
The WebOrion Software Solutions

NoSQL Injection Attacks and
Prevention Techniques

www.theweborion.com info@theweborion.in

THE WEBORION SOFTWARE SOLUTION

NoSQL database stands for “Not Only SQL” or “Not SQL”. It is a non-relational Database

Management System, that have a dynamic schema for document type or unstructured data.

MongoDB, BigTable, Redis, etc. are the example of NoSQL database.

NoSQL Injection is security vulnerability that lets an attacker to inject code into the query

that would be executed by the database. Five types of NoSQL attacks like Tautologies,

Union queries, JavaScript injections, Piggybacked queries and Cross origin violation.

Below Figure show a scenario of NoSQL injection attack on MongoDB.

THE WEBORION SOFTWARE SOLUTION

Types of NoSQL attack

1) Tautology: In the tautology attack the attacker tries to use a conditional query statement

to be evaluated always true. These attacks allow bypassing authentication or access

mechanisms by injecting code in conditional statements, generating expressions that are

always true.

2) Union Queries: Union based injection allows an attacker to extract information from the

database by extending the results returned by the original query. The most common uses of

union queries are to bypass authentications pages and extract data.

3)JavaScript injections: JavaScript enables complicated transactions and queries on the

database engine. Passing unsanitized user input to these queries might allow for injection

of arbitrary JavaScript code, which could result in illegal data extraction or alteration.

THE WEBORION SOFTWARE SOLUTION

Types of NoSQL attack

4) Piggybacked Queries: An attacker injects additional queries into the original query used

by the Grade Central site to add, modify or delete student accounts. Attackers exploit

assumptions in the interpretation of escape sequences special characters to insert

additional queries to be executed by the database, which could lead to arbitrary code

execution by attackers.

5) Origin Violation: “HTTP REST APIs” are a popular module in NoSQL databases. A new

class of vulnerabilities that lets attackers target the database even from another domain. In

cross origin attacks, attackers exploit legitimate users and their web browsers to perform an

unwanted action. Such violations in the form of a cross-site request forgery attack in which

the trust that a site has in a user’s browser is exploited to perform an illegal operation on a

NoSQL database. By injecting an HTML form into a vulnerable website or tricking a user

into the attacker’s own website. An attacker can perform a post action on the target

database, thus compromising the database.

THE WEBORION SOFTWARE SOLUTION

Example of NoSQL Injection using Node.js and MongoDB

Create a simple code when the inputs are not sanitized.

Inject Code:

app.post(‘/user’, function (req, res){

var query = {

 username: req.body.username,

 password: req.body.password

}

db.collection(‘users’).findone(query, function (err, user){

 console.log(user);

});

}) ;

THE WEBORION SOFTWARE SOLUTION

Suppose that receive the following request

POST http://www.example.com/user HTTP/1.1

Content-Type: application/json

{

 “username”: {“$ne”: null},

 “password”: {“$ne”: null}

}

As $ne is the not equal operator, this request would return the first user without knowing its

name or password.

THE WEBORION SOFTWARE SOLUTION

Prevent NoSQL Injection

To prevent NoSQL injections, it is required to validate the user input or escape it properly. A

very first and basic step is to validate user input, with regards to the following rules to

confirm the expected type being received in the request is valid:

1) Validate length and type of the data

2) Validate and sanitize the input to an expected type (i.e. type casting)

THE WEBORION SOFTWARE SOLUTION

Safe Code

var sanitize = require(‘mongo-sanitize’);

app.post(‘/user’, function (req, res){

 var query = {

 username: sanitize(req.body.username),

 password: sanitize(req.body.password)

 }

 db.collection(‘’users’).findOne(query, function (err, user) {

 console.log(user);

 });

});

In this case solution is to sanitize the input before using them. A good option is mongo-

sanitize. There is second solution, if you are using Mongoose, you don’t need to sanitize the

inputs. There is just need to set the properties to be typed as string. If someone passes an

object like {$ne: null}, Mongoose will convert it to a string and no harm will be done.

THE WEBORION SOFTWARE SOLUTION

About TheWeborion

WebOrion™ – Trusted brand since 2012 for Cyber Security

Our experts convert ideas into reality and add value to our customers by providing quality Cyber

Security solutions.

We thrive in providing security to all types of applications focusing on preventing cyber attacks and

data clean-up after cyber incident.

Learn more:

Phone: +1-(202)-765-7053

Email: info@theweborion.com

Website: www.theweborion.com

