- NAME
-
- gcloud alpha mldiagnostics machine-learning-run update - update a machine learning run
- SYNOPSIS
-
-
gcloud alpha mldiagnostics machine-learning-run update(MACHINE_LEARNING_RUN:--location=LOCATION)--etag=ETAG[--async] [--display-name=DISPLAY_NAME] [--gcs-path=GCS_PATH] [--labels=[LABELS,…]] [--orchestrator=ORCHESTRATOR; default="gke"] [--run-group=RUN_GROUP] [--run-phase=RUN_PHASE; default="active"] [--tools=[xprof=XPROF]; default="xprof"] [--configs-hardware=[CONFIGS_HARDWARE,…]--configs-software=[CONFIGS_SOFTWARE,…]--configs-user=[CONFIGS_USER,…]] [--gke-cluster-name=GKE_CLUSTER_NAME--gke-kind=GKE_KIND--gke-namespace=GKE_NAMESPACE--gke-workload-name=GKE_WORKLOAD_NAME] [GCLOUD_WIDE_FLAG …]
-
- DESCRIPTION
-
(ALPHA)Update a machine learning run. - EXAMPLES
-
To update the machine learning run, run:
gcloud alpha mldiagnostics machine-learning-run update my-run --location=us-central1 --gcs-path=gs://my-bucket/my-run --gke-cluster-name=projects/my-project/locations/us-central1/clusters/my-cluster --gke-workload-name=my-workload --gke-kind=Job --gke-namespace=default - POSITIONAL ARGUMENTS
-
-
Machine learning run resource - Identifier. The name of the Machine Learning
run. The arguments in this group can be used to specify the attributes of this
resource. (NOTE) Some attributes are not given arguments in this group but can
be set in other ways.
To set the
projectattribute:-
provide the argument
machine_learning_runon the command line with a fully specified name; -
provide the argument
--projecton the command line; -
set the property
core/project.
This must be specified.
MACHINE_LEARNING_RUN-
ID of the machine_learning_run or fully qualified identifier for the
machine_learning_run.
To set the
machine_learning_runattribute:-
provide the argument
machine_learning_runon the command line.
This positional argument must be specified if any of the other arguments in this group are specified.
-
provide the argument
--location=LOCATION-
The location id of the machine_learning_run resource.
To set the
locationattribute:-
provide the argument
machine_learning_runon the command line with a fully specified name; -
provide the argument
--locationon the command line; -
set the property
compute/region.
-
provide the argument
-
provide the argument
-
Machine learning run resource - Identifier. The name of the Machine Learning
run. The arguments in this group can be used to specify the attributes of this
resource. (NOTE) Some attributes are not given arguments in this group but can
be set in other ways.
- REQUIRED FLAGS
-
--etag=ETAG- ETag for the run. It must be provided for update/delete operations and must match the server's etag.
- OPTIONAL FLAGS
-
--async- Return immediately, without waiting for the operation in progress to complete.
--display-name=DISPLAY_NAME- Display name for the run.
- Represents information about the artifacts of the Machine Learning Run.
--gcs-path=GCS_PATH-
The Cloud Storage path where the artifacts of the run are stored. Example:
gs://my-bucket/my-run-directory. --labels=[LABELS,…]-
Any custom labels for this run Example: type:workload, type:simulation etc.
KEY-
Keys must start with a lowercase character and contain only hyphens
(
-), underscores (_), lowercase characters, and numbers. VALUE-
Values must contain only hyphens (
-), underscores (_), lowercase characters, and numbers.
Shorthand Example:--labels=string=string
JSON Example:--labels='{"string": "string"}'
File Example:--labels=path_to_file.(yaml|json)
--orchestrator=ORCHESTRATOR; default="gke"-
The orchestrator used for the run. If not specified, gke will be used by
default.
ORCHESTRATORmust be one of:gce- Google Compute Engine orchestrator.
gke- Google Kubernetes Engine orchestrator.
slurm- Slurm cluster orchestrator.
