Jump to content

User:Sarex/sandbox/tls

From Wikipedia, the free encyclopedia

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), both frequently referred to as "SSL", are cryptographic protocols that provide communications security over a computer network.[1] Several versions of the protocols find widespread use in applications such as web browsing, email, Internet faxing, instant messaging, and voice-over-IP (VoIP). Websites use TLS to secure all communications between their servers and web browsers.

The Transport Layer Security protocol aims primarily to provide privacy and data integrity between two communicating computer applications.[1]: 3  When secured by TLS, connections between a client (e.g., a web browser) and a server (e.g., wikipedia.org) have one or more of the following properties:

  • The connection is private (or secure) because symmetric cryptography is used to encrypt the data transmitted. The keys for this symmetric encryption are generated uniquely for each connection and are based on a shared secret negotiated at the start of the session (see TLS handshake protocol). The server and client negotiate the details of which encryption algorithm and cryptographic keys to use before the first byte of data is transmitted (see Algorithm below). The negotiation of a shared secret is both secure (the negotiated secret is unavailable to eavesdroppers and cannot be obtained, even by an attacker who places themselves in the middle of the connection) and reliable (no attacker can modify the communications during the negotiation without being detected).
  • The identity of the communicating parties can be authenticated using public-key cryptography. This authentication can be made optional, but is generally required for at least one of the parties (typically the server).
  • The connection ensures integrity because each message transmitted includes a message integrity check using a message authentication code to prevent undetected loss or alteration of the data during transmission.[1]: 3 

In addition to the properties above, careful configuration of TLS can provide additional privacy-related properties such as forward secrecy, ensuring that any future disclosure of encryption keys cannot be used to decrypt any TLS communications recorded in the past.[2]

TLS supports many different methods for exchanging keys, encrypting data, and authenticating message integrity (see Algorithm below). As a result, secure configuration of TLS involves many configurable parameters, and not all choices provide all of the privacy-related properties described in the list above (see authentication and key exchange table, cipher security table, and data integrity table).

Attempts have been made to subvert aspects of the communications security that TLS seeks to provide and the protocol has been revised several times to address these security threats (see Security). Developers of web browsers have also revised their products to defend against potential security weaknesses after these were discovered (see TLS/SSL support history of web browsers.[3])

The TLS protocol comprises two layers: the TLS record protocol and the TLS handshake protocol.

TLS is a proposed Internet Engineering Task Force (IETF) standard, first defined in 1999 and updated in RFC 5246 (August 2008) and RFC 6176 (March 2011). It builds on the earlier SSL specifications (1994, 1995, 1996) developed by Netscape Communications[4] for adding the HTTPS protocol to their Navigator web browser.

Description

[edit]

Client-server applications use the TLS protocol to communicate across a network in a way designed to prevent eavesdropping and tampering.

Since applications can communicate either with or without TLS (or SSL), it is necessary for the client to indicate to the server the setup of a TLS connection.[5] One of the main ways of achieving this is to use a different port number for TLS connections, for example port 443 for HTTPS. Another mechanism is for the client to make a protocol-specific request to the server to switch the connection to TLS; for example, by making a STARTTLS request when using the mail and news protocols.

Once the client and server have agreed to use TLS, they negotiate a stateful connection by using a handshaking procedure.[6] The protocols use a handshake with an asymmetric cipher to establish cipher settings and a shared key for a session; the rest of the communication is encrypted using a symmetric cipher and the session key. During this handshake, the client and server agree on various parameters used to establish the connection's security:

  • The handshake begins when a client connects to a TLS-enabled server requesting a secure connection and the client presents a list of supported cipher suites (ciphers and hash functions).
  • From this list, the server picks a cipher and hash function that it also supports and notifies the client of the decision.
  • The server usually then sends back its identification in the form of a digital certificate. The certificate contains the server name, the trusted certificate authority (CA) and the server's public encryption key.
  • The client confirms the validity of the certificate before proceeding.
  • To generate the session keys used for the secure connection, the client either:
    • encrypts a random number with the server's public key and sends the result to the server (which only the server should be able to decrypt with its private key); both parties then use the random number to generate a unique session key for subsequent encryption and decryption of data during the session
    • uses Diffie–Hellman key exchange to securely generate a random and unique session key for encryption and decryption that has the additional property of forward secrecy: if the server's private key is disclosed in future, it cannot be used to decrypt the current session, even if the session is intercepted and recorded by a third party.

This concludes the handshake and begins the secured connection, which is encrypted and decrypted with the session key until the connection closes. If any one of the above steps fail, the TLS handshake fails, and the connection is not created.

TLS and SSL do not fit neatly into any single layer of the OSI model or the TCP/IP model.[7][8] TLS runs "on top of some reliable transport protocol (e.g., TCP),"[9] which would imply that it is above the transport layer. It serves encryption to higher layers, which is normally the function of the presentation layer. However, applications generally use TLS as if it were a transport layer,[7][8] even though applications using TLS must actively control initiating TLS handshakes and handling of exchanged authentication certificates.[9]

History and development

[edit]
Defined
Protocol Year
SSL 1.0 n/a
SSL 2.0 1995
SSL 3.0 1996
TLS 1.0 1999
TLS 1.1 2006
TLS 1.2 2008
TLS 1.3 TBD

Secure Network Programming

[edit]

Early research efforts towards transport layer security included the Secure Network Programming (SNP) application programming interface (API), which in 1993 explored the approach of having a secure transport layer API closely resembling Berkeley sockets, to facilitate retrofitting preexisting network applications with security measures.[10]

SSL 1.0, 2.0 and 3.0

[edit]

Netscape developed the original SSL protocols.[11] Version 1.0 was never publicly released because of serious security flaws in the protocol; version 2.0, released in February 1995, "contained a number of security flaws which ultimately led to the design of SSL version 3.0".[12] Released in 1996, SSL version 3.0 represented a complete redesign of the protocol produced by Paul Kocher working with Netscape engineers Phil Karlton and Alan Freier, with a reference implementation by Christopher Allen and Tim Dierks of Consensus Development. Newer versions of SSL/TLS are based on SSL 3.0. The 1996 draft of SSL 3.0 was published by IETF as a historical document in RFC 6101.

