Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simplified autograd mode specification. #306

Merged
merged 1 commit into from
Sep 27, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 3 additions & 9 deletions examples/homography_estimation.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
from torch.utils.data import DataLoader, Dataset

import theseus as th
from theseus.core.cost_function import AutogradMode, ErrFnType
from theseus.core.cost_function import ErrFnType
from theseus.third_party.easyaug import GeoAugParam, RandomGeoAug, RandomPhotoAug
from theseus.third_party.utils import grid_sample

Expand Down Expand Up @@ -286,7 +286,7 @@ def run(
outer_lr: float = 1e-4,
max_iterations: int = 50,
step_size: float = 0.1,
autograd_mode: AutogradMode = AutogradMode.VMAP,
autograd_mode: str = "vmap",
):
logger.info(
"==============================================================="
Expand Down Expand Up @@ -479,18 +479,12 @@ def run(

@hydra.main(config_path="./configs/", config_name="homography_estimation")
def main(cfg):
autograd_modes = {
"dense": AutogradMode.DENSE,
"loop_batch": AutogradMode.LOOP_BATCH,
"vmap": AutogradMode.VMAP,
}

num_epochs: int = cfg.outer_optim.num_epochs
batch_size: int = cfg.outer_optim.batch_size
outer_lr: float = cfg.outer_optim.lr
max_iterations: int = cfg.inner_optim.max_iters
step_size: float = cfg.inner_optim.step_size
autograd_mode = autograd_modes[cfg.autograd_mode]
autograd_mode = cfg.autograd_mode

run(
batch_size=batch_size,
Expand Down
22 changes: 19 additions & 3 deletions theseus/core/cost_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
# LICENSE file in the root directory of this source tree.

import abc
from typing import Callable, List, Optional, Sequence, Tuple, cast
from typing import Callable, List, Optional, Sequence, Tuple, Union, cast
from enum import Enum

import torch
Expand Down Expand Up @@ -101,6 +101,22 @@ class AutogradMode(Enum):
LOOP_BATCH = 1
VMAP = 2

@staticmethod
def resolve(key: Union[str, "AutogradMode"]) -> "AutogradMode":
if isinstance(key, AutogradMode):
return key
if not isinstance(key, str):
raise ValueError("Autograd mode must be of type th.AutogradMode or string.")

try:
mode = AutogradMode[key.upper()]
except KeyError:
raise ValueError(
f"Invalid autograd mode {key}. "
"Valid options are dense, loop_batch, and vmap."
)
return mode


# The error function is assumed to receive variables in the format
# err_fn(
Expand All @@ -120,7 +136,7 @@ def __init__(
name: Optional[str] = None,
autograd_strict: bool = False,
autograd_vectorize: bool = False,
autograd_mode: AutogradMode = AutogradMode.DENSE,
autograd_mode: Union[str, AutogradMode] = AutogradMode.DENSE,
):
if cost_weight is None:
cost_weight = ScaleCostWeight(1.0)
Expand All @@ -147,7 +163,7 @@ def __init__(
self._tmp_optim_vars_for_loop = None
self._tmp_aux_vars_for_loop = None

self._autograd_mode = autograd_mode
self._autograd_mode = AutogradMode.resolve(autograd_mode)

if self._autograd_mode == AutogradMode.LOOP_BATCH:
self._tmp_optim_vars_for_loop = tuple(v.copy() for v in optim_vars)
Expand Down
5 changes: 2 additions & 3 deletions theseus/core/tests/test_cost_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,9 +57,8 @@ def test_default_name_and_ids():
assert len(seen_ids) == reps


@pytest.mark.parametrize(
"autograd_mode", [AutogradMode.DENSE, AutogradMode.LOOP_BATCH, AutogradMode.VMAP]
)
# Adding three formatting options to include coverage for autograd mode resolution
@pytest.mark.parametrize("autograd_mode", ["DENSE", "loop_batch", AutogradMode.VMAP])
def test_autodiff_cost_function_error_and_jacobians_shape(autograd_mode):
rng = torch.Generator()
rng.manual_seed(0)
Expand Down