Skip to content

EllieGholami/ubuntu_setup_AtoZ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

Ubuntu 18.04 installation and set up steps

  1. Make sure you have backup from your data

  2. Download ubuntu 18.04 LTS ISO file , desktop version

  3. Create a bootable USB Disk with downloaded file

    1. Insert the USB disk

    2. Open the Start Disk Creator application in Ubuntu or in Etcher Mac

    3. Make Startup Disk

    4. Test your Bootable Disk by installing a utility called QEMU

      $ sudo apt-get install qemu
      $ sudo qemu-system-x86_64 -hda /dev/sdc1
      

      Your booting process is successfull if you see a virtual machine booting from your USB disk

  4. Boot from USB Drive

  5. Follow steps

    • You can check to update during installation and install 3rd party to save time after installation
    • You can check partitions and make sure you have at least 8 GB swap area mount point set to / on your ssd hard drive with swao area and 500 MB EIFT format and /mnt on your second hard drive
  6. Eject USB drive and reboot

  7. Install Essentials first

    sudo apt-get update
    sudo apt-get upgrade
    
    sudo apt-get install git
    
    sudo apt-get install vim
    
    sudo apt-get update && sudo apt-get install npm
    
    # Install yarn
     sudo apt remove cmdtest
     sudo apt remove yarn
     curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
     echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
     sudo apt-get update  
     sudo apt-get install yarn
    
    # Install helm version "v2.16.1", version 3 is not working for my projects
    # Download the correct version from [here](https://github.com/helm/helm/releases)
    # unpack the file
    $ tar -zxvf helm-v2.16.7-linux-amd64.tar.gz
    $ mv linux-amd64/helm /snap/bin/helm
    
    # Install typescript
    sudo npm install -g typescript
    
    # Install aws cli
    sudo apt-get update && sudo apt-get install awscli
    
    # configure your credentials
    aws configure
    
    #Status Bar: Indicator Multiload
    sudo apt install indicator-multiload
    
    # Typora
    sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys BA300B7755AFCFAE
    sudo add-apt-repository 'deb https://typora.io ./linux/'
    sudo apt-get update
    sudo apt-get install typora
    
    # ffmpeg
    sudo apt update 
    sudo apt install ffmpeg
    ffmpeg -version
    
    # Chrome, GitKraken, Pycharm, Slack
    
  8. Install conda Download Miniconda from here

    bash Miniconda3-latest-Linux-x86_64.sh
    
    # Test your installation in new terminal windows
    conda list 
    
    # Add pip.conf file to your home directory
    sudo mkdir -p ~/.config/pip && mv pip.conf ~/.config/pip/pip.conf
    

    The pip.conf file is like this:

     [global]
     index = https://dev:[email protected]/repository/pypi-all/pypi
     index-url = https://dev:[email protected]/repository/pypi-all/simple
    
  9. Install nvidia driver Try this link or follow these instructions:

    1. Add the official Nvidia PPA to Ubuntu: sudo add-apt-repository ppa:graphics-drivers/ppa

    2. Update and Install Nvidia Drivers: (Make sure you select correct Nvidia Driver version)

      sudo apt update	
      sudo apt-get install nvidia-driver-440
      sudo reboot
      

      If it doesn't work, try this:

      sudo apt-get remove libdpkg-perl
      sudo apt-get install libdpkg-perl=1.19.0.5ubuntu2
      sudo apt-get install dpkg-dev
      sudo apt-get install dkms
      sudo apt-get install nvidia-dkms-440
      sudo apt-get install nvidia-driver-440
      sudo reboot
      
    3. Checking install status of NVIDIA packages:

      dpkg -l | grep nvidia
      nvidia-smi
      
  10. Install CUDA 10:

    1. Follow instructions from here Download the runfile instead of deb file. When running the run file, need to disable the driver installation.

      Do you accept the previously read EULA? accept
      Install NVIDIA Accelerated Graphics Driver for linux? no
      Install the CUDA 10.0 Toolkit? yes
      Do you want to install a symbolic link at /usr/local/cuda? yes
      ...
      
