Skip to content

Commit

Permalink
Add autograd function for sparse matrix vector product.
Browse files Browse the repository at this point in the history
  • Loading branch information
luisenp committed Dec 5, 2022
1 parent 7d361a3 commit 6755c0d
Show file tree
Hide file tree
Showing 3 changed files with 102 additions and 3 deletions.
54 changes: 54 additions & 0 deletions tests/utils/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

import numpy as np
import pytest # noqa: F401
import scipy.sparse
import torch
import torch.nn as nn

Expand Down Expand Up @@ -93,3 +94,56 @@ def test_gather_from_rows_cols():
for i in range(batch_size):
for j in range(num_points):
assert torch.allclose(res[i, j], matrix[i, rows[i, j], cols[i, j]])


def _check_sparse_mv(batch_size, num_rows, num_cols, fill, device):
A_col_ind, A_row_ptr, A_val, _ = thutils.random_sparse_matrix(
batch_size,
num_rows,
num_cols,
fill,
min(num_cols, 2),
torch.Generator(device),
device,
)
b = torch.randn(batch_size, num_cols, device=device).double()

# Check backward pass
if batch_size < 16:
A_val.requires_grad = True
b.requires_grad = True
torch.autograd.gradcheck(
thutils.sparse_mv, (num_cols, A_val, A_row_ptr, A_col_ind, b)
)

# Check forward pass
out = thutils.sparse_mv(num_cols, A_val, A_row_ptr, A_col_ind, b)
for i in range(batch_size):
A_csr = scipy.sparse.csr_matrix(
(
A_val[i].detach().cpu().numpy(),
A_col_ind.cpu().numpy(),
A_row_ptr.cpu().numpy(),
),
(num_rows, num_cols),
)
expected_out = A_csr * b[i].detach().cpu().numpy()
diff = expected_out - out[i].detach().cpu().numpy()
assert np.linalg.norm(diff) < 1e-8


@pytest.mark.parametrize("batch_size", [1, 4, 16])
@pytest.mark.parametrize("num_rows", [1, 32])
@pytest.mark.parametrize("num_cols", [1, 4, 32])
@pytest.mark.parametrize("fill", [0.1, 0.9])
def test_sparse_mv_cpu(batch_size, num_rows, num_cols, fill):
_check_sparse_mv(batch_size, num_rows, num_cols, fill, "cpu")


@pytest.mark.cudaext
@pytest.mark.parametrize("batch_size", [1, 4, 16])
@pytest.mark.parametrize("num_rows", [1, 32])
@pytest.mark.parametrize("num_cols", [1, 4, 32])
@pytest.mark.parametrize("fill", [0.1, 0.9])
def test_sparse_mv_cuda(batch_size, num_rows, num_cols, fill):
_check_sparse_mv(batch_size, num_rows, num_cols, fill, "cuda:0")
1 change: 1 addition & 0 deletions theseus/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
mat_vec,
random_sparse_matrix,
random_sparse_binary_matrix,
sparse_mv,
split_into_param_sizes,
tmat_vec,
)
Expand Down
50 changes: 47 additions & 3 deletions theseus/utils/sparse_matrix_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,14 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Tuple
from typing import Any, List, Tuple

import numpy as np
import torch
from scipy.sparse import csc_matrix, csr_matrix, lil_matrix

from theseus.constants import DeviceType


def _mat_vec_cpu(
batch_size: int,
Expand Down Expand Up @@ -97,6 +99,48 @@ def tmat_vec(
return _tmat_vec_cpu(batch_size, num_cols, A_row_ptr, A_col_ind, A_val, v)


class _SparseMvPAutograd(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx: Any,
num_cols: int,
A_val: torch.Tensor,
A_row_ptr: torch.Tensor,
A_col_ind: torch.Tensor,
v: torch.Tensor,
) -> torch.Tensor:
assert (
A_row_ptr.ndim == 1
and A_col_ind.ndim == 1
and A_val.ndim == 2
and v.ndim == 2
)
ctx.save_for_backward(A_val, A_row_ptr, A_col_ind, v)
ctx.num_cols = num_cols
return mat_vec(A_val.shape[0], num_cols, A_row_ptr, A_col_ind, A_val, v)

@staticmethod
@torch.autograd.function.once_differentiable
def backward( # type: ignore
ctx: Any, grad_output: torch.Tensor
) -> Tuple[None, torch.Tensor, None, None, torch.Tensor]:
A_val, A_row_ptr, A_col_ind, v = ctx.saved_tensors
num_rows = len(A_row_ptr) - 1
A_grad = torch.zeros_like(A_val) # (batch_size, nnz)
v_grad = torch.zeros_like(v) # (batch_size, num_cols)
for row in range(num_rows):
start = A_row_ptr[row]
end = A_row_ptr[row + 1]
columns = A_col_ind[start:end]
A_grad[:, start:end] = v[:, columns] * grad_output[:, row].view(-1, 1)
v_grad[:, columns] += grad_output[:, row].view(-1, 1) * A_val[:, start:end]

return None, A_grad, None, None, v_grad


sparse_mv = _SparseMvPAutograd.apply


def random_sparse_binary_matrix(
num_rows: int,
num_cols: int,
Expand All @@ -106,7 +150,7 @@ def random_sparse_binary_matrix(
) -> csr_matrix:
retv = lil_matrix((num_rows, num_cols))

if min_entries_per_col > 0:
if num_rows > 1 and min_entries_per_col > 0:
min_entries_per_col = min(num_rows, min_entries_per_col)
rows_array = torch.arange(num_rows, device=rng.device)
rows_array_f = rows_array.to(dtype=torch.float)
Expand Down Expand Up @@ -138,7 +182,7 @@ def random_sparse_matrix(
fill: float,
min_entries_per_col: int,
rng: torch.Generator,
device: torch.device,
device: DeviceType,
int_dtype: torch.dtype = torch.int64,
float_dtype: torch.dtype = torch.double,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
Expand Down

0 comments on commit 6755c0d

Please sign in to comment.