-
Notifications
You must be signed in to change notification settings - Fork 268
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an end-to-end example about training over vineyard graphs (#262)
Signed-off-by: Tao He <[email protected]>
- Loading branch information
1 parent
8575751
commit c37365f
Showing
4 changed files
with
220 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
## Introduction | ||
|
||
End-to-end tutorial about training on vineyard graphs. | ||
|
||
## How to run | ||
|
||
0. prepare dataset | ||
|
||
```bash | ||
$ export GSTEST=/path/to/gstest | ||
$ git clone https://github.com/GraphScope/gstest.git $GSTEST | ||
``` | ||
|
||
1. starting vineyardd: | ||
|
||
```bash | ||
$ export VINEYARD_IPC_SOCKET=/tmp/vineyard.sock | ||
$ python3 -m vineyard --socket $VINEYARD_IPC_SOCKET | ||
``` | ||
|
||
2. loading graph to vineyard: | ||
|
||
```bash | ||
$ vineyard-graph-loader --socket $VINEYARD_IPC_SOCKET --config ./graph.json | ||
``` | ||
|
||
You will see output likes | ||
|
||
``` | ||
I0523 11:23:27.517758 1094848 graph_loader.cc:381] [fragment group id]: 3041975930627711 | ||
``` | ||
|
||
Remember the vineyard fragment group id: | ||
|
||
```bash | ||
$ export VINEYARD_FRAGMENT_ID=3041975930627711 | ||
``` | ||
|
||
3. run the training scripts: | ||
|
||
```bash | ||
$ python3 train_supervised.py --vineyard_fragment_id $VINEYARD_FRAGMENT_ID --vineyard_socket $VINEYARD_IPC_SOCKET | ||
``` | ||
|
||
## Hints | ||
|
||
0. `PYTHONPATH` | ||
|
||
You may need to setup `PYTHONPATH` properly to make the example script work: | ||
|
||
```bash | ||
$ export PYTHONPATH=`pwd`:`pwd`/..:`pwd`/../../..:`pwd`/../../../.. | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Copyright 2021-2022 Alibaba Group Holding Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================= |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
{ | ||
"vertices": [ | ||
{ | ||
"data_path": "$GSTEST/ogbn_mag_small/paper.csv", | ||
"label": "paper", | ||
"options": "header_row=true&delimiter=," | ||
} | ||
], | ||
"edges": [ | ||
{ | ||
"data_path": "$GSTEST/ogbn_mag_small/paper_cites_paper.csv", | ||
"label": "cites", | ||
"src_label": "paper", | ||
"dst_label": "paper", | ||
"options": "header_row=true&delimiter=," | ||
} | ||
], | ||
"progressive": "none", | ||
"directed": 1, | ||
"generate_eid": 1, | ||
"retain_oid": 1, | ||
"oid_type": "int64" | ||
} |
130 changes: 130 additions & 0 deletions
130
graphlearn/examples/tf/ego_gcn_vineyard/train_supervised.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================= | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import json | ||
import os | ||
|
||
import numpy as np | ||
try: | ||
# https://www.tensorflow.org/guide/migrate | ||
import tensorflow.compat.v1 as tf | ||
tf.disable_v2_behavior() | ||
except ImportError: | ||
import tensorflow as tf | ||
|
||
import graphlearn as gl | ||
import graphlearn.python.nn.tf as tfg | ||
from graphlearn.examples.tf.trainer import LocalTrainer | ||
from graphlearn.examples.tf.ego_sage.ego_sage import EgoGraphSAGE | ||
from graphlearn.examples.tf.ego_sage.ego_sage_data_loader import EgoSAGESupervisedDataLoader | ||
|
||
flags = tf.app.flags | ||
FLAGS = flags.FLAGS | ||
# user-defined params | ||
flags.DEFINE_integer('epochs', 2, 'training epochs') | ||
flags.DEFINE_string('node_type', 'paper', 'node type') | ||
flags.DEFINE_string('edge_type', 'cites', 'edge type') | ||
flags.DEFINE_integer('class_num', 349, 'final output embedding dim') | ||
