157, 159, 163, 169, 170, 172,
178, 180, 182, 187, 190, 191, 239,
265, 292, 299, 310, 344

interpretability, 319, 320
inverse problem, 16, 235
invisibility of adjuncts to syntax, 295

Jacobi identity, 72, 73

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Index 373

Joni-Rota, 34

Kayne’s Linear Correspondence Axiom
(LCA), 12, 15, 119, 121–123, 187,
188, 239, 252, 253

key/query, 329, 332, 333

labeling algorithm, 77, 127, 128, 135,
136, 186

Lambek calculus, 350
language dependent, 101, 103, 237
language faculty, 1
language specific, 253
language specific conditions, 307
large language models (LLM), 16, 197,

232, 235, 326, 327, 331, 333, 335
Laurent series, 174, 203, 256, 259–261,

264, 345, 353
leading term, 56
learnability, 1
least action principle, 91, 142
least effort, 91
lexical items, 20, 35, 92, 198, 200, 209,

212, 317
LI-Adger database, 333
licensor/licensee, 159
Lie algebra, 71–75, 77, 191, 352

insertion Lie algebra, 75
of primitive elements, 73–76

Lie bracket, 72, 75
Lie group, 74
linear context-free rewrite systems

(LCFRS), 148
linear ordering, 7, 100, 101, 148, 153,

329, 344
linearization, 12, 15, 18, 119, 121, 301
linearization algorithm, 283, 285, 287
Loday operations, 299

magma, 17, 18, 20, 22, 61, 102, 106, 118,
119, 181, 188, 198, 200, 222, 228,
288, 292, 306

morphism, 102, 103
Malcev representation, 106
Manin, 145, 146, 196

Renormalization and Computation, 145

Manin-Marcolli, 209
semantic spaces, 209

Marcolli, 4
Markov chain, 11, 83, 84, 86
Markovian, 11, 45, 82, 88
matching terms, 38, 41
maximal projection, 122, 128, 129, 131,

160, 187, 189
Merge, 1–8, 10–13, 15, 17–22, 24–27,

32, 34, 38, 40, 42, 43, 49, 50, 53–55,
57–66, 78, 80, 81, 88–92, 94,
96–101, 103, 104, 107, 109–112,
114, 118, 119, 121–123, 125, 127,
131, 132, 137, 139–143, 145, 147,
149–151, 154, 160, 173, 175, 176,
180–190, 192, 193, 195–197,
199–202, 205, 207, 211, 232–236,
243, 259, 267, 278, 279, 288, 289,
293, 295, 296, 304, 311, 326, 340,
352, 353

asymmetric, 102, 103, 121, 285
before Externalization, 101, 103
Countercyclic Merge, 22, 24, 46, 52,
53, 70, 74, 184
extension, 53, 71, 77
External Merge, 63, 64, 69, 81, 99, 101,
132, 133, 136, 137, 149, 151, 160–162,
173–176, 185, 191, 192, 305, 306, 308,
310–313, 315

unboundedly more complex, 70
free symmetric, 1, 12, 13, 24, 71, 91,
101–104, 106, 120, 124, 152, 154, 159,
173, 178, 182, 186, 189, 198, 228, 230,
235–237, 247, 249, 254–256, 260, 265,
282, 287, 295, 306, 307, 317, 329, 344
Internal Merge, 8–11, 15, 45, 47–50,
53, 54, 58, 62, 64–66, 68, 69, 79, 81,
85, 98–101, 110, 130, 132, 135–137,
139, 142, 149–151, 158, 159, 161–171,
173, 174, 179, 182, 185–188, 191, 199,
259, 281, 305, 311, 319
Internal/External, 88
Internal/External Merge, 11, 12, 15, 46,
50, 53–55, 57–59, 62, 63, 69–71, 77,
86, 111, 140, 143, 149, 150, 160, 161,
164, 167, 173, 176, 182–186, 188, 192,
256, 258–260, 262–264, 297, 308

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

374 Index

Late Merge, 22, 24, 71, 74, 77, 191
Merge operator, 40–42, 44, 50, 54, 55,
57, 60, 64, 66, 77, 89, 94, 110, 111,
115, 119, 126, 138, 143–145, 149–151,
162, 167, 172, 173, 176, 178, 179, 181,
185, 187, 189, 198, 208, 211, 222, 230,
241, 255, 256, 260, 261, 263, 268, 280
n-ary, 19, 20, 90–94, 96–100, 141, 142,
179, 241
noncommutative, 154, 282
Pair-Merge, 15, 295–297
Parallel Merge, 22
Sideward Merge, 46, 51, 52, 58, 62, 66,
68–70, 88, 139, 184
Sideward/Countercyclic Merge, 52, 53,
59, 60, 62, 66, 69, 70, 88, 185, 186,
256, 258–260, 262–264
ternary, 92, 98, 99

merge and move, 192
Merge derivation, 41, 167, 254, 256–268,

275, 276, 278, 309, 315, 316
Merge grammars, 352
Merge magma, 20, 48, 61, 107
metrizability, 321–323
mildly context-sensitive, 148
minimal cost, 56
Minimal Search, 2, 4, 11, 46, 48, 54, 55,