    2. Post installation actions

      Environment setup, add these to .bashrc file

      export PATH=$PATH:/usr/local/cuda-10.0/bin
      export CUDADIR=/usr/local/cuda-10.0
      export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib6
      
      export PATH=$PATH:/usr/local/cuda/bin
      export CUDADIR=/usr/local/cuda
      export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
      
  11. install cudnn:

    # Install CuDNN 7 and NCCL 2
    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
    
    sudo dpkg -i nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
    sudo apt update
    sudo apt install -y libcudnn7 libcudnn7-dev libnccl2 libc-ares-dev
    sudo apt autoremove
    sudo apt upgrade
    
    # Link libraries to standard locations
    sudo mkdir -p /usr/local/cuda-10.0/nccl/lib
    sudo ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/local/cuda/nccl/lib/
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/local/cuda-10.0/lib64/
    
    echo 'If everything worked fine, reboot now.'
    

    Check installations:

    $ nvidia-smi | grep "Driver Version" | awk '{print $6}'
    440.82
    $  nvcc --version | grep "release" | awk '{print $6}' | cut -c2-
    10.0.130
    $ locate cupti | grep "libcupti.so." | tail -n1 | sed -r 's/^.*\.so\.//' 
    10.0.130
    $ locate cudnn | grep "libcudnn.so." | tail -n1 | sed -r 's/^.*\.so\.//' 
    7
    
  12. Create a new conda env and test GPU on Tensorflow

    pip install tensorflow-gpu==1.15.2
    python
    >> import tensorflow as tf
    >> with tf.device('/gpu:0'):
          a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
          b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
          c = tf.matmul(a, b)
    >> with tf.Session() as sess:
        	print (sess.run(c))
    

    Congratulations if you can see the results without any problem.

  13. Install Docker Simply follow instructions here

    $ sudo apt-get update
    
    $ sudo apt-get install \
        apt-transport-https \
        ca-certificates \
        curl \
        gnupg-agent \
        software-properties-common
        
    $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
    
    $ sudo apt-key fingerprint 0EBFCD88
    
    $ sudo add-apt-repository \
       "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
       $(lsb_release -cs) \
       stable"
    
    $ sudo docker run hello-world
    
    

    Add the docker group if it doesn't already exist:

    $ sudo groupadd docker
    
    # Add the connected user to the docker group
    sudo gpasswd -a $USER docker
    

    Now, having the user logout then login again to test if you can use docker without sudo. docker images. Sometimes you need restart to see the result.

    Then install Docker Compose

    $ sudo curl -L "https://github.com/docker/compose/releases/download/1.25.5/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
    $ sudo chmod +x /usr/local/bin/docker-compose
    $ docker-compose --version
    
    
  14. NVIDIA Container Toolkit

    # Add the package repositories
    distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
    
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
    sudo systemctl restart docker
    
    # Test nvidia-smi with the latest official CUDA image
    `docker run --gpus all nvidia/cuda:10.0-base nvidia-smi
    
  15. PubKey Authentication Permanently added the RSA host key for this IP address to the list of known hosts.

    $ ssh-keygen
    $ vim ~/.ssh/config
    

    Find instructions here You may need to add ssh key from GitKraken itself as well. Preferences/Authentication/GitHub.com

  16. Minikube

    $ sudo apt-get update
    $ sudo apt-get install apt-transport-https
    $ sudo apt-get upgrade
    
    $ sudo apt install virtualbox virtualbox-ext-pack
    
    $ wget https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
    $ chmod +x minikube-linux-amd64
    $ sudo mv minikube-linux-amd64 /usr/local/bin/minikube
    
    $ minikube version
    
  17. Install kubectl

    curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/linux/amd64/kubectl
    
    chmod +x ./kubectl
    
    sudo mv ./kubectl /usr/local/bin/kubectl
    
    kubectl version --client
    
  18. Configure kubectl

    minikube start
    

    it will create the config file in home directory ~/.kube/config that you can replace with your own config file.

About

Ubuntu 18.04 installation and set up steps

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published