Generalized framework columnar-based analysis with coffea based on the developments from BTVNanoCommissioning and some development from PocketCoffea
❗ Install under bash
environment
# only first time, including submodules
git clone --recursive [email protected]:cms-btv-pog/BTVNanoCommissioning.git
```bash
# only first time
git clone --recursive [email protected]:cms-rwth/CoffeaRunner.git
For installing Miniconda, see also https://hackmd.io/GkiNxag0TUmHnnCiqdND1Q#Local-or-remote
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
# Run and follow instructions on screen
bash Miniconda3-latest-Linux-x86_64.sh
NOTE: always make sure that conda, python, and pip point to local Miniconda installation (which conda
etc.).
You could simply create the environment through the existing env.yml
under your conda environment
conda env create -f env.yml
Not necessary to run framework, but helpful when identifying corrupted files and tracking the progress during said task:
conda install -c conda-forge p-tqdm
Once the environment is set up, compile the python package:
pip install -e .
The development of the code is driven by user-friendliness, reproducibility and efficiency.
setup enviroment first
# activate enviroement
conda activate CoffeaRunner
# setup proxy
voms-proxy-init --voms cms --vomses ~/.grid-security/vomses
Use the ./filefetcher/fetch.py
script:
python filefetcher/fetch.py --input filefetcher/input_DAS_list.txt --output output_name.json
where the input_DAS_list.txt
is a simple file with a list of dataset names extract from DAS (you need to create it yourself for the samples you want to run over), and output json file in creted in ./metadata
directory.
❗ In case existing correction file doesn't work for you due to the incompatibility of cloudpickle
in different python versions. Please recompile the file to get new pickle file.
Compile correction pickle files for a specific JEC campaign by changing the dict of jet_factory, and define the MC campaign and the output file name by passing it as arguments to the python script:
python -m utils.compile_jec UL17_106X data/JME/UL17_106X/jec_compiled.pkl.gz
Get .coffea
file in output directories and config.pkl
for the configuration use in this events.
- Example workflow (
test_wf.py
): simple lepton selections, run with local iterative processor. No correction case.
python runner_wconfig.py --cfg config/example.py (-o)
optional arguments:
-o, --overwrite_file Overwrite the output in the configuration
--validate Do not process, just check all files are accessible
- More complex usage with
config/HWW2l2nu.py
and the application to workflow from HplusCharm developement. See details in Advance Usage
python runner_wconfig.py --cfg config/HWW2l2nu.py
The config file in .py
format is passed as the argument --cfg
of the runner_wconfig.py
script. The file has the following structure:
Parameter | Nested component | Type | Description | Default |
---|---|---|---|---|
dataset(required) | dict | Dataset configurations | ||
jsons (required) |
string | Path of .json file to create with NanoAOD files (can load multiple files) |
||
campaign(required) | string | Campaign name | ||
year(required) | string | Year flag | ||
filter | dict | Create the list of samples , samples_exclude with the dataset name(key name stored in json file) |
None |
|
workflow(required) | python modules | Analysis workflows | ||
output(requred) | string | Output directory name, create version tag | ||
run_options | dict | Collections of run options | ||
executor | string | Executor for coffea jobs, see details in executor | iterative |
|
limit | int | Maximum number of files per sample to process | 1 |
|
max | int | Maximum number of chunks to process | None |
|
chunk | int | Chunk size, numbers of events to be processed each time. Maximum number is the default sample size | 50000 |
|
workers | int | Number of parallel threads (with futures and clusters without fixed workers) |