flags.DEFINE_integer('features_num', 128, 'number of float attrs.') | ||
flags.DEFINE_integer('hops_num', 2, 'number of float attrs.') | ||
flags.DEFINE_string('nbrs_num', "[25, 10]", 'number of float attrs.') | ||
flags.DEFINE_integer('hidden_dim', 128, 'hidden layer dim') | ||
flags.DEFINE_float('in_drop_rate', 0.5, 'drop out rate') | ||
flags.DEFINE_float('learning_rate', 0.01, 'learning rate') | ||
|
||
flags.DEFINE_string('vineyard_socket', os.environ.get("VIHEYARD_IPC_SOCKET", "/tmp/vineyard.sock"), 'vineyard IPC socket location') | ||
flags.DEFINE_integer('vineyard_fragment_id', -1, 'Object ID for vineyard fragment or vineyard fragment group') | ||
|
||
nbrs_num = json.loads(FLAGS.nbrs_num) | ||
|
||
def load_graph(): | ||
import vineyard | ||
client = vineyard.connect(FLAGS.vineyard_socket) | ||
meta = client.get_meta(vineyard.ObjectID(FLAGS.vineyard_fragment_id)) | ||
if meta.typename == 'vineyard::ArrowFragmentGroup': | ||
vineyard_fragment_id = int(meta['frag_object_id_0'].id) | ||
else: | ||
vineyard_fragment_id = int(meta.id) | ||
|
||
g = gl.Graph() | ||
g.vineyard( | ||
handle={ | ||
'vineyard_id': vineyard_fragment_id, | ||
'vineyard_socket': FLAGS.vineyard_socket, | ||
'node_schema': ['paper:false:true:3:%d:0' % FLAGS.features_num], | ||
'edge_schema': ['paper:cites:paper:false:false:1:0:0'], | ||
}, | ||
nodes=[FLAGS.node_type], | ||
edges=[[FLAGS.node_type, FLAGS.edge_type, FLAGS.node_type]], | ||
) | ||
|
||
features = ['feat_%d' % i for i in range(FLAGS.features_num)] | ||
g.node_attributes(FLAGS.node_type, features, 0, FLAGS.features_num, 0) | ||
g.edge_attributes(FLAGS.edge_type, [], 0, 0, 0) | ||
g.node_view(FLAGS.node_type, gl.Mask.TRAIN, 0, 100, (0, 75)) | ||
g.node_view(FLAGS.node_type, gl.Mask.VAL, 0, 100, (75, 85)) | ||
g.node_view(FLAGS.node_type, gl.Mask.TEST, 0, 100, (85, 100)) | ||
return g | ||
|
||
def main(unused_argv): | ||
g = load_graph() | ||
g.init() | ||
|
||
# Define Model | ||
dimensions = [FLAGS.features_num] + [FLAGS.hidden_dim] * (FLAGS.hops_num - 1) + [FLAGS.class_num] | ||
model = EgoGraphSAGE(dimensions, act_func=tf.nn.relu, dropout=FLAGS.in_drop_rate) | ||
|
||
# prepare train dataset | ||
train_data = EgoSAGESupervisedDataLoader( | ||
g, gl.Mask.TRAIN, | ||
node_type=FLAGS.node_type, edge_type=FLAGS.edge_type, | ||
nbrs_num=nbrs_num, hops_num=FLAGS.hops_num, | ||
) | ||
train_embedding = model.forward(train_data.src_ego) | ||
train_labels = train_data.src_ego.src.labels | ||
loss = tf.reduce_mean( | ||
tf.nn.sparse_softmax_cross_entropy_with_logits( | ||
labels=train_labels, logits=train_embedding, | ||
) | ||
) | ||
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) | ||
|
||
# prepare test dataset | ||
test_data = EgoSAGESupervisedDataLoader( | ||
g, gl.Mask.TEST, | ||
node_type=FLAGS.node_type, edge_type=FLAGS.edge_type, | ||
nbrs_num=nbrs_num, hops_num=FLAGS.hops_num, | ||
) | ||
test_embedding = model.forward(test_data.src_ego) | ||
test_labels = test_data.src_ego.src.labels | ||
test_indices = tf.math.argmax(test_embedding, 1, output_type=tf.int32) | ||
test_acc = tf.div( | ||
tf.reduce_sum(tf.cast(tf.math.equal(test_indices, test_labels), tf.float32)), | ||
tf.cast(tf.shape(test_labels)[0], tf.float32), | ||
) | ||
|
||
# train and test | ||
trainer = LocalTrainer() | ||
trainer.train(train_data.iterator, loss, optimizer, epochs=FLAGS.epochs) | ||
trainer.test(test_data.iterator, test_acc) | ||
|
||
# finish | ||
g.close() | ||
|
||
if __name__ == "__main__": | ||
tf.app.run() |