Skip to content
/ GeoCalib Public

GeoCalib: Learning Single-image Calibration with Geometric Optimization (ECCV 2024)

License

Notifications You must be signed in to change notification settings

cvg/GeoCalib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GeoCalib 📸
Single-image Calibration with Geometric Optimization

Alexander Veicht · Paul-Edouard Sarlin · Philipp Lindenberger · Marc Pollefeys

ECCV 2024

Paper | Demo 🤗 | Colab | Video

example
GeoCalib accurately estimates the camera intrinsics and gravity direction from a single image
by combining geometric optimization with deep learning.

GeoCalib is an algorithm for single-image calibration: it estimates the camera intrinsics and gravity direction from a single image only. By combining geometric optimization with deep learning, GeoCalib provides a more flexible and accurate calibration compared to previous approaches. This repository hosts the inference, evaluation, and training code for GeoCalib and instructions to download our training set OpenPano.

Setup and demo

Open In Colab Hugging Face

We provide a small inference package geocalib that requires only minimal dependencies and Python >= 3.9. First clone the repository and install the dependencies:

git clone https://github.com/cvg/GeoCalib.git && cd GeoCalib
python -m pip install -e .
# OR
python -m pip install -e "git+https://github.com/cvg/GeoCalib#egg=geocalib"

Here is a minimal usage example:

from geocalib import GeoCalib

device = "cuda" if torch.cuda.is_available() else "cpu"
model = GeoCalib().to(device)

# load image as tensor in range [0, 1] with shape [C, H, W]
image = model.load_image("path/to/image.jpg").to(device)
result = model.calibrate(image)

print("camera:", result["camera"])
print("gravity:", result["gravity"])

Check out our demo notebook for a full working example.

[Interactive demo for your webcam - click to expand] Run the following command:
python -m geocalib.interactive_demo --camera_id 0

The demo will open a window showing the camera feed and the calibration results. If --camera_id is not provided, the demo will ask for the IP address of a droidcam camera.

Controls:

Toggle the different features using the following keys:

  • h: Show the estimated horizon line
  • u: Show the estimated up-vectors
  • l: Show the estimated latitude heatmap
  • c: Show the confidence heatmap for the up-vectors and latitudes
  • d: Show undistorted image, will overwrite the other features
  • g: Shows a virtual grid of points
  • b: Shows a virtual box object

Change the camera model using the following keys:

  • 1: Pinhole -> Simple and fast
  • 2: Simple Radial -> For small distortions
  • 3: Simple Divisional -> For large distortions

Press q to quit the demo.

[Load GeoCalib with torch hub - click to expand]
model = torch.hub.load("cvg/GeoCalib", "GeoCalib", trust_repo=True)

Camera models

GeoCalib currently supports the following camera models via the camera_model parameter:

  1. pinhole (default) models only the focal lengths fx and fy but no lens distortion.
  2. simple_radial models weak distortions with a single polynomial distortion parameter k1.
  3. simple_divisional models strong fisheye distortions with a single distortion parameter k1, as proposed by Fitzgibbon in Simultaneous linear estimation of multiple view geometry and lens distortion (CVPR 2001).

The default model is optimized for pinhole images. To handle lens distortion, use the following:

model = GeoCalib(weights="distorted")  # default is "pinhole"
result = model.calibrate(image, camera_model="simple_radial")  # or pinhole, simple_divisional

The principal point is assumed to be at the center of the image and is not optimized. Additional models can be implemented by extending the Camera object.

Partial calibration

When either the intrinsics or the gravity are already known, they can be provided as follows:

# known intrinsics:
result = model.calibrate(image, priors={"focal": focal_length_tensor})

# known gravity:
result = model.calibrate(image, priors={"gravity": gravity_direction_tensor})

Multi-image calibration

To calibrate multiple images captured by the same camera, pass a list of images to GeoCalib:

# batch is a list of tensors, each with shape [C, H, W]
result = model.calibrate(batch, shared_intrinsics=True)

Evaluation

The full evaluation and training code is provided in the single-image calibration library siclib, which can be installed as:

python -m pip install -e siclib

Running the evaluation commands will write the results to outputs/results/.

LaMAR

Running the evaluation commands will download the dataset to data/lamar2k which will take around 400 MB of disk space.