2 |
|
mem_per_worker | int | Set memory for condor/slurm jobs |
2 |
|
scaleout | int | Number of jobs to submit, use for cluster | 20 |
|
walltime | time | Wall time for condor/slurm jobs |
03:00:00 |
|
retries | int | Numbers of retries to submit failure jobs. Usually deal with xrootd temporary failures | 20 |
|
voms | Path | Path to your x509 proxy |
None |
|
skipbadfiles | bool | Skip bad files where not exist or broken(BE CAREFUL WITH DATA) | False |
|
splitjobs | bool | Split executor and accumulator to separate jobs to avoid local memory consumption become too large |
True |
|
compression | int | Compression level of output with lz4 |
3 |
|
categories | dict | Dictionary of categories with cuts to apply* | None |
|
preselections | dict | List of preselection cuts, use for all the categories | None |
|
weights | dict | Nested dict for correction files. Details and example in weights |
None |
|
common | dict | Specify weights apply for all the events(inclusive ) or category specific(by category ) |
||
bysample | dict | Weights only apply for particular sample, can be applied for all the events(inclusive ) or category specific(by category ) |
||
systematic | dict | dict for systematic uncertainty |
None |
|
isJERC | bool | Run JER, JEC, MET scale uncertainty | ||
weights | bool | Weight files with up/down variations | ||
userconfig | dict | Dictionary of user specific configuration, depends on workflow |
*Cuts in categories
or preselections
don't follow, can write cuts as seperate macro
🚧 histogram and plot setup are not included in current version
🚧 implementation on export_array still under construction(would use ak.to_parquet
)
Use filter
to exclude/include specific sample, if there's no filter
then would run through all the samples in json file
Use filter(option)
to specify samples want to processed in the json files
"dataset" : {
"jsons": ["src/Hpluscharm/input_json/higgs_UL17.json"],
"campaign" :"UL17",
"year" : "2017",
"filter": {
"samples":["GluGluHToWWTo2L2Nu_M-125_TuneCP5_13TeV-powheg-jhugen727-pythia8"],
"samples_exclude" : []
}
},
All the lumiMask
, correction files (SFs, pileup weight), and JEC, JER files are under BTVNanoCommissioning/src/data/
following the substructure ${type}/${campaign}/${files}
(except lumiMasks
and Prescales
)
Type | File type | Comments |
---|---|---|
lumiMasks |
.json |
Masked good lumi-section used for physics analysis |
Prescales |
.txt |
HLT paths for prescaled triggers |
PU |
.pkl.gz or .histo.root |
Pileup reweight files, matched MC to data |
LSF |
.histo.root |
Lepton ID/Iso/Reco/Trigger SFs |
BTV |
.csv or .root |
b-tagger, c-tagger SFs |
JME |
.txt |
JER, JEC files |
Example in weight_splitcat.py
-
In case you have correction depends on category, i.e. different ID/objects used in the different cateogries, use
"bycategory":{$category_name:$weight_dict}
-
In case you have correction depends on sample ,i.e. k-factor, use
"bysample":{$sample_name:$weight_nested_dict}
example with customize weight files
"weights":{
"common":{
"inclusive":{
"lumiMasks":"Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt",
"PU": "puweight_UL17.histo.root",
"JME": "mc_compile_jec.pkl.gz",
"BTV": {
"DeepJetC": "DeepJet_ctagSF_Summer20UL17_interp.root",
},
"LSF": {
"ele_Rereco_above20 EGamma_SF2D": "egammaEffi_ptAbove20.txt_EGM2D_UL2017.histo.root",
},
},
"bycategory":
{
"cats":
{
"PU": "puweight_UL17.histo.root",
}
}
},
"bysample":{
"gchcWW2L2Nu_4f":{
"inclusive":{
"JME": "mc_compile_jec.pkl.gz",
},
"bycategory":
{
"cats2":
{
"BTV": {
"DeepJetC": "DeepJet_ctagSF_Summer20UL17_interp.root",
},
}
}
}
},
}
- Use central maintained jsonpog-integration
The official correction files collected in jsonpog-integration is updated by POG except
lumiMask
andJME
still updated by maintainer. No longer to request input files in thecorrection_config
.
See the example with `2017_UL`.
