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Summary

pynucastro addresses two needs in the field of nuclear astrophysics: visual exploration of
nuclear reaction rates or networks and automated code generation for integrating reaction
network ODEs. pynucastro accomplishes this by interfacing with nuclear reaction rate
parameterizations published by the JINA Reaclib project (Cyburt et al. 2010).
Interactive exploration is enabled by a set of classes that provide methods to visualize the
temperature dependency of a rate, evaluate it at a particular temperature, and find the
exponent, n, for a simple Tn parameterization. From a collection of rates, the flow between
the nuclei can be visualized interactively using Jupyter widgets. These features help both
with designing a network for a simulation as well as for teaching nuclear astrophysics in
the classroom.
After selecting a set of rates for a given problem, pynucastro can construct a reaction
network from those rates consisting of Python code to calculate the ODE right hand side.
Generated Python right hand sides evolve species in the reaction network, and pynucastro
includes a Python example integrating the CNO cycle for hydrogen burning.
pynucastro can also generate Fortran code implementing reaction networks, using SymPy
(Meurer et al. 2017) to determine the system of ODEs comprising the network. From the
symbolic expressions for the ODE right hand side, pynucastro also generates a routine to
compute the analytic Jacobian matrix for implicit integration.
Fortran networks incorporate weak, intermediate, and strong reaction rate screening for
the Reaclib rates (Graboske et al. 1973; Alastuey and Jancovici 1978; Itoh et al. 1979).
These networks can also include selected weak reaction rate tabulations (Suzuki, Toki,
and Nomoto 2016). To calculate energy generation in Fortran networks, pynucastro uses
nuclear binding energies from the Atomic Mass Data Center (Huang et al. 2017; Wang
et al. 2017) and the 2014 CODATA recommended values for the fundamental physical
constants (Mohr, Newell, and Taylor 2016).
pynucastro is capable of generating two kinds of Fortran reaction networks. The first type
is a standalone network with a driver program to integrate species and energy generation
using the variable-order ODE integration package VODE (Brown, Byrne, and Hindmarsh
1989). This Fortran driver program is designed to be easy to use and can integrate reaction
networks significantly faster than is possible for the generated Python networks.
Secondly, pynucastro can generate a Fortran network consisting of right hand side and Ja-
cobian modules that evolve species, temperature, and energy generation for the StarKiller
Microphysics code. Via StarKiller Microphysics, astrophysical simulation codes such as
Castro (Almgren et al. 2010) and Maestro (Nonaka et al. 2010) can directly use pynu-
castro reaction networks. pynucastro includes a carbon burning network with tabulated
A = 23 Urca weak reactions currently used for studying white dwarf convection with
Maestro (Zingale et al. 2017).
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Future work will focus on implementing nuclear partition functions to compute reverse
reaction rates in the Reaclib library (Rauscher and Thielemann 2000; Rauscher 2003). It
is also in some cases necessary to compute reverse reaction rates using detailed balance
with a consistent nuclear mass model instead of using the parameterized reverse reaction
rates in Reaclib (Lippuner and Roberts 2017). Additionally, work is ongoing to port the
networks generated for StarKiller Microphysics to CUDA Fortran to support parallel reac-
tion network integration on GPU systems (Zingale et al. 2017). We intend to implement
this port directly into the pynucastro-generated networks.
We wish to thank Abigail Bishop for discussions about code generation for the StarKiller
Microphysics code as well as for exploratory calculations. We are grateful to Max P. Katz
for numerous discussions that enabled the ongoing port of pynucastro-generated networks
to CUDA Fortran. We also wish to thank Christopher Malone for discussions about
various implementation details in pynucastro as well as sample code to improve element
identification. We especially thank Josiah Schwab for helpful discussions about nuclear
partition functions and reverse rates as well as for testing pynucastro and pointing out
issues in visualization and documentation. This work was supported by DOE/Office of
Nuclear Physics grant DE-FG02-87ER40317.
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