[Evaluate GeoCalib]

To evaluate GeoCalib trained on the OpenPano dataset, run:

python -m siclib.eval.lamar2k --conf geocalib-pinhole --tag geocalib --overwrite
[Evaluate DeepCalib]

To evaluate DeepCalib trained on the OpenPano dataset, run:

python -m siclib.eval.lamar2k --conf deepcalib --tag deepcalib --overwrite
[Evaluate Perspective Fields]

To evaluate Perspective Fields, first setup the files following the instructions in the ParamNet-siclib repository. Then run:

python -m siclib.eval.lamar2k --conf perspective-cities data.preprocessing.resize_backend="PIL" --overwrite

To evaluate the model trained on our OpenPano dataset, run:

python -m siclib.eval.lamar2k --conf perspective-openpano --overwrite
[Evaluate UVP]

To evaluate UVP, install the VP-Estimation-with-Prior-Gravity under third_party/VP-Estimation-with-Prior-Gravity. Then run:

python -m siclib.eval.lamar2k --conf uvp --tag uvp --overwrite data.preprocessing.edge_divisible_by=null
[Evaluate your own model]

If you have trained your own model, you can evaluate it by running:

python -m siclib.eval.lamar2k --checkpoint <experiment name> --tag <eval name> --overwrite
[Results]

Here are the results for the Area Under the Curve (AUC) for the roll, pitch and field of view (FoV) errors at 1/5/10 degrees for the different methods:

Approach Roll Pitch FoV
DeepCalib 44.1 / 73.9 / 84.8 10.8 / 28.3 / 49.8 00.7 / 13.0 / 24.0
ParamNet 38.7 / 69.4 / 82.8 19.0 / 44.7 / 65.7 01.8 / 06.2 / 13.2
ParamNet (OpenPano) 51.7 / 77.0 / 86.0 27.0 / 52.7 / 70.2 02.8 / 06.8 / 14.3
UVP 72.7 / 81.8 / 85.7 42.3 / 59.9 / 69.4 15.6 / 30.6 / 43.5
GeoCalib 86.4 / 92.5 / 95.0 55.0 / 76.9 / 86.2 19.1 / 41.5 / 60.0

MegaDepth

Running the evaluation commands will download the dataset to data/megadepth2k or data/memegadepth2k-radial which will take around 2.1 GB and 1.47 GB of disk space respectively.

[Evaluate GeoCalib]

To evaluate GeoCalib trained on the OpenPano dataset, run:

python -m siclib.eval.megadepth2k --conf geocalib-pinhole --tag geocalib --overwrite

To run the eval on the radial distorted images, run:

python -m siclib.eval.megadepth2k_radial --conf geocalib-pinhole --tag geocalib --overwrite model.camera_model=simple_radial
[Evaluate DeepCalib]

To evaluate DeepCalib trained on the OpenPano dataset, run:

python -m siclib.eval.megadepth2k --conf deepcalib --tag deepcalib --overwrite
[Evaluate Perspective Fields]

To evaluate Perspective Fields, first setup the files following the instructions in the ParamNet-siclib repository. Then run:

python -m siclib.eval.megadepth2k --conf perspective-cities data.preprocessing.resize_backend="PIL" --overwrite

To evaluate the model trained on our OpenPano dataset, run:

python -m siclib.eval.megadepth2k --conf perspective-openpano --overwrite
[Evaluate UVP]

To evaluate UVP, install the VP-Estimation-with-Prior-Gravity under third_party/VP-Estimation-with-Prior-Gravity. Then run:

python -m siclib.eval.megadepth2k --conf uvp --tag uvp --overwrite data.preprocessing.edge_divisible_by=null
[Evaluate your own model]

If you have trained your own model, you can evaluate it by running:

python -m siclib.eval.megadepth2k --checkpoint <experiment name> --tag <eval name> --overwrite
[Results]

Here are the results for the Area Under the Curve (AUC) for the roll, pitch and field of view (FoV) errors at 1/5/10 degrees for the different methods:

Approach Roll Pitch FoV
DeepCalib 34.6 / 65.4 / 79.4 11.9 / 27.8 / 44.8 5.6 / 12.1 / 22.9
ParamNet 37.0 / 66.4 / 80.8 15.8 / 37.3 / 57.1 5.3 / 12.8 / 24.0
ParamNet (OpenPano) 43.4 / 70.7 / 82.2 15.4 / 34.5 / 53.3 3.2 / 10.1 / 21.3
UVP 69.2 / 81.6 / 86.9 21.6 / 36.2 / 47.4 8.2 / 18.7 / 29.8
GeoCalib 82.6 / 90.6 / 94.0 32.4 / 53.3 / 67.5 13.6 / 31.7 / 48.2

TartanAir

Running the evaluation commands will download the dataset to data/tartanair which will take around 1.85 GB of disk space.