"2017_UL": {
# Same with custom config
"lumiMask": "Cert_294927-306462_13TeV_UL2017_Collisions17_MuonJSON.txt",
"JME": "jec_compiled.pkl.gz",
# no config need to be specify for PU weights
"PU": None,
# Btag SFs - specify $TAGGER : $TYPE-> find [$TAGGER_$TYPE] in json file
"BTV": {"deepCSV": "shape", "deepJet": "shape"},
"LSF": {
# Electron SF - Following the scheme: "${SF_name} ${year}": "${WP}"
# https://github.com/cms-egamma/cms-egamma-docs/blob/master/docs/EgammaSFJSON.md
"ele_ID 2017": "wp90iso",
"ele_Reco 2017": "RecoAbove20",
# Muon SF - Following the scheme: "${SF_name} ${year}": "${WP}"
# WPs : ['NUM_GlobalMuons_DEN_genTracks', 'NUM_HighPtID_DEN_TrackerMuons', 'NUM_HighPtID_DEN_genTracks', 'NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight', 'NUM_LooseID_DEN_TrackerMuons', 'NUM_LooseID_DEN_genTracks', 'NUM_LooseRelIso_DEN_LooseID', 'NUM_LooseRelIso_DEN_MediumID', 'NUM_LooseRelIso_DEN_MediumPromptID', 'NUM_LooseRelIso_DEN_TightIDandIPCut', 'NUM_LooseRelTkIso_DEN_HighPtIDandIPCut', 'NUM_LooseRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_MediumID_DEN_TrackerMuons', 'NUM_MediumID_DEN_genTracks', 'NUM_MediumPromptID_DEN_TrackerMuons', 'NUM_MediumPromptID_DEN_genTracks', 'NUM_Mu50_or_OldMu100_or_TkMu100_DEN_CutBasedIdGlobalHighPt_and_TkIsoLoose', 'NUM_SoftID_DEN_TrackerMuons', 'NUM_SoftID_DEN_genTracks', 'NUM_TightID_DEN_TrackerMuons', 'NUM_TightID_DEN_genTracks', 'NUM_TightRelIso_DEN_MediumID', 'NUM_TightRelIso_DEN_MediumPromptID', 'NUM_TightRelIso_DEN_TightIDandIPCut', 'NUM_TightRelTkIso_DEN_HighPtIDandIPCut', 'NUM_TightRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_TrackerMuons_DEN_genTracks', 'NUM_TrkHighPtID_DEN_TrackerMuons', 'NUM_TrkHighPtID_DEN_genTracks']
"mu_Reco 2017_UL": "NUM_TrackerMuons_DEN_genTracks",
"mu_HLT 2017_UL": "NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight",
"mu_ID 2017_UL": "NUM_TightID_DEN_TrackerMuons",
"mu_Iso 2017_UL": "NUM_TightRelIso_DEN_TightIDandIPCut",
},
},
Specify whether run systematics or not
"systematics":
{
"JERC":False,
"weights":False,
}
Write your own configurations used in your analysis
"userconfig":{
"export_array" : False,
"BDT":{
"ll":"src/Hpluscharm/MVA/xgb_output/SR_ll_scangamma_2017_gamma2.json",
"emu":"src/Hpluscharm/MVA/xgb_output/SR_emu_scangamma_2017_gamma2.json",
}
}
Scale out can be notoriously tricky between different sites. Coffea's integration of slurm
and dask
makes this quite a bit easier and for some sites the ``native'' implementation is sufficient, e.g Condor@DESY.
However, some sites have certain restrictions for various reasons, in particular Condor @CERN and @FNAL.
Follow setup instructions at https://github.com/CoffeaTeam/lpcjobqueue.
Only one port is available per node, so its possible one has to try different nodes until hitting
one with 8786
being open. Other than that, no additional configurations should be necessary.
Coffea-casa is a JupyterHub based analysis-facility hosted at Nebraska. For more information and setup instuctions see https://coffea-casa.readthedocs.io/en/latest/cc_user.html
After setting up and checking out this repository (either via the online terminal or git widget utility).
Authentication is handled automatically via login auth token instead of a proxy. File paths need to replace xrootd redirector with "xcache", runner.py
does this automatically.
Use dask executor with dask/condor
, but would not as stable as parsl/condor
.
parsl/condor/naf_lite
is utilized for lite job scheme for desy condor jobs. (1core, 1.5GB mem, < 3h run time)
For Maxwell you need specific account if you have heavy jobs. You need to check Maxwell-DESY
For profiling the CPU time of each function please select the iterative processor and then run python as:
python -m cProfile -o profiling output.prof runner.py --cfg profiling/mem.py
Running on a few files should be enough to get stable results.
After getting the profiler output we analyze it with the Snakeviz library
snakeviz output.prof -s
and open on a browser the link shown by the program.
For memory profiling we use the memray library:
python -m memray run -o profiling/memtest.bin runner_wconfig.py --cfg config/example.py
the output can be visualized in many ways. One of the most useful is the flamegraph
:
memray flamegraph profiling/memtest.bin
then open the output .html file in you browser to explore the peak memory allocation.