Dr. Taher Elgamal, chief scientist at Netscape Communications from 1995 to 1998, is recognized as the "father of SSL".[13][14]

As of 2014 the 3.0 version of SSL is considered insecure as it is vulnerable to the POODLE attack that affects all block ciphers in SSL; and RC4, the only non-block cipher supported by SSL 3.0, is also feasibly broken as used in SSL 3.0.[15]

SSL 2.0 was deprecated (prohibited) in 2011 by RFC 6176.

SSL 3.0 was deprecated in June 2015 by RFC 7568.

TLS 1.0

[edit]

TLS 1.0 was first defined in RFC 2246 in January 1999 as an upgrade of SSL Version 3.0, and written by Christopher Allen and Tim Dierks of Consensus Development. As stated in the RFC, "the differences between this protocol and SSL 3.0 are not dramatic, but they are significant enough to preclude interoperability between TLS 1.0 and SSL 3.0". TLS 1.0 does include a means by which a TLS implementation can downgrade the connection to SSL 3.0, thus weakening security.[16]: 1–2 

TLS 1.1

[edit]

TLS 1.1 was defined in RFC 4346 in April 2006.[17] It is an update from TLS version 1.0. Significant differences in this version include:

TLS 1.2

[edit]

TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 1.1 specification. Major differences include:

All TLS versions were further refined in RFC 6176 in March 2011 removing their backward compatibility with SSL such that TLS sessions never negotiate the use of Secure Sockets Layer (SSL) version 2.0.

TLS 1.3 (draft)

[edit]

As of July 2016, TLS 1.3 is a working draft, and details are provisional and incomplete.[19][20] It is based on the earlier TLS 1.2 specification. Major differences from TLS 1.2 include:

  • Removing support for weak and lesser-used named elliptic curves (see Elliptic curve cryptography)
  • Removing support for MD5 and SHA-224 cryptographic hash functions
  • Requiring digital signatures even when a previous configuration is used
  • Integrating HKDF and the semi-ephemeral DH proposal
  • Replacing resumption with PSK and tickets
  • Supporting 1-RTT handshakes and initial support for 0-RTT (see Round-trip delay time)
  • Dropping support for many insecure or obsolete features including compression, renegotiation, non-AEAD ciphers, static RSA and static DH key exchange, custom DHE groups, point format negotiation, Change Cipher Spec protocol, Hello message UNIX time, and the length field AD input to AEAD ciphers
  • Prohibiting SSL or RC4 negotiation for backwards compatibility
  • Integrating use of session hash
  • Deprecating use of the record layer version number and freezing the number for improved backwards compatibility
  • Moving some security-related algorithm details from an appendix to the specification and relegating ClientKeyShare to an appendix
  • Addition of the ChaCha20 stream cipher with the Poly1305 message authentication code
  • Addition of the Ed25519 and Ed448 digital signature algorithms
  • Addition of the x25519 and x448 key exchange protocols

Network Security Services (NSS), the cryptography library developed by Mozilla and used by its web browser Firefox, enabled TLS 1.3 by default in February 2017.[21]

Digital certificates

[edit]

A digital certificate certifies the ownership of a public key by the named subject of the certificate, and indicates certain expected usages of that key. This allows others (relying parties) to rely upon signatures or on assertions made by the private key that corresponds to the certified public key. Public Key Infrastructure (PKI) includes the innovation that powers secure web based business and Internet based correspondence.[22]

Certificate authorities

[edit]

TLS typically relies on a set of trusted third-party certificate authorities to establish the authenticity of certificates. Trust is usually anchored in a list of certificates distributed with user agent software,[23] and can be modified by the relying party.

According to Netcraft, who monitors active TLS certificates, the market-leading CA has been Symantec since the beginning of their survey (or VeriSign before the authentication services business unit was purchased by Symantec). Symantec currently accounts for just under a third of all certificates and 44% of the valid certificates used by the 1 million busiest websites, as counted by Netcraft.[24]

As a consequence of choosing X.509 certificates, certificate authorities and a public key infrastructure are necessary to verify the relation between a certificate and its owner, as well as to generate, sign, and administer the validity of certificates. While this can be more convenient than verifying the identities via a web of trust, the 2013 mass surveillance disclosures made it more widely known that certificate authorities are a weak point from a security standpoint, allowing man-in-the-middle attacks (MITM).[25][26]

Algorithm

[edit]

Data integrity

[edit]

Message authentication code (MAC) is used for data integrity. HMAC is used for CBC mode of block ciphers and stream ciphers. AEAD is used for Authenticated encryption such as GCM mode and CCM mode.

Data integrity
Algorithm SSL 2.0 SSL 3.0 TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3
(Draft)
Status
HMAC-MD5 Yes Yes Yes Yes Yes Defined for TLS 1.2 in RFCs
HMAC-SHA1 No Yes Yes Yes Yes
HMAC-SHA256/384 No No No No Yes
AEAD No No No No Yes
GOST 28147-89 IMIT[27] No No Yes Yes Yes Proposed in RFC drafts
GOST R 34.11-94[27] No No Yes Yes Yes

Applications and adoption

[edit]

In applications design, TLS is usually implemented on top of Transport Layer protocols, encrypting all of the protocol-related data of protocols such as HTTP, FTP, SMTP, NNTP and XMPP.