58, 59, 62, 66, 70, 88, 111, 184, 186,
188, 256, 258, 264

Minimal Yield, 2, 11, 59–62, 65, 66, 184,
185, 256–260, 264

Minimalism, 1, 12, 17, 23, 44, 48, 50, 91,
103, 114, 118, 119, 127, 134, 137,
147, 148, 150–152, 160, 178, 181,
185, 188, 189, 193, 195, 198, 207,
235, 255, 256, 326, 350, 352, 355

New, 120, 147, 149, 151, 154, 173,
176–179, 182, 183, 185, 186, 188
Old, 120, 149, 153, 162, 173, 174, 177,
179, 181, 182, 184–186, 192
Stabler Computational Minimalism, 13,
50, 119, 147–149, 154, 159, 169, 172,
188, 189, 191, 355

minimalist grammars, 148, 191
Minimalist Program, 1, 2, 147
modifiers, 127, 130
module, 111, 149, 173

moduli space of curves, 238, 240, 241,
247

Moro’s Dynamical Asymmetry, 136
morphisms (category theory), 107, 337
morphological reanalysis, 122
movement, 199
multiple context-free grammars, 148, 352
multiset, 18, 23, 25, 96, 181
Mumford, 280

n-magma, 92
natural transformations (category

theory), 338
neuroscience, 208, 210
No Complexity Loss, 61, 62, 69, 256
No Tampering Condition (NTC), 2, 49
non-argument structure, 305
non-canonical, 103
non-cocommutative, 183
non-interpretable, 318
nonassociative, 7, 20, 22, 61, 88, 93, 102,

105, 109, 110, 112, 114, 118–120,
177, 180, 190, 198, 279, 282, 306,
347

noncommutative, 102, 106, 112–114,
119, 120, 142, 149, 153–155,
157–159, 173, 179, 181, 182, 255,
279, 281, 282, 287, 300, 306, 345,
346

noncommutative geometry, 173
null heads, 122

objects (category theory), 337
obligatory control, 15, 311
open covering, 208, 226
operad, 12, 15, 152, 156, 190, 191, 291,

293, 306, 311, 312
algebra over an operad, 291, 292, 294
associativity, 291
colored, 190, 309, 311
head function, 308
Merge operad, 308
partial action, 293
partial algebra over an operad, 292
quadratic, 89, 177, 190
semantic values, 305

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Index 375

symmetric, 307, 308
syntactic objects, 305
theta roles, 311

operated algebra, 149, 151, 174, 175
orientation, 296, 297, 303, 343
orientation double cover, 241, 243, 250,

284, 286
origami folding, 237, 243, 247, 251, 254,

348
over/under operations, 154
overgeneration, 92, 96, 98

parallel/sequential, 260
parsing, 152, 188, 191, 199, 232, 236,

237, 255, 352, 353, 355
Boolean, 319
probabilistic, 221
semiring, 203, 254–257, 265, 268, 276,
278, 309, 345
semiringoid, 258, 277, 278

partial algebra, 113, 292–294
partial concatenation, 283
partial operated algebra, 174
partial order, 299
partially defined, 13, 114, 127, 149, 151,

161, 164, 167, 174–176, 182,
185–189, 245, 246, 252, 253, 280,
281, 287, 318, 326

partially defined cocycle, 175, 176
partitions of workspaces, 137
Pattern Theory, 280
perceptual manifolds, 210
Perron-Frobenius theorem, 87
persistent features, 164
persistent topology, 226
Peterson graph, 242
phase coproduct, 133, 193
phase edge, 128, 131, 132
phase head, 127
phase impenetrability condition, 193
phase interior, 127, 131–133
Phase Theory, 12, 104, 127, 133, 193,

226, 296, 306
phases, 77, 107, 127, 130, 193, 226
phases algorithm, 130, 311

Pietroski compositional semantics, 15,
205, 211, 234, 254, 278, 289, 291,
293

Pietroski’s minimalist meaning, 254
planar embedding, 2, 8, 12, 18, 21–23,

29, 90, 95, 100, 101, 105, 106, 112,
119, 120, 122–124, 126, 138, 148,
150, 153, 159, 179, 181, 187, 188,
243, 253, 282, 288, 344

planarization, 119, 123, 252, 287, 288,
298

position roles, 191, 192
possible languages, 15, 115
pre-Lie structure, 72, 74
predicate, 310
predicate saturation, 15, 293
probabilistic context-free grammars, 280
probability, 210, 220, 255, 275–278, 329,

330, 346
ProDrop, 104
propositional domain, 305
pullback, 108, 109

recursion, 89
recursive, 173, 206, 211, 217, 228, 235,

298, 301, 318, 320, 333, 350,
352–355

recursive complexity, 298
recursive equation, 89, 145
referring expressions, 77
regular languages, 148
regularization scheme, 202, 203
ReLU, 14, 212, 214–216, 218, 229,