[Evaluate GeoCalib]

To evaluate GeoCalib trained on the OpenPano dataset, run:

python -m siclib.eval.tartanair --conf geocalib-pinhole --tag geocalib --overwrite
[Evaluate DeepCalib]

To evaluate DeepCalib trained on the OpenPano dataset, run:

python -m siclib.eval.tartanair --conf deepcalib --tag deepcalib --overwrite
[Evaluate Perspective Fields]

To evaluate Perspective Fields, first setup the files following the instructions in the ParamNet-siclib repository. Then run:

python -m siclib.eval.tartanair --conf perspective-cities data.preprocessing.resize_backend="PIL" --overwrite

To evaluate the model trained on our OpenPano dataset, run:

python -m siclib.eval.tartanair --conf perspective-openpano --overwrite
[Evaluate UVP]

To evaluate UVP, install the VP-Estimation-with-Prior-Gravity under third_party/VP-Estimation-with-Prior-Gravity. Then run:

python -m siclib.eval.tartanair --conf uvp --tag uvp --overwrite data.preprocessing.edge_divisible_by=null
[Evaluate your own model]

If you have trained your own model, you can evaluate it by running:

python -m siclib.eval.tartanair --checkpoint <experiment name> --tag <eval name> --overwrite
[Results]

Here are the results for the Area Under the Curve (AUC) for the roll, pitch and field of view (FoV) errors at 1/5/10 degrees for the different methods:

Approach Roll Pitch FoV
DeepCalib 24.7 / 55.4 / 71.5 16.3 / 38.8 / 58.5 01.5 / 08.8 / 27.2
ParamNet 23.3 / 51.4 / 71.0 19.9 / 43.8 / 62.9 08.5 / 22.5 / 40.8
ParamNet (OpenPano) 34.5 / 59.2 / 73.9 19.4 / 42.0 / 60.3 06.0 / 16.8 / 31.6
UVP 52.1 / 64.8 / 71.9 36.2 / 48.8 / 58.6 15.8 / 25.8 / 35.7
GeoCalib 71.3 / 83.8 / 89.8 38.2 / 62.9 / 76.6 14.1 / 30.4 / 47.6

Stanford2D3D

Before downloading and running the evaluation, you will need to agree to the terms of use for the Stanford2D3D dataset. Running the evaluation commands will download the dataset to data/stanford2d3d which will take around 885 MB of disk space.

[Evaluate GeoCalib]

To evaluate GeoCalib trained on the OpenPano dataset, run:

python -m siclib.eval.stanford2d3d --conf geocalib-pinhole --tag geocalib --overwrite
[Evaluate DeepCalib]

To evaluate DeepCalib trained on the OpenPano dataset, run:

python -m siclib.eval.stanford2d3d --conf deepcalib --tag deepcalib --overwrite
[Evaluate Perspective Fields]

To evaluate Perspective Fields, first setup the files following the instructions in the ParamNet-siclib repository. Then run:

python -m siclib.eval.stanford2d3d --conf perspective-cities data.preprocessing.resize_backend="PIL" --overwrite

To evaluate the model trained on our OpenPano dataset, run:

python -m siclib.eval.stanford2d3d --conf perspective-openpano --overwrite
[Evaluate UVP]

To evaluate UVP, install the VP-Estimation-with-Prior-Gravity under third_party/VP-Estimation-with-Prior-Gravity. Then run:

python -m siclib.eval.stanford2d3d --conf uvp --tag uvp --overwrite data.preprocessing.edge_divisible_by=null
[Evaluate your own model]

If you have trained your own model, you can evaluate it by running:

python -m siclib.eval.stanford2d3d --checkpoint <experiment name> --tag <eval name> --overwrite
[Results]

Here are the results for the Area Under the Curve (AUC) for the roll, pitch and field of view (FoV) errors at 1/5/10 degrees for the different methods:

Approach Roll Pitch FoV
DeepCalib 33.8 / 63.9 / 79.2 21.6 / 46.9 / 65.7 08.1 / 20.6 / 37.6
ParamNet 20.6 / 48.5 / 68.1 20.9 / 44.2 / 61.5 07.4 / 18.0 / 33.2
ParamNet (OpenPano) 44.6 / 73.9 / 84.8 29.2 / 56.7 / 73.1 05.8 / 14.3 / 27.8
UVP 65.3 / 74.6 / 79.1 51.2 / 63.0 / 69.2 22.2 / 39.5 / 51.3
GeoCalib 83.1 / 91.8 / 94.8 52.3 / 74.8 / 84.6 17.4 / 40.0 / 59.4