Alternatively the process can be monitored live during execution by doing:
memray run --live runner.py --cfg config/example.py
All the lumiMask
, correction files (SFs, pileup weight), and JEC, JER files are under BTVNanoCommissioning/src/data/
following the substructure ${type}/${campaign}/${files}
(except lumiMasks
and Prescales
)
Produce data/MC comparison, shape comparison plots from .coffea
files, load configuration (yaml
) files, brief intro of yaml.
Details of yaml file format would summarized in table below. Information used in data/MC script would marked with () and comparsion script with (). The required info are marked as bold style.
Take `Rereco17_94X` as an example.
python plotting/plotdataMC.py --cfg testfile/btv_datamc.yml (--debug)
python plotting/comparison.py --cfg testfile/btv_compare.yml (--debug)
The official correction files collected in jsonpog-integration is updated by POG except lumiMask
and JME
still updated by maintainer. No longer to request input files in the correction_config
.
See the example with `2017_UL`.
"2017_UL": {
# Same with custom config
"lumiMask": "Cert_294927-306462_13TeV_UL2017_Collisions17_MuonJSON.txt",
"JME": "jec_compiled.pkl.gz",
# no config need to be specify for PU weights
"PU": None,
# Btag SFs - specify $TAGGER : $TYPE-> find [$TAGGER_$TYPE] in json file
"BTV": {"deepCSV": "shape", "deepJet": "shape"},
"LSF": {
# Electron SF - Following the scheme: "${SF_name} ${year}": "${WP}"
# https://github.com/cms-egamma/cms-egamma-docs/blob/master/docs/EgammaSFJSON.md
"ele_ID 2017": "wp90iso",
"ele_Reco 2017": "RecoAbove20",
# Muon SF - Following the scheme: "${SF_name} ${year}": "${WP}"
# WPs : ['NUM_GlobalMuons_DEN_genTracks', 'NUM_HighPtID_DEN_TrackerMuons', 'NUM_HighPtID_DEN_genTracks', 'NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight', 'NUM_LooseID_DEN_TrackerMuons', 'NUM_LooseID_DEN_genTracks', 'NUM_LooseRelIso_DEN_LooseID', 'NUM_LooseRelIso_DEN_MediumID', 'NUM_LooseRelIso_DEN_MediumPromptID', 'NUM_LooseRelIso_DEN_TightIDandIPCut', 'NUM_LooseRelTkIso_DEN_HighPtIDandIPCut', 'NUM_LooseRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_MediumID_DEN_TrackerMuons', 'NUM_MediumID_DEN_genTracks', 'NUM_MediumPromptID_DEN_TrackerMuons', 'NUM_MediumPromptID_DEN_genTracks', 'NUM_Mu50_or_OldMu100_or_TkMu100_DEN_CutBasedIdGlobalHighPt_and_TkIsoLoose', 'NUM_SoftID_DEN_TrackerMuons', 'NUM_SoftID_DEN_genTracks', 'NUM_TightID_DEN_TrackerMuons', 'NUM_TightID_DEN_genTracks', 'NUM_TightRelIso_DEN_MediumID', 'NUM_TightRelIso_DEN_MediumPromptID', 'NUM_TightRelIso_DEN_TightIDandIPCut', 'NUM_TightRelTkIso_DEN_HighPtIDandIPCut', 'NUM_TightRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_TrackerMuons_DEN_genTracks', 'NUM_TrkHighPtID_DEN_TrackerMuons', 'NUM_TrkHighPtID_DEN_genTracks']
"mu_Reco 2017_UL": "NUM_TrackerMuons_DEN_genTracks",
"mu_HLT 2017_UL": "NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight",
"mu_ID 2017_UL": "NUM_TightID_DEN_TrackerMuons",
"mu_Iso 2017_UL": "NUM_TightRelIso_DEN_TightIDandIPCut",
},
},
Parameter name | Allowed values | Description |
---|---|---|
input(Required) | list or str (wildcard options * accepted) |
input .coffea files |
output (Required) | str |
output directory of plots with date |
mergemap(Required) | dict |
collect sample names, (color, label) setting for file set. details in map diction |
reference & compare (Required) | dict |
specify the class for comparison plots |
variable(Required) | dict |
variables to plot, see variables section |
com | str |
√s , default set to be 13TeV |
inbox_text | str |
text put in AnchoredText |
log | str |
log scale on y-axis |
disable_ratio | bool |
disable ratio panel for data/MC comparison plot |
rescale_yields | dict |
Rescale yields for particular MC collections (no overlay) |
scale | dict |
Scale up particular MC collections overlay on the stacked histogram |
norm | bool |
noramlized yield to reference sample, only for comparison plot |
To avoid crowded legend in the plot, we would merge a set of files with similar properties. For example, pT binned DY+jets sample would merge into DY+jets, or diboson (VV) is a collection of WW, WZ and ZZ. Or merge files with similar properties together.
