#######################################################################################
-
Logistic Regression: https://github.com/amitmse/in_Python_/tree/master/Logistic%20Regression#readme
- Statistical Derivation of Logistic Regression - Logistic Regression Algorithm Coded in Python - Brief of Gradient Descent - Computation of Metrics
-
Decision Tree: https://github.com/amitmse/in_Python_/tree/master/Decision%20Tree#readme
- Explain Decision Tree Algorithms - Exmaple: Test Run
-
Random Forest: https://github.com/amitmse/in_Python_/tree/master/Random_Forest#readme
- Explain Random Forest Algorithms - Exmaple: Test Run
-
- Explain Naive Bayes Algorithms
-
Boosting (ADA & GBM): https://github.com/amitmse/in_Python_/tree/master/Boosting#readme
- Explain Boosting Algorithms - Exmaple: Test Run
-
Neural Network: https://github.com/amitmse/in_Python_/tree/master/Neural%20Network#readme
- Explain Neural Network Algorithms - Computation of Neural Network in excel
-
Cluster Analysis: https://github.com/amitmse/in_Python_/tree/master/Cluster%20Analysis#readme
- Explain Cluster Analysis Algorithms - K means - Hierarchical Clustering
-
Data Preparation: https://github.com/amitmse/in_Python_/tree/master/Data%20Prep#readme
- Basic SAS functions in python - Exploratory Data Analysis - Computation of Information Value
-
Basic statistics: https://github.com/amitmse/in_Python_/blob/master/Others/README.md
- Probability Distribution - Assumptions of Ordinary Least Squares - Computation of Model Metrics - Explain Gradient Descent
#######################################################################################