Паўпрамы здабытак
Выгляд
Група, алгебра | ||||
Тэорыя груп
| ||||
Паўпрамы здабытак — канструкцыя ў тэорыі груп, якая дазваляе будаваць новую групу па дзвюх групах і , і дзеянні групы на групе аўтамарфізмамі.
Паўпрамы здабытак груп і над звычайна абазначаецца .
Канструкцыя
[правіць | правіць зыходнік]Няхай зададзена дзеянне групы на прасторы групы з захаваннем яе групавой структуры. Гэта азначае, што зададзены гомамарфізм групы у групу аўтамарфізмаў групы . Аўтаморфізм групы ., які адпавядае элементу з пры гомамарфізме . пазначым . У якасці групы — паўпрамога здабытку груп і над гомамарфізмам — бярэцца мноства з бінарнай аперацыяй , што дзейнічае па правілу:
- для любых , .
Уласцівасці
[правіць | правіць зыходнік]- Групы і натуральна ўкладзеныя ў , прычым — нармальная падгрупа ў .
- Кожны элемент адназначна раскладаем у здабытак , дзе і — элементы груп і адпаведна. (Гэта ўласцівасць апраўдвае назву групы як паўпрамога здабытку груп м .)
- Зададзенае дзеянне групы на групе супадае з дзеяннем на спалучэннямі (у групе ).
Усякая група са ўласцівасцямі 1-3 ізаморфная групе (уласцівасць універсальнасці паўпрамога здабытку груп).
Літаратура
[правіць | правіць зыходнік]- Винберг Э. Б. Курс алгебры. — 3-е изд. — М.: Факториал Пресс, 2002. — 544 с. — 3 000 экз. — ISBN 5-88688-060-7.