Skip to content

Commit

Permalink
Add numpy npz output.
Browse files Browse the repository at this point in the history
  • Loading branch information
Moritz Kampelmuehler committed Aug 30, 2022
1 parent 953913f commit e8376ab
Showing 1 changed file with 116 additions and 52 deletions.
168 changes: 116 additions & 52 deletions data_generation/batch_generate.py
Original file line number Diff line number Diff line change
@@ -1,63 +1,127 @@
import subprocess
import os
import json
import argparse
from pathlib import Path

parser = argparse.ArgumentParser(description='Computes 3PSDF field from a given mesh and generates raw sampling data for network training.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("geo_dir", type=str, help='Folder containing input meshes that are ready to be batch processed.')
parser.add_argument("sdf_dir", type=str, help='Folder for the generated `.sdf` files (raw data samples for 3PSDF training).')
parser.add_argument("obj_dir", type=str, help='Folder for the reconstructed `.obj` files (reconstructed meshed from the output 3PSDF field).')
parser.add_argument("ply_dir", type=str, help='Folder for the sampling points encoded in `.ply` format.')
parser.add_argument("octree_depth", type=int, default=9, help='The depth of the octree that is used to generate sampling points. The larger the depth, the more accurate is the 3PSDF reconstruction - 6 (64^3), 7 (128^3), 8 (256^3) and 9 (512^3).')
parser.add_argument('--writeSDF', action='store_true', help='Flag of whether to generate `.sdf` file that encodes the raw data samples for 3PSDF learning.')
parser.add_argument('--writeOBJ', action='store_true', help='Flag of whether to reconstruct the generated 3PSDF field to a mesh for debug purposes.')
parser.add_argument('--writePLY', action='store_true', help='Flag of whether to generate `.ply` file that encodes the sampling points used in the `.sdf` training data.')
parser.add_argument("--status_path", type=str, default="batch_generate_status.json", help='Filename for the status file to track the exit status of the data generation process. (1 is the successful exit status)')
args = parser.parse_args()

if os.path.isfile(args.status_path):
with open(args.status_path, "r") as f:
status_dict = json.load(f)
else:
status_dict = {}

obj_paths = list(Path(args.geo_dir).rglob('*.obj'))
num_objs = len(obj_paths)
for i, obj_path in enumerate(obj_paths):
fname = obj_path.stem
print(f"{i + 1}/{num_objs} {fname} ", flush=True, end="")
if fname in status_dict:
if status_dict[fname] == 1:
print("exists, skipping")
continue

subfolder = os.path.relpath(obj_path.parent, args.geo_dir)
sdf_dir = os.path.join(args.sdf_dir, subfolder)
if not os.path.isdir(sdf_dir) and args.writeSDF:
os.makedirs(sdf_dir)
obj_dir = os.path.join(args.obj_dir, subfolder)
if not os.path.isdir(obj_dir) and args.writeOBJ:
os.makedirs(obj_dir)
ply_dir = os.path.join(args.ply_dir, subfolder)
if not os.path.isdir(ply_dir) and args.writePLY:
os.makedirs(ply_dir)

status = subprocess.call(
[

def main():
parser = argparse.ArgumentParser(
description=
'Computes 3PSDF field from a given mesh and generates raw sampling data for network training.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"geo_dir",
type=Path,
help='Folder containing input meshes that are ready to be batch processed.')
parser.add_argument(
"sdf_dir",
type=Path,
help=
'Folder for the generated `.sdf` files (raw data samples for 3PSDF training).')
parser.add_argument(
"obj_dir",
type=Path,
help=
'Folder for the reconstructed `.obj` files (reconstructed meshed from the output 3PSDF field).'
)
parser.add_argument("ply_dir",
type=Path,
help='Folder for the sampling points encoded in `.ply` format.')
parser.add_argument(
"octree_depth",
type=int,
default=9,
help=
'The depth of the octree that is used to generate sampling points. The larger the depth, the more accurate is the 3PSDF reconstruction - 6 (64^3), 7 (128^3), 8 (256^3) and 9 (512^3).'
)
parser.add_argument(
'--writeSDF',
action='store_true',
help=
'Flag of whether to generate `.sdf` file that encodes the raw data samples for 3PSDF learning.'
)
parser.add_argument(
'--writeOBJ',
action='store_true',
help=
'Flag of whether to reconstruct the generated 3PSDF field to a mesh for debug purposes.'
)
parser.add_argument(
'--writePLY',
action='store_true',
help=
'Flag of whether to generate `.ply` file that encodes the sampling points used in the `.sdf` training data.'
)
parser.add_argument(
"--status_path",
type=Path,
default="batch_generate_status.json",
help=
'Filename for the status file to track the exit status of the data generation process. (1 is the successful exit status)'
)
parser.add_argument(
"--npz_output",
action='store_true',
help='Additionally output the points, 3 class labels and sdf in an npz file.')
args = parser.parse_args()

if args.status_path.is_file():
with open(args.status_path, "r") as f:
status_dict = json.load(f)
else:
status_dict = {}

obj_paths = list(args.geo_dir.rglob('*.obj'))
num_objs = len(obj_paths)
for i, obj_path in enumerate(obj_paths):
fname = obj_path.stem
print(f"{i + 1}/{num_objs} {fname} ", flush=True, end="")
if fname in status_dict:
if status_dict[fname] == 1:
print("exists, skipping")
continue

subfolder = obj_path.parent.relative_to(args.geo_dir)
sdf_dir = args.sdf_dir / subfolder
if args.writeSDF is True:
sdf_dir.mkdir(exist_ok=True, parents=True)
obj_dir = args.obj_dir / subfolder
if args.writeOBJ is True:
obj_dir.mkdir(exist_ok=True, parents=True)
ply_dir = args.ply_dir / subfolder
if args.writePLY is True:
ply_dir.mkdir(exist_ok=True, parents=True)

status = subprocess.call([
"./build/gen_3psdf_samples",
str(obj_path),
os.path.join(sdf_dir, f"{fname}.sdf"),
os.path.join(obj_dir, f"{fname}.obj"),
os.path.join(ply_dir, f"{fname}.ply"),
obj_path,
sdf_dir / f"{fname}.sdf",
obj_dir / f"{fname}.obj",
ply_dir / f"{fname}.ply",
str(args.octree_depth),
str(1) if args.writeSDF is True else str(0),
str(1) if args.writeOBJ is True else str(0),
str(1) if args.writePLY is True else str(0),
],
stdout=subprocess.DEVNULL
)
print("OK" if status == 1 else "FAILED")
status_dict[fname] = status
with open(args.status_path, "w") as f:
json.dump(status_dict, f, indent=4)
stdout=subprocess.DEVNULL)
print("OK" if status == 1 else "FAILED")
status_dict[fname] = status
with open(args.status_path, "w") as f:
json.dump(status_dict, f, indent=4)
if args.npz_output is True:
with open(sdf_dir / f"{fname}.sdf", "r") as f:
convert_sdf_file(f, sdf_dir / f"{fname}.npz")


def convert_sdf_file(f, save_path):
import numpy as np
next(f) # skip first line
parsed = [line.split() for line in f]
points = np.array([float(p) for ps in parsed for p in ps[:3]], dtype=np.float16)
labels = np.array([int(ps[3]) for ps in parsed], dtype=np.int16)
sdf = np.array([float(ps[4]) for ps in parsed], dtype=np.float16)
np.savez(save_path, points=points, labels=labels, sdf=sdf)


if __name__ == '__main__':
main()

0 comments on commit e8376ab

Please sign in to comment.