--run-group=RUN_GROUP-
Allows grouping of similar runs.
- Helps improve UI rendering performance.
- Allows comparing similar runs via fast filters.
--run-phase=RUN_PHASE; default="active"-
RunPhase defines the phase of the run. This should be used only if non standard
machine learning run needs to be updated. If not specified, run phase will be
set to active by default.
RUN_PHASEmust be one of:active- Run is active.
completed- Run is completed.
failed- Run is failed.
--tools=[xprof=XPROF]; default="xprof"-
List of tools enabled for this run. This is a repeated argument, and each
instance configures one tool. If no tools are specified, XProf will be used by
default by the service.
To enable XProf without a specific session ID:
--tools=xprofTo enable XProf with a specific session ID:--tools=xprof:sessionId=my-session-idTo enable multiple tools, repeat the argument:--tools=xprof:sessionId=123 --tools=nsys.xprof-
Configuration for the XProf tool.
sessionId-
The session ID for XProf. Example:
my-session-id.
Shorthand Example:--tools=xprof={sessionId=string} --tools=xprof={sessionId=string}
JSON Example:--tools='[{"xprof": {"sessionId": "string"}}]'
File Example:--tools=path_to_file.(yaml|json)
- Configuration for a Machine Learning run.
--configs-hardware=[CONFIGS_HARDWARE,…]-
Hardware configs.
KEY-
Sets
KEYvalue. VALUE-
Sets
VALUEvalue.
Shorthand Example:--configs-hardware=string=string
JSON Example:--configs-hardware='{"string": "string"}'
File Example:--configs-hardware=path_to_file.(yaml|json)
--configs-software=[CONFIGS_SOFTWARE,…]-
Software configs.
KEY-
Sets
KEYvalue. VALUE-
Sets
VALUEvalue.
Shorthand Example:--configs-software=string=string
JSON Example:--configs-software='{"string": "string"}'
File Example:--configs-software=path_to_file.(yaml|json)
--configs-user=[CONFIGS_USER,…]-
User defined configs.
KEY-
Sets
KEYvalue. VALUE-
Sets
VALUEvalue.
Shorthand Example:--configs-user=string=string
JSON Example:--configs-user='{"string": "string"}'
File Example:--configs-user=path_to_file.(yaml|json)
- Workload details associated for the Machine Learning Run. Workload have different metadata based on the orchestrator like GKE cluster, Slurm cluster, Google Compute Engine instance etc.
- Arguments for the metadata.
- Workload details for the GKE orchestrator.
--gke-cluster-name=GKE_CLUSTER_NAME-
The cluster of the workload. Example - /projects/<project
id>/locations/<location>/clusters/<cluster name>
This flag argument must be specified if any of the other arguments in this group are specified.
--gke-kind=GKE_KIND-
The kind of the workload. Example - JobSet
This flag argument must be specified if any of the other arguments in this group are specified.
--gke-namespace=GKE_NAMESPACE-
The namespace of the workload. Example - default
This flag argument must be specified if any of the other arguments in this group are specified.
--gke-workload-name=GKE_WORKLOAD_NAME-
The identifier of the workload. Example - jobset-abcd
This flag argument must be specified if any of the other arguments in this group are specified.
- GCLOUD WIDE FLAGS
-
These flags are available to all commands:
--access-token-file,--account,--billing-project,--configuration,--flags-file,--flatten,--format,--help,--impersonate-service-account,--log-http,--project,--quiet,--trace-token,--user-output-enabled,--verbosity.Run
$ gcloud helpfor details. - API REFERENCE
-
This command uses the
hypercomputecluster/v1alphaAPI. The full documentation for this API can be found at: https://docs.cloud.google.com/cluster-director/docs - NOTES
- This command is currently in alpha and might change without notice. If this command fails with API permission errors despite specifying the correct project, you might be trying to access an API with an invitation-only early access allowlist.
gcloud alpha mldiagnostics machine-learning-run update
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2026-02-10 UTC.