257-Eck

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Grafik zeigt als schwarze Linie auf weißem Hintergrund ein mit technischen Mitteln erzeugtes, tatsächliches 257-Eck; es ist aber mit bloßem Auge von einem Kreis nicht unterscheidbar.
Regelmäßiges 257-Eck oder Kreis?

Das 257-Eck ist eine geometrische Figur, genauer ein Polygon. Es ist definiert durch 257 Ecken, die durch ebenso viele Kanten zu einer geschlossenen Figur verbunden sind.

In der Regel ist mit dieser Bezeichnung das regelmäßige 257-Eck gemeint, welches konvex ist, bei dem alle Seiten gleich lang sind und dessen Eckpunkte auf einem gemeinsamen Umkreis liegen.

Das Besondere am regelmäßigen 257-Eck ist die Tatsache, dass es unter Beschränkung auf die Hilfsmittel Zirkel und Lineal (die Euklidischen Werkzeuge) konstruiert werden kann. Die Zahl 257 ist eine der fünf bekannten Fermatschen Primzahlen:

.

Carl Friedrich Gauß bewies im Jahre 1796, dass ein regelmäßiges Vieleck genau dann mit Zirkel und Lineal konstruiert werden kann, wenn die Zahl seiner Ecken abgesehen von einer beliebigen Zweierpotenz gleich einem Produkt verschiedener Fermat'scher Primzahlen ist.

Eine Konstruktionsanleitung für das regelmäßige 257-Eck wurde erstmals am 3. Dezember im Jahre 1819 von Magnus Georg Paucker[1] vorgelegt und nochmals 1832 durch Friedrich Julius Richelot.[2] Duane W. DeTemple veröffentlichte 1991 ein Konstruktionsverfahren unter Verwendung von 150 Hilfskreisen.[3] 1999 publizierte Christian Gottlieb eine weitere Konstruktionsvorschrift (s. Literatur).

Die praktische Durchführung der Konstruktion ist per Hand kaum möglich, da die Anforderungen an Präzision bei der notwendigen Größe sehr schwer einzuhalten sind.

Die GIF-Animation zeigt in zahlreichen Einzelschritten den Ablauf der Konstruktion.
Nach Duane W. DeTemple, Konstruktion des 257-Eck unter Verwendung des Carlyle-Kreises.

Mathematischer Hintergrund

[Bearbeiten | Quelltext bearbeiten]

Der Konstruktion liegt eine Auflösung der Kreisteilungsgleichung [2] mittels geschachtelter Quadratwurzeln zugrunde. Diese Auflösung geschieht analog zum für das Siebzehneck beschriebenen Weg, wobei wie dort als Primitivwurzel wieder gewählt werden kann.

Anschauungsbild des 257-Ecks

Der Zentriwinkel hat den Wert   .

Der Innenwinkel hat den Wert   .

  • Christian Gottlieb: The Simple and Straightforward Construction of the Regular 257-gon. In: Mathematical Intelligencer. Vol. 21, No. 1, 1999, S. 31–37, doi:10.1007/BF03024829.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Magnus Georg Paucker: Das regelmäßige Zweyhundertsiebenundfunfzig-Eck im Kreise. In: Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst. 2. Jahrgang, 1822, S. 160–219 (google.de). Abgerufen am 30. November 2024.
  2. a b Friedrich Julius Richelot: De resolutione algebraica aequationis x257 = 1, ... In: Source: Journal für die reine und angewandte Mathematik. 9. Jahrgang, 1832, S. 1–26, 146–161, 209–230, 337–358 (Latein, uni-goettingen.de). Abgerufen am 10. Dezember 2015.
  3. Duane W. DeTemple: Carlyle circles and Lemoine simplicity of polygon constructions. In: The American Mathematical Monthly. 98. Jahrgang, Nr. 2, Februar 1991, S. 104–107 (apollonius.math.nthu.edu.tw (Memento des Originals vom 21. Dezember 2015 im Internet Archive)). Abgerufen am 16. Juli 2016.