In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section (ellipse, parabola, or hyperbola) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant.[1] By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.
![](http://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spherical-conic-chalkboard.jpg/280px-Spherical-conic-chalkboard.jpg)
![](http://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Peirce_projection_spherical_conics.png/280px-Peirce_projection_spherical_conics.png)
Many theorems about conics in the plane extend to spherical conics. For example, Graves's theorem and Ivory's theorem about confocal conics can also be proven on the sphere; see confocal conic sections about the planar versions.[2]
Just as the arc length of an ellipse is given by an incomplete elliptic integral of the second kind, the arc length of a spherical conic is given by an incomplete elliptic integral of the third kind.[3]
An orthogonal coordinate system in Euclidean space based on concentric spheres and quadratic cones is called a conical or sphero-conical coordinate system. When restricted to the surface of a sphere, the remaining coordinates are confocal spherical conics. Sometimes this is called an elliptic coordinate system on the sphere, by analogy to a planar elliptic coordinate system. Such coordinates can be used in the computation of conformal maps from the sphere to the plane.[4]
Applications
editThe solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance.[5]
Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of confocal ellipses and hyperbolae in the plane.[6]
If a portion of the Earth is modeled as spherical, e.g. using the osculating sphere at a point on an ellipsoid of revolution, the hyperbolae used in hyperbolic navigation (which determines position based on the difference in received signal timing from fixed radio transmitters) are spherical conics.[7]
Notes
edit- ^ Fuss, Nicolas (1788). "De proprietatibus quibusdam ellipseos in superficie sphaerica descriptae" [On certain properties of ellipses described on a spherical surface]. Nova Acta academiae scientiarum imperialis Petropolitanae (in Latin). 3: 90–99.
- ^ Stachel, Hellmuth; Wallner, Johannes (2004). "Ivory's theorem in hyperbolic spaces" (PDF). Siberian Mathematical Journal. 45 (4): 785–794.
- ^
Gudermann, Christoph (1835). "Integralia elliptica tertiae speciei reducendi methodus simplicior, quae simul ad ipsorum applicationem facillimam et computum numericum expeditum perducit. Sectionum conico–sphaericarum qudratura et rectification" [A simpler method of reducing elliptic integrals of the third kind, providing easy application and convenient numerical computation: Quadrature and rectification of conico-spherical sections]. Crelle's Journal. 14: 169–181.
Booth, James (1844). "IV. On the rectification and quadrature of the spherical ellipse". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 25 (163): 18–38. doi:10.1080/14786444408644925. - ^
Guyou, Émile (1887). "Nouveau système de projection de la sphère: Généralisation de la projection de Mercator" [New sphere projection system: Generalization of the Mercator projection]. Annales Hydrographiques. Ser. 2 (in French). 9: 16–35.
Adams, Oscar Sherman (1925). Elliptic functions applied to conformal world maps (PDF). US Government Printing Office. US Coast and Geodetic Survey Special Publication No. 112. - ^
Higgs, Peter W. (1979). "Dynamical symmetries in a spherical geometry I". Journal of Physics A: Mathematical and General. 12 (3): 309–323. doi:10.1088/0305-4470/12/3/006.
Kozlov, Valery Vasilevich; Harin, Alexander O. (1992). "Kepler's problem in constant curvature spaces". Celestial Mechanics and Dynamical Astronomy. 54 (4): 393–399. doi:10.1007/BF00049149.
Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano (2005). "Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2". Journal of Mathematical Physics. 46 (5): 052702. arXiv:math-ph/0504016. doi:10.1063/1.1893214.
Arnold, Vladimir; Kozlov, Valery Vasilevich; Neishtadt, Anatoly I. (2007). Mathematical Aspects of Classical and Celestial Mechanics. doi:10.1007/978-3-540-48926-9.
Diacu, Florin (2013). "The curved N-body problem: risks and rewards" (PDF). Mathematical Intelligencer. 35 (3): 24–33. - ^ Cox, Jacques-François (1946). "The doubly equidistant projection". Bulletin Géodésique. 2 (1): 74–76. doi:10.1007/bf02521618.
Further reading
edit- Chasles, Michel (1831). Mémoire de géométrie sur les propriétés générales des coniqes sphériques [Geometrical memoir on the general properties of spherical conics] (in French). L'Académie de Bruxelles. English edition:
— (1841). Two geometrical memoirs on the general properties of cones of the second degree, and on the spherical conics. Translated by Graves, Charles. Grant and Bolton. - Chasles, Michel (1860). "Résumé d'une théorie des coniques sphériques homofocales" [Summary of a theory of confocal spherical conics]. Comptes rendus de l'Académie des Sciences (in French). 50: 623–633. Republished in Journal de mathématiques pures et appliquées. Ser. 2. 5: 425-454. PDF from mathdoc.fr.
- Glaeser, Georg; Stachel, Hellmuth; Odehnal, Boris (2016). "10.1 Spherical conics". The Universe of Conics: From the ancient Greeks to 21st century developments. Springer. pp. 436–467. doi:10.1007/978-3-662-45450-3_10.
- Izmestiev, Ivan (2019). "Spherical and hyperbolic conics". Eighteen Essays in Non-Euclidean Geometry. European Mathematical Society. pp. 262–320. doi:10.4171/196-1/15.
- Salmon, George (1927). "X. Cones and Sphero-Conics". A Treatise on the Analytic Geometry of Three Dimensions (7th ed.). Chelsea. pp. 249–267.
- Story, William Edward (1882). "On non-Euclidean properties of conics" (PDF). American Journal of Mathematics. 5 (1): 358–381. doi:10.2307/2369551.
- Sykes, Gerrit Smith (1877). "Spherical Conics". Proceedings of the American Academy of Arts and Sciences. 13: 375–395. doi:10.2307/25138501.
- Tranacher, Harald (2006). Sphärische Kegelschnitte – didaktisch aufbereitet [Spherical conics – didactically prepared] (PDF) (Thesis) (in German). Technischen Universität Wien.