Evaluation options

If you want to provide priors during the evaluation, you can add one or multiple of the following flags:

python -m siclib.eval.<benchmark> --conf <config> \
    --tag <tag> \
    data.use_prior_focal=true \
    data.use_prior_gravity=true \
    data.use_prior_k1=true
[Visual inspection]

To visually inspect the results of the evaluation, you can run the following command:

python -m siclib.eval.inspect <benchmark> <one or multiple tags>

For example, to inspect the results of the evaluation of the GeoCalib model on the LaMAR dataset, you can run:

python -m siclib.eval.inspect lamar2k geocalib

OpenPano Dataset

The OpenPano dataset is a new dataset for single-image calibration which contains about 2.8k panoramas from various sources, namely HDRMAPS, PolyHaven, and the Laval Photometric Indoor HDR dataset. While this dataset is smaller than previous ones, it is publicly available and it provides a better balance between indoor and outdoor scenes.

[Downloading and preparing the dataset]

In order to assemble the training set, first download the Laval dataset following the instructions on the corresponding project page and place the panoramas in data/indoorDatasetCalibrated. Then, tonemap the HDR images using the following command:

python -m siclib.datasets.utils.tonemapping --hdr_dir data/indoorDatasetCalibrated --out_dir data/laval-tonemap

We provide a script to download the PolyHaven and HDRMAPS panos. The script will create folders data/openpano/panoramas/{split} containing the panoramas specified by the {split}_panos.txt files. To run the script, execute the following commands:

python -m siclib.datasets.utils.download_openpano --name openpano --laval_dir data/laval-tonemap

Alternatively, you can download the PolyHaven and HDRMAPS panos from here.

After downloading the panoramas, you can create the training set by running the following command:

python -m siclib.datasets.create_dataset_from_pano --config-name openpano

The dataset creation can be sped up by using multiple workers and a GPU. To do so, add the following arguments to the command:

python -m siclib.datasets.create_dataset_from_pano --config-name openpano n_workers=10 device=cuda

This will create the training set in data/openpano/openpano with about 37k images for training, 2.1k for validation, and 2.1k for testing.

[Distorted OpenPano]

To create the OpenPano dataset with radial distortion, run the following command:

python -m siclib.datasets.create_dataset_from_pano --config-name openpano_radial

Training

As for the evaluation, the training code is provided in the single-image calibration library siclib, which can be installed by:

python -m pip install -e siclib

Once the OpenPano Dataset has been downloaded and prepared, we can train GeoCalib with it:

First download the pre-trained weights for the MSCAN-B backbone:

mkdir weights
wget "https://cloud.tsinghua.edu.cn/d/c15b25a6745946618462/files/?p=%2Fmscan_b.pth&dl=1" -O weights/mscan_b.pth

Then, start the training with the following command:

python -m siclib.train geocalib-pinhole-openpano --conf geocalib --distributed

Feel free to use any other experiment name. By default, the checkpoints will be written to outputs/training/. The default batch size is 24 which requires 2x 4090 GPUs with 24GB of VRAM each. Configurations are managed by Hydra and can be overwritten from the command line. For example, to train GeoCalib on a single GPU with a batch size of 5, run:

python -m siclib.train geocalib-pinhole-openpano \
    --conf geocalib \
    data.train_batch_size=5 # for 1x 2080 GPU

Be aware that this can impact the overall performance. You might need to adjust the learning rate and number of training steps accordingly.

If you want to log the training progress to tensorboard or wandb, you can set the train.writer option:

python -m siclib.train geocalib-pinhole-openpano \
    --conf geocalib \
    --distributed \
    train.writer=tensorboard

The model can then be evaluated using its experiment name:

python -m siclib.eval.<benchmark> --checkpoint geocalib-pinhole-openpano \
    --tag geocalib-retrained
[Training DeepCalib]

To train DeepCalib on the OpenPano dataset, run:

python -m siclib.train deepcalib-openpano --conf deepcalib --distributed

Make sure that you have generated the OpenPano Dataset with radial distortion or add the flag data=openpano to the command to train on the pinhole images.

[Training Perspective Fields]

Coming soon!

BibTeX citation

If you use any ideas from the paper or code from this repo, please consider citing:

@inproceedings{veicht2024geocalib,
  author    = {Alexander Veicht and
               Paul-Edouard Sarlin and
               Philipp Lindenberger and
               Marc Pollefeys},
  title     = {{GeoCalib: Single-image Calibration with Geometric Optimization}},
  booktitle = {ECCV},
  year      = {2024}
}

License

The code is provided under the Apache-2.0 License while the weights of the trained model are provided under the Creative Commons Attribution 4.0 International Public License. Thanks to the authors of the Laval Indoor HDR dataset for allowing this.