Historically, TLS has been used primarily with reliable transport protocols such as the Transmission Control Protocol (TCP). However, it has also been implemented with datagram-oriented transport protocols, such as the User Datagram Protocol (UDP) and the Datagram Congestion Control Protocol (DCCP), usage of which has been standardized independently using the term Datagram Transport Layer Security (DTLS).

Websites

[edit]

A prominent use of TLS is for securing World Wide Web traffic between a website and a web browser encoded with the HTTP protocol. This use of TLS to secure HTTP traffic constitutes the HTTPS protocol.[28]

Website protocol support
Protocol
version
Website
support[29]
Security[29][30]
SSL 2.0 4.6% (-0.3%) Insecure
SSL 3.0 16.1% (-0.5%) Insecure[31]
TLS 1.0 94.3% (-0.4%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.1 83.2% (+0.6%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.2 86.1% (+0.6%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.3
(Draft)
Notes
  1. ^ a b c see #Cipher table below
  2. ^ a b c see #Web browsers and #Attacks against TLS/SSL sections

Other uses

[edit]

The Simple Mail Transfer Protocol (SMTP) can also be protected by TLS. These applications use public key certificates to verify the identity of endpoints.

TLS can also be used to tunnel an entire network stack to create a VPN, as is the case with OpenVPN and OpenConnect. Many vendors now marry TLS's encryption and authentication capabilities with authorization. There has also been substantial development since the late 1990s in creating client technology outside of the browser to enable support for client/server applications. When compared against traditional IPsec VPN technologies, TLS has some inherent advantages in firewall and NAT traversal that make it easier to administer for large remote-access populations.

TLS is also a standard method to protect Session Initiation Protocol (SIP) application signaling. TLS can be used to provide authentication and encryption of the SIP signaling associated with VoIP and other SIP-based applications.[citation needed]

Security

[edit]

SSL 2.0

[edit]

SSL 2.0 is flawed in a variety of ways:[32]

  • Identical cryptographic keys are used for message authentication and encryption. (In SSL 3.0, MAC secrets may be larger than encryption keys, so messages can remain tamper resistant even if encryption keys are broken.[4])
  • SSL 2.0 has a weak MAC construction that uses the MD5 hash function with a secret prefix, making it vulnerable to length extension attacks.
  • SSL 2.0 does not have any protection for the handshake, meaning a man-in-the-middle downgrade attack can go undetected.
  • SSL 2.0 uses the TCP connection close to indicate the end of data. This means that truncation attacks are possible: the attacker simply forges a TCP FIN, leaving the recipient unaware of an illegitimate end of data message (SSL 3.0 fixes this problem by having an explicit closure alert).
  • SSL 2.0 assumes a single service and a fixed domain certificate, which clashes with the standard feature of virtual hosting in Web servers. This means that most websites are practically impaired from using SSL.

SSL 2.0 is disabled by default, beginning with Internet Explorer 7,[33] Mozilla Firefox 2,[34] Opera 9.5,[35] and Safari. After it sends a TLS "ClientHello", if Mozilla Firefox finds that the server is unable to complete the handshake, it will attempt to fall back to using SSL 3.0 with an SSL 3.0 "ClientHello" in SSL 2.0 format to maximize the likelihood of successfully handshaking with older servers.[36] Support for SSL 2.0 (and weak 40-bit and 56-bit ciphers) has been removed completely from Opera as of version 10.[37][38]

SSL 3.0

[edit]

SSL 3.0 improved upon SSL 2.0 by adding SHA-1–based ciphers and support for certificate authentication.

From a security standpoint, SSL 3.0 should be considered less desirable than TLS 1.0. The SSL 3.0 cipher suites have a weaker key derivation process; half of the master key that is established is fully dependent on the MD5 hash function, which is not resistant to collisions and is, therefore, not considered secure. Under TLS 1.0, the master key that is established depends on both MD5 and SHA-1 so its derivation process is not currently considered weak. It is for this reason that SSL 3.0 implementations cannot be validated under FIPS 140-2.[39]

In October 2014, the vulnerability in the design of SSL 3.0 was reported, which makes CBC mode of operation with SSL 3.0 vulnerable to the padding attack (see #POODLE attack).

TLS

[edit]

TLS has a variety of security measures:

  • Protection against a downgrade of the protocol to a previous (less secure) version or a weaker cipher suite.
  • Numbering subsequent Application records with a sequence number and using this sequence number in the message authentication codes (MACs).
  • Using a message digest enhanced with a key (so only a key-holder can check the MAC). The HMAC construction used by most TLS cipher suites is specified in RFC 2104 (SSL 3.0 used a different hash-based MAC).
  • The message that ends the handshake ("Finished") sends a hash of all the exchanged handshake messages seen by both parties.
  • The pseudorandom function splits the input data in half and processes each one with a different hashing algorithm (MD5 and SHA-1), then XORs them together to create the MAC. This provides protection even if one of these algorithms is found to be vulnerable.

Attacks against TLS/SSL

[edit]

Significant attacks against TLS/SSL are listed below:

Note: In February 2015, IETF issued an informational RFC[40] summarizing the various known attacks against TLS/SSL.