276–278
renormalization, 90, 127, 143, 144, 147,

155, 172, 174, 193, 196, 202, 203,
205, 207, 256

algebraic, 207
Connes-Kreimer renormalization, 32,
196, 201
Hopf algebra, 196
MERA, 193

repetitions, 8, 11, 23, 79, 80, 82, 243, 316
representations

of algebras, 110
Resource Restriction, 2, 11, 59, 60

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

376 Index

Riemannian manifold, 219, 233, 244, 320
right-module coalgebra, 172, 173
Rota, 34

operated algebra program, 174
Rota-Baxter

weight, 203
Rota-Baxter algebra, 174, 185, 201–203,

205–207, 255, 257, 258, 261, 263,
271, 274, 275, 333

Rota-Baxter algebroid, 258, 268, 270,
271, 273, 274

Rota-Baxter semiring, 204, 207, 212,
214, 216, 218, 221, 224, 255, 258,
272, 273, 275, 276, 326, 354

Rota-Baxter semiringoid, 258, 272, 273,
276

saturated denotations, 317
Schmitt, 34
section of a projection, 103
segregation of External and Internal

Merge, 311
selector, 162
selector features, 159
self-attention, 328
semantic probes, 213–215, 217–219,

324, 326, 328, 329, 353
hypothesis vector, 213

semantic spaces, 207, 209, 233, 246, 281,
317, 348

combination/interpolation, 209
compositional, 292

semes, 209
semic axes, 210
semigroupoid, 267, 274, 275
semiring

Boolean, 231, 255, 318
max-plus, 276
tropical, 212, 255, 276

semiringoid, 257
sensory-motor system, 2, 15, 79, 101,

105, 150, 197, 198, 235, 236, 319,
355

simplex, 219, 225, 242–244
simplicial, 226, 242, 244, 302
Smolenski integrated connectionist

symbolic architecture, 191

Smolensky tensor models, 191, 230
softmax, 329
spans (category theory), 108
species, 308
specifier position, 253
specifier-head agreement, 164
spiking activity, 208
Stasheff associahedron, 239
stimulus space, 209
Strong Minimalist Thesis (SMT), 1, 11,

12, 17, 21, 24, 77, 200, 352
structural agreement, 164
subject raising, 77
succinctness, 148, 352
superior temporal gyrus, 208
syntactic features, 20, 92, 136, 159, 162,

169, 198, 212
syntactic head, 77, 122, 124, 159, 160,

187, 252, 280, 330
syntactic objects, 2, 4, 5, 7, 10, 18, 20,

26, 38–40, 47, 77, 93, 101, 107, 118,
123, 127, 134, 141, 149, 150, 180,
182, 183, 190, 193, 196, 198–200,
202, 205, 225, 234, 236, 241, 259

abstract binary rooted trees, 8, 18
complexity, 60
magma, 15, 17, 20, 92, 102, 180, 282,
291, 292, 306
n-ary, 93, 94, 96, 98
nonplanar binary rooted trees, 21, 22
nonplanar trees, 8
planar, 106, 154
reconstruction problem, 235
semantic values, 217, 246
set notation, 21, 24, 135
tree notation, 21, 24, 135

syntactic parameters, 15, 101, 103–105,
107, 115–118, 124, 187, 189, 236,
239, 252–254

entailment relations, 115
word order, 105, 116, 247, 254

syntactic relations, 331
syntactic treebank corpus, 332
syntactic violations, 208

Tamari lattice, 299

MITPress NewMath.cls LATEX Book Style Size: 6x9 April 13, 2024 3:25pm

Index 377

Tamari order, 299
tensor connectionist models, 230
tensor network, 193
term rewriting systems, 174
thematic role assignment, 15, 310
theta position, 310
theta positions, 305
theta role assignment, 305
theta roles, 305, 310
theta structures

n-ary, 311
Theta Theory, 12, 305
Third Factor, 59, 91, 127
toy model, 211, 212, 214, 219, 223, 225,

231, 278, 328
trace, 28, 31, 78, 80, 164, 199, 215, 259
transformational generative grammar,

148
transformers, 16, 326–330, 333
tree-adjoining grammars (TAG), 148,

151, 191, 255
tripartite, 2
truth conditions, 231, 232, 277
truth values, 16, 197, 210, 231, 254, 255,

277, 317, 320, 323–325
fuzzy, 16, 325, 326

truth-conditional semantics, 195, 231
two-peaked structures, 295–297
type of functions, 317
type of individuals, 317
type of truth values, 317

unbounded unstructured sequences, 139
undecidable problems, 196
undergeneration, 92, 95
universal enveloping algebra, 72
unsaturated denotations, 317

valence, 36, 37
verbal morphemes, 253
Vietoris topology, 321, 323
Vietoris-Rips complex, 226
Viterbi semiring, 14, 221, 255, 278, 326,

346

weak generative capacity, 190

weight function, 53, 55–57, 184, 245
weights, 55, 241, 243, 244, 260, 263,

275, 276, 278, 327, 334, 335, 345
word order, 253
word ordering, 8
workspaces, 25, 180

abstract binary forests, 25
accessible terms, 19, 46
bialgebra, 40
connected components, 19
extended workspaces, 139, 140
members, 19
members/components, 46
n-ary, 96
terms, 19

X-bar theory, 193