Create a dict
for each collection under mergemap
, put the merging sets.
In plodataMC.py
config files (i.e. testfile/btv_datamc.yaml
), you can specify the color and label name used in the plot.
In comparison.py
config file (testfile/btv_compare.yaml
), color and label name and label names are created with dict
under reference
and compare
. reference
only accept one entry.
Code snipped
## plodataMC.py
mergemap:
DY: # key name of file collections
list: # collections of files(key of dataset name in coffea file)
- "DYJetsToLL_M-50_TuneCP5_13p6TeV-madgraphMLM-pythia8"
- "DYJetsToLL_M-10to50_TuneCP5_13p6TeV-madgraphMLM-pythia8"
label : "DYjet" #Optional, if not exist would take key name of the list. i.e. DY in this case
color : '#eb4034' #Optional, color use for this category.
VV:
list:
- "WW_TuneCP5_13p6TeV-pythia8"
- "WZ_TuneCP5_13p6TeV-pythia8"
- "ZZ_TuneCP5_13p6TeV-pythia8"
## comparison.py
mergemap :
runC:
list :
- "Muon_Run2022C-PromptReco-v1"
- "SingleMuon_Run2022C-PromptReco-v1"
Muon_Run2022C-PromptReco-v1:
list :
- "Muon_Run2022C-PromptReco-v1"
reference:
Muon_Run2022C-PromptReco-v1:
label: RunC #Optional, label name
color : 'b' #Optional
compare:
# if not specify anything, leave empty value for key
Muon_Run2022D-PromptReco-v1:
Muon_Run2022D-PromptReco-v2:
Common definitions for both usage, use default settings if leave empty value for the keys.
:bangbang: blind
option is only used in the data/MC comparison plots to blind particular observable like BDT score.
Option | Default |
---|---|
xlabel |
take name of key |
axis |
sum over all the axes |
rebin |
no rebinning |
blind |
no blind region |
Code snipped
## specify variable to plot
btagDeepFlavB_0:
# Optional, set x label of variable
xlabel: "deepJet Prob(b)"
# Optional, specify hist axis with dict
axis :
syst: noSF # Optional, access bin
flav : sum # Optional, access bin, can convert sum to sum operation later
# Optional, rebin variable
rebin :
# Optional, you can specify the rebin axis with rebin value
# discr: 2
# or just put a number, would rebin distribution the last axis (usually the variable)
2
# One can try non-uniform rebin now! you can specify the rebin axis with rebin value
#discr : [-0.2,0.04,0.2,0.4,0.48,0.6,0.64,0.68,0.72,0.76,0.8,0.84,0.88,0.92,0.96,1.]
# Optional(only for data/MC), blind variables
blind : -10, #blind variable[-10:], if put -10,-5 would blind variable[-10:-5]
## specify variable, if not specify anything, leave empty value for key
btagDeepFlavC_0:
## Accept wildcard option
# only axis and rebin can be specify here
btagDeepFlav* :
axis :
syst: noSF
flav : sum
rebin :
discr: 2
# Use "all" will produce plots for all the variables
# only rebin of last axis (variable-axis) can be specify here
all:
rebin: 2
- On your local machine, edit
.ssh/config
:
Host lxplus*
HostName lxplus7.cern.ch
User <your-user-name>
ForwardX11 yes
ForwardAgent yes
ForwardX11Trusted yes
Host *_f
LocalForward localhost:8800 localhost:8800
ExitOnForwardFailure yes
- Connect to remote with
ssh lxplus_f
- Start a jupyter notebook:
jupyter notebook --ip=127.0.0.1 --port 8800 --no-browser
- URL for notebook will be printed, copy and open in local browser