Forward secrecy

[edit]

Forward secrecy is a property of cryptographic systems which ensures that a session key derived from a set of public and private keys will not be compromised if one of the private keys is compromised in the future.[41] Without forward secrecy, if the server's private key is compromised, not only will all future TLS-encrypted sessions using that server certificate be compromised, but also any past sessions that used it as well (provided of course that these past sessions were intercepted and stored at the time of transmission).[42] An implementation of TLS can provide forward secrecy by requiring the use of ephemeral Diffie–Hellman key exchange to establish session keys, and some notable TLS implementations do so exclusively: e.g., Gmail and other Google HTTPS services that use OpenSSL.[43] However, many clients and servers supporting TLS (including browsers and web servers) are not configured to implement such restrictions.[44][45] In practice, unless a web service uses Diffie–Hellman key exchange to implement forward secrecy, all of the encrypted web traffic to and from that service can be decrypted by a third party if it obtains the server's master (private) key; e.g., by means of a court order.[46]

Even where Diffie–Hellman key exchange is implemented, server-side session management mechanisms can impact forward secrecy. The use of TLS session tickets (a TLS extension) causes the session to be protected by AES128-CBC-SHA256 regardless of any other negotiated TLS parameters, including forward secrecy ciphersuites, and the long-lived TLS session ticket keys defeat the attempt to implement forward secrecy.[47][48][49] Stanford University research in 2014 also found that of 473,802 TLS servers surveyed, 82.9% of the servers deploying ephemeral Diffie–Hellman (DHE) key exchange to support forward secrecy were using weak Diffie–Hellman parameters. These weak parameter choices could potentially compromise the effectiveness of the forward secrecy that the servers sought to provide.[50]

Since late 2011, Google has provided forward secrecy with TLS by default to users of its Gmail service, along with Google Docs and encrypted search among other services.[51] Since November 2013, Twitter has provided forward secrecy with TLS to users of its service.[52] As of June 2016, 51.9% of TLS-enabled websites are configured to use cipher suites that provide forward secrecy to modern web browsers.[29]

Dealing with man-in-the-middle attacks

[edit]

Certificate pinning

[edit]

One way to detect and block many kinds of man-in-the-middle attacks is "certificate pinning", sometimes called "SSL pinning", but more accurately called "public key pinning".[53] A client that does key pinning adds an extra step beyond the normal X.509 certificate validation: After obtaining the server's certificate in the standard way, the client checks the public key(s) in the server's certificate chain against a set of (hashes of) public keys for the server name. Typically the public key hashes are bundled with the application. For example, Google Chrome includes public key hashes for the *.google.com certificate that detected fraudulent certificates in 2011. (Chromium does not enforce the hardcoded key pins.) Since then, Mozilla has introduced public key pinning to its Firefox browser.[54]

In other systems the client hopes that the first time it obtains a server's certificate it is trustworthy and stores it; during later sessions with that server, the client checks the server's certificate against the stored certificate to guard against later MITM attacks.

Perspectives Project

[edit]

The Perspectives Project[55] operates network notaries that clients can use to detect if a site's certificate has changed. By their nature, man-in-the-middle attacks place the attacker between the destination and a single specific target. As such, Perspectives would warn the target that the certificate delivered to the web browser does not match the certificate seen from other perspectives - the perspectives of other users in different times and places. Use of network notaries from a multitude of perspectives makes it possible for a target to detect an attack even if a certificate appears to be completely valid. Other projects, such as the EFF's SSL Observatory, also make use of notaries or similar reporters in discovering man-in-the-middle attacks.

DNSChain

[edit]

DNSChain[56] relies on the security that blockchains provide to distribute public keys. It uses one pin to secure the connection to the DNSChain server itself, after which all other public keys (that are stored in a block chain) become accessible over a secure channel.

Protocol details

[edit]

The TLS protocol exchanges records—which encapsulate the data to be exchanged in a specific format (see below). Each record can be compressed, padded, appended with a message authentication code (MAC), or encrypted, all depending on the state of the connection. Each record has a content type field that designates the type of data encapsulated, a length field and a TLS version field. The data encapsulated may be control or procedural messages of the TLS itself, or simply the application data needed to be transferred by TLS. The specifications (cipher suite, keys etc.) required to exchange application data by TLS, are agreed upon in the "TLS handshake" between the client requesting the data and the server responding to requests. The protocol therefore defines both the structure of payloads transferred in TLS and the procedure to establish and monitor the transfer.

TLS handshake

[edit]

When the connection starts, the record encapsulates a "control" protocol—the handshake messaging protocol  (content type 22). This protocol is used to exchange all the information required by both sides for the exchange of the actual application data by TLS. It defines the format of messages and the order of their exchange. These may vary according to the demands of the client and server—i.e., there are several possible procedures to set up the connection. This initial exchange results in a successful TLS connection (both parties ready to transfer application data with TLS) or an alert message (as specified below).

Basic TLS handshake

[edit]

A typical connection example follows, illustrating a handshake where the server (but not the client) is authenticated by its certificate:

  1. Negotiation phase:
    • A client sends a ClientHello message specifying the highest TLS protocol version it supports, a random number, a list of suggested cipher suites and suggested compression methods. If the client is attempting to perform a resumed handshake, it may send a session ID. If the client can use Application-Layer Protocol Negotiation, it may include a list of supported application protocols, such as HTTP/2.
    • The server responds with a ServerHello message, containing the chosen protocol version, a random number, CipherSuite and compression method from the choices offered by the client. To confirm or allow resumed handshakes the server may send a session ID. The chosen protocol version should be the highest that both the client and server support. For example, if the client supports TLS version 1.1 and the server supports version 1.2, version 1.1 should be selected; version 1.0 should not be selected.
    • The server sends its Certificate message (depending on the selected cipher suite, this may be omitted by the server).[57]
    • The server sends its ServerKeyExchange message (depending on the selected cipher suite, this may be omitted by the server). This message is sent for all DHE and DH_anon ciphersuites.[1]
    • The server sends a ServerHelloDone message, indicating it is done with handshake negotiation.
    • The client responds with a ClientKeyExchange message, which may contain a PreMasterSecret, public key, or nothing. (Again, this depends on the selected cipher.) This PreMasterSecret is encrypted using the public key of the server certificate.
    • The client and server then use the random numbers and PreMasterSecret to compute a common secret, called the "master secret". All other key data for this connection is derived from this master secret (and the client- and server-generated random values), which is passed through a carefully designed pseudorandom function.
  2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything I tell you from now on will be authenticated (and encrypted if encryption parameters were present in the server certificate)." The ChangeCipherSpec is itself a record-level protocol with content type of 20.
    • Finally, the client sends an authenticated and encrypted Finished message, containing a hash and MAC over the previous handshake messages.
    • The server will attempt to decrypt the client's Finished message and verify the hash and MAC. If the decryption or verification fails, the handshake is considered to have failed and the connection should be torn down.
  3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from now on will be authenticated (and encrypted, if encryption was negotiated)."
    • The server sends its authenticated and encrypted Finished message.
    • The client performs the same decryption and verification.
  4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled, with content type of 23. Application messages exchanged between client and server will also be authenticated and optionally encrypted exactly like in their Finished message. Otherwise, the content type will return 25 and the client will not authenticate.

Client-authenticated TLS handshake

[edit]

The following full example shows a client being authenticated (in addition to the server as in the example above) via TLS using certificates exchanged between both peers.

  1. Negotiation Phase:
    • A client sends a ClientHello message specifying the highest TLS protocol version it supports, a random number, a list of suggested cipher suites and compression methods.
    • The server responds with a ServerHello message, containing the chosen protocol version, a random number, cipher suite and compression method from the choices offered by the client. The server may also send a session id as part of the message to perform a resumed handshake.
    • The server sends its Certificate message (depending on the selected cipher suite, this may be omitted by the server).[57]
    • The server sends its ServerKeyExchange message (depending on the selected cipher suite, this may be omitted by the server). This message is sent for all DHE and DH_anon ciphersuites.[1]
    • The server requests a certificate from the client, so that the connection can be mutually authenticated, using a CertificateRequest message.
    • The server sends a ServerHelloDone message, indicating it is done with handshake negotiation.
    • The client responds with a Certificate message, which contains the client's certificate.
    • The client sends a ClientKeyExchange message, which may contain a PreMasterSecret, public key, or nothing. (Again, this depends on the selected cipher.) This PreMasterSecret is encrypted using the public key of the server certificate.
    • The client sends a CertificateVerify message, which is a signature over the previous handshake messages using the client's certificate's private key. This signature can be verified by using the client's certificate's public key. This lets the server know that the client has access to the private key of the certificate and thus owns the certificate.
    • The client and server then use the random numbers and PreMasterSecret to compute a common secret, called the "master secret". All other key data for this connection is derived from this master secret (and the client- and server-generated random values), which is passed through a carefully designed pseudorandom function.
  2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything I tell you from now on will be authenticated (and encrypted if encryption was negotiated). " The ChangeCipherSpec is itself a record-level protocol and has type 20 and not 22.
    • Finally, the client sends an encrypted Finished message, containing a hash and MAC over the previous handshake messages.
    • The server will attempt to decrypt the client's Finished message and verify the hash and MAC. If the decryption or verification fails, the handshake is considered to have failed and the connection should be torn down.
  3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from now on will be authenticated (and encrypted if encryption was negotiated). "
    • The server sends its own encrypted Finished message.
    • The client performs the same decryption and verification.
  4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled, with content type of 23. Application messages exchanged between client and server will also be encrypted exactly like in their Finished message.

Resumed TLS handshake

[edit]

Public key operations (e.g., RSA) are relatively expensive in terms of computational power. TLS provides a secure shortcut in the handshake mechanism to avoid these operations: resumed sessions. Resumed sessions are implemented using session IDs or session tickets.

Apart from the performance benefit, resumed sessions can also be used for single sign-on, as it guarantees that both the original session and any resumed session originate from the same client. This is of particular importance for the FTP over TLS/SSL protocol, which would otherwise suffer from a man-in-the-middle attack in which an attacker could intercept the contents of the secondary data connections.[58]

Session IDs
[edit]

In an ordinary full handshake, the server sends a session id as part of the ServerHello message. The client associates this session id with the server's IP address and TCP port, so that when the client connects again to that server, it can use the session id to shortcut the handshake. In the server, the session id maps to the cryptographic parameters previously negotiated, specifically the "master secret". Both sides must have the same "master secret" or the resumed handshake will fail (this prevents an eavesdropper from using a session id). The random data in the ClientHello and ServerHello messages virtually guarantee that the generated connection keys will be different from in the previous connection. In the RFCs, this type of handshake is called an abbreviated handshake. It is also described in the literature as a restart handshake.

  1. Negotiation phase:
    • A client sends a ClientHello message specifying the highest TLS protocol version it supports, a random number, a list of suggested cipher suites and compression methods. Included in the message is the session id from the previous TLS connection.
    • The server responds with a ServerHello message, containing the chosen protocol version, a random number, cipher suite and compression method from the choices offered by the client. If the server recognizes the session id sent by the client, it responds with the same session id. The client uses this to recognize that a resumed handshake is being performed. If the server does not recognize the session id sent by the client, it sends a different value for its session id. This tells the client that a resumed handshake will not be performed. At this point, both the client and server have the "master secret" and random data to generate the key data to be used for this connection.
  2. The server now sends a ChangeCipherSpec record, essentially telling the client, "Everything I tell you from now on will be encrypted." The ChangeCipherSpec is itself a record-level protocol and has type 20 and not 22.
    • Finally, the server sends an encrypted Finished message, containing a hash and MAC over the previous handshake messages.
    • The client will attempt to decrypt the server's Finished message and verify the hash and MAC. If the decryption or verification fails, the handshake is considered to have failed and the connection should be torn down.
  3. Finally, the client sends a ChangeCipherSpec, telling the server, "Everything I tell you from now on will be encrypted. "
    • The client sends its own encrypted Finished message.
    • The server performs the same decryption and verification.
  4. Application phase: at this point, the "handshake" is complete and the application protocol is enabled, with content type of 23. Application messages exchanged between client and server will also be encrypted exactly like in their Finished message.
Session tickets
[edit]

RFC 5077 extends TLS via use of session tickets, instead of session IDs. It defines a way to resume a TLS session without requiring that session-specific state is stored at the TLS server.

When using session tickets, the TLS server stores its session-specific state in a session ticket and sends the session ticket to the TLS client for storing. The client resumes a TLS session by sending the session ticket to the server, and the server resumes the TLS session according to the session-specific state in the ticket. The session ticket is encrypted and authenticated by the server, and the server verifies its validity before using its contents.

One particular weakness of this method with OpenSSL is that it always limits encryption and authentication security of the transmitted TLS session ticket to AES128-CBC-SHA256, no matter what other TLS parameters were negotiated for the actual TLS session.[48] This means that the state information (the TLS session ticket) is not as well protected as the TLS session itself. Of particular concern is OpenSSL's storage of the keys in an application-wide context (SSL_CTX), i.e. for the life of the application, and not allowing for re-keying of the AES128-CBC-SHA256 TLS session tickets without resetting the application-wide OpenSSL context (which is uncommon, error-prone and often requires manual administrative intervention).[49][47]

Support for name-based virtual servers

[edit]

From the application protocol point of view, TLS belongs to a lower layer, although the TCP/IP model is too coarse to show it. This means that the TLS handshake is usually (except in the STARTTLS case) performed before the application protocol can start. In the name-based virtual server feature being provided by the application layer, all co-hosted virtual servers share the same certificate because the server has to select and send a certificate immediately after the ClientHello message. This is a big problem in hosting environments because it means either sharing the same certificate among all customers or using a different IP address for each of them.

There are two known workarounds provided by X.509:

  • If all virtual servers belong to the same domain, a wildcard certificate can be used.[59] Besides the loose host name selection that might be a problem or not, there is no common agreement about how to match wildcard certificates. Different rules are applied depending on the application protocol or software used.[60]
  • Add every virtual host name in the subjectAltName extension. The major problem being that the certificate needs to be reissued whenever a new virtual server is added.

To provide the server name, RFC 4366 Transport Layer Security (TLS) Extensions allow clients to include a Server Name Indication extension (SNI) in the extended ClientHello message. This extension hints the server immediately which name the client wishes to connect to, so the server can select the appropriate certificate to send to the clients.

RFC 2817, also documents a method to implement name-based virtual hosting by upgrading HTTP to TLS via an HTTP/1.1 Upgrade header. Normally this is to securely implement HTTP over TLS within the main "http" URI scheme (which avoids forking the URI space and reduces the number of used ports), however, few implementations currently support this.

Standards

[edit]

Primary standards

[edit]

The current approved version of TLS is version 1.2, which is specified in:

  • RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

The current standard replaces these former versions, which are now considered obsolete:

  • RFC 2246: "The TLS Protocol Version 1.0".
  • RFC 4346: "The Transport Layer Security (TLS) Protocol Version 1.1".

As well as the never standardized SSL 2.0 and 3.0, which are considered obsolete:

Extensions

[edit]

Other RFCs subsequently extended TLS.

Extensions to TLS 1.0 include:

  • RFC 2595: "Using TLS with IMAP, POP3 and ACAP". Specifies an extension to the IMAP, POP3 and ACAP services that allow the server and client to use transport-layer security to provide private, authenticated communication over the Internet.
  • RFC 2712: "Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)". The 40-bit cipher suites defined in this memo appear only for the purpose of documenting the fact that those cipher suite codes have already been assigned.
  • RFC 2817: "Upgrading to TLS Within HTTP/1.1", explains how to use the Upgrade mechanism in HTTP/1.1 to initiate Transport Layer Security (TLS) over an existing TCP connection. This allows unsecured and secured HTTP traffic to share the same well known port (in this case, http: at 80 rather than https: at 443).
  • RFC 2818: "HTTP Over TLS", distinguishes secured traffic from insecure traffic by the use of a different 'server port'.
  • RFC 3207: "SMTP Service Extension for Secure SMTP over Transport Layer Security". Specifies an extension to the SMTP service that allows an SMTP server and client to use transport-layer security to provide private, authenticated communication over the Internet.
  • RFC 3268: "AES Ciphersuites for TLS". Adds Advanced Encryption Standard (AES) cipher suites to the previously existing symmetric ciphers.
  • RFC 3546: "Transport Layer Security (TLS) Extensions", adds a mechanism for negotiating protocol extensions during session initialisation and defines some extensions. Made obsolete by RFC 4366.
  • RFC 3749: "Transport Layer Security Protocol Compression Methods", specifies the framework for compression methods and the DEFLATE compression method.
  • RFC 3943: "Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-Stac (LZS)".
  • RFC 4132: "Addition of Camellia Cipher Suites to Transport Layer Security (TLS)".
  • RFC 4162: "Addition of SEED Cipher Suites to Transport Layer Security (TLS)".
  • RFC 4217: "Securing FTP with TLS".
  • RFC 4279: "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)", adds three sets of new cipher suites for the TLS protocol to support authentication based on pre-shared keys.

Extensions to TLS 1.1 include:

  • RFC 4347: "Datagram Transport Layer Security" specifies a TLS variant that works over datagram protocols (such as UDP).
  • RFC 4366: "Transport Layer Security (TLS) Extensions" describes both a set of specific extensions and a generic extension mechanism.
  • RFC 4492: "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)".
  • RFC 4680: "TLS Handshake Message for Supplemental Data".
  • RFC 4681: "TLS User Mapping Extension".
  • RFC 4785: "Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport Layer Security (TLS)".
  • RFC 5054: "Using the Secure Remote Password (SRP) Protocol for TLS Authentication". Defines the TLS-SRP ciphersuites.
  • RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-Side State".
  • RFC 5081: "Using OpenPGP Keys for Transport Layer Security (TLS) Authentication", obsoleted by RFC 6091.

Extensions to TLS 1.2 include:

  • RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suites for TLS".
  • RFC 5289: "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)".
  • RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension".
  • RFC 5878: "Transport Layer Security (TLS) Authorization Extensions".
  • RFC 5932: "Camellia Cipher Suites for TLS"
  • RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions", includes Server Name Indication and OCSP stapling.
  • RFC 6091: "Using OpenPGP Keys for Transport Layer Security (TLS) Authentication".
  • RFC 6176: "Prohibiting Secure Sockets Layer (SSL) Version 2.0".
  • RFC 6209: "Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)".
  • RFC 6347: "Datagram Transport Layer Security Version 1.2".
  • RFC 6367: "Addition of the Camellia Cipher Suites to Transport Layer Security (TLS)".
  • RFC 6460: "Suite B Profile for Transport Layer Security (TLS)".
  • RFC 6655: "AES-CCM Cipher Suites for Transport Layer Security (TLS)".
  • RFC 7027: "Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS)".
  • RFC 7251: "AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS".
  • RFC 7301: "Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension".
  • RFC 7366: "Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)".
  • RFC 7465: "Prohibiting RC4 Cipher Suites".
  • RFC 7507: "TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks".
  • RFC 7568: "Deprecating Secure Sockets Layer Version 3.0".
  • RFC 7627: "Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension".
  • RFC 7685: "A Transport Layer Security (TLS) ClientHello Padding Extension".

Encapsulations of TLS include:

  • RFC 5216: "The EAP-TLS Authentication Protocol"

Informational RFCs

[edit]
  • RFC 7457: "Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)"
  • RFC 7525: "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

See also

[edit]

References

[edit]
  1. ^ a b c d e T. Dierks; E. Rescorla (August 2008). "The Transport Layer Security (TLS) Protocol, Version 1.2".
  2. ^ SSL: Intercepted today, decrypted tomorrow, Netcraft, 2013-06-25.
  3. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  4. ^ a b A. Freier; P. Karlton; P. Kocher (August 2011). "The Secure Sockets Layer (SSL) Protocol Version 3.0".
  5. ^ "What is SSL/TLS?". Instantssl.com. Retrieved 2013-02-20.
  6. ^ "SSL/TLS in Detail". Microsoft TechNet. Updated July 31, 2003.
  7. ^ a b Hooper, Howard (2012). CCNP Security VPN 642-648 Official Cert Guide (2 ed.). Cisco Press. p. 22. ISBN 9780132966382. Retrieved 17 August 2015.
  8. ^ a b https://security.stackexchange.com/a/93338
  9. ^ a b T. Dierks, E. Rescorla (August 2008). "Introduction". sec. 1. doi:10.17487/RFC5246. RFC 5246 https://datatracker.ietf.org/doc/html/rfc5246. {{citation}}: Missing or empty |title= (help)
  10. ^ Thomas Y. C. Woo, Raghuram Bindignavle, Shaowen Su and Simon S. Lam, SNP: An interface for secure network programming Proceedings USENIX Summer Technical Conference, June 1994
  11. ^ "THE SSL PROTOCOL". Netscape Corporation. 2007. Archived from the original on 14 June 1997.
  12. ^ Rescorla 2001
  13. ^ Messmer, Ellen. "Father of SSL, Dr. Taher Elgamal, Finds Fast-Moving IT Projects in the Middle East". Network World. Retrieved 30 May 2014.
  14. ^ Greene, Tim. "Father of SSL says despite attacks, the security linchpin has lots of life left". Network World. Retrieved 30 May 2014.
  15. ^ "POODLE: SSLv3 vulnerability (CVE-2014-3566)". Retrieved 21 October 2014.
  16. ^ a b c "Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations" (PDF). National Institute of Standards and Technology. April 2014. p. 67. Retrieved 2014-05-07. {{cite web}}: Unknown parameter |authors= ignored (help)
  17. ^ Dierks, T. & E. Rescorla (April 2006). "The Transport Layer Security (TLS) Protocol Version 1.1, RFC 4346".
  18. ^ T. Dierks, E. Rescorla (August 2008). "Finished". sec. 7.4.9. doi:10.17487/RFC5246. RFC 5246 https://datatracker.ietf.org/doc/html/rfc5246. {{citation}}: Missing or empty |title= (help)
  19. ^ draft-ietf-tls-tls13-20 - The Transport Layer Security (TLS) Protocol Version 1.3
  20. ^ draft-ietf-tls-tls13-latest
  21. ^ "NSS 3.29 release notes". Mozilla Developer Network. February 2017.
  22. ^ "Introduction of Digital Certificate". Retrieved 2017-01-29.
  23. ^ Rea, Scott (2013). "Alternatives to Certification Authorities for a Secure Web" (PDF). RSA Conference Asia Pacific. Retrieved 7 September 2016.
  24. ^ Counting SSL certificates; netcraft; May 13, 2015.
  25. ^ Law Enforcement Appliance Subverts SSL, Wired, 2010-04-03.
  26. ^ New Research Suggests That Governments May Fake SSL Certificates, EFF, 2010-03-24.
  27. ^ "Http vs https". Retrieved 2015-02-12.
  28. ^ a b c As of May 3, 2017. "SSL Pulse: Survey of the SSL Implementation of the Most Popular Web Sites". Retrieved 2017-05-20.
  29. ^ ivanr. "RC4 in TLS is Broken: Now What?". Qualsys Security Labs. Retrieved 2013-07-30.
  30. ^ Cite error: The named reference poodle_pdf was invoked but never defined (see the help page).
  31. ^ Joris Claessens; Valentin Dem; Danny De Cock; Bart Preneel; Joos Vandewalle (2002). "On the Security of Today's Online Electronic Banking Systems". Computers & Security. 21 (3): 253–265. doi:10.1016/S0167-4048(02)00312-7.
  32. ^ Lawrence, Eric (2005-10-22). "IEBlog: Upcoming HTTPS Improvements in Internet Explorer 7 Beta 2". MSDN Blogs. Retrieved 2007-11-25.
  33. ^ "Bugzilla@Mozilla — Bug 236933 – Disable SSL2 and other weak ciphers". Mozilla Corporation. Retrieved 2007-11-25.
  34. ^ "Opera 9.5 for Windows Changelog" at Opera.com: "Disabled SSL v2 and weak ciphers."
  35. ^ "Firefox still sends SSLv2 handshake even though the protocol is disabled". 2008-09-11.
  36. ^ "Opera 10 for Windows changelog" at Opera.com: "Removed support for SSL v2 and weak ciphers"
  37. ^ Pettersen, Yngve (2007-04-30). "10 years of SSL in Opera — Implementer's notes". Opera Software. Archived from the original on October 12, 2007. Retrieved 2007-11-25.
  38. ^ National Institute of Standards and Technology (December 2010). "Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program" (PDF). Archived from the original (PDF) on November 6, 2010.
  39. ^ "RFC 7457 : Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)".
  40. ^ Diffie, Whitfield; van Oorschot, Paul C; Wiener, Michael J. (June 1992). "Authentication and Authenticated Key Exchanges". Designs, Codes and Cryptography. 2 (2): 107–125. doi:10.1007/BF00124891. S2CID 7356608. Retrieved 2008-02-11.
  41. ^ Discussion on the TLS mailing list in October 2007
  42. ^ "Protecting data for the long term with forward secrecy". Retrieved 2012-11-05.
  43. ^ Vincent Bernat. "SSL/TLS & Perfect Forward Secrecy". Retrieved 2012-11-05.
  44. ^ "SSL Labs: Deploying Forward Secrecy". Qualys.com. 25 June 2013. Retrieved 10 July 2013.
  45. ^ Ristic, Ivan (5 August 2013). "SSL Labs: Deploying Forward Secrecy". Qualsys. Retrieved 31 August 2013.
  46. ^ a b Langley, Adam (27 June 2013). "How to botch TLS forward secrecy". imperialviolet.org.
  47. ^ a b Daignière, Florent. "TLS "Secrets": Whitepaper presenting the security implications of the deployment of session tickets (RFC 5077) as implemented in OpenSSL" (PDF). Matta Consulting Limited. Retrieved 7 August 2013.
  48. ^ a b Daignière, Florent. "TLS "Secrets": What everyone forgot to tell you..." (PDF). Matta Consulting Limited. Retrieved 7 August 2013.
  49. ^ L.S. Huang; S. Adhikarla; D. Boneh; C. Jackson (2014). "An Experimental Study of TLS Forward Secrecy Deployments". IEEE Internet Computing. 18 (6). IEEE: 43–51. doi:10.1109/MIC.2014.86. S2CID 11264303. Retrieved 16 October 2015.
  50. ^ "Protecting data for the long term with forward secrecy". Retrieved 2014-03-07.
  51. ^ Hoffman-Andrews, Jacob. "Forward Secrecy at Twitter". Twitter. Twitter. Retrieved 2014-03-07.
  52. ^ "Certificate Pinning (Warning: The link is broken)".
  53. ^ "Public key pinning released in Firefox"
  54. ^ Perspectives Project
  55. ^ DNSChain
  56. ^ a b These certificates are currently X.509, but RFC 6091 also specifies the use of OpenPGP-based certificates.
  57. ^ Chris (2009-02-18). "vsftpd-2.1.0 released – Using TLS session resume for FTPS data connection authentication". Scarybeastsecurity. blogspot.com. Retrieved 2012-05-17.
  58. ^ Wildcard SSL Certificate overview, retrieved 2015-07-02
  59. ^ Named-based SSL virtual hosts: how to tackle the problem (PDF), retrieved 2012-05-17

Further reading

[edit]
[edit]

Specifications (see Standards section for older SSL 2.0, SSL 3.0, TLS 1.0, TLS 1.1 links)

TLS Version Intolerance
Other