Skip to content

fsodogandji/DeepRecoEncoders

 
 

Repository files navigation

Deep AutoEncoders for Collaborative Filtering

This work was done at NVIDIA. This is not an official NVIDIA product.

The model

The model is based on deep AutoEncoders. See paper for details.

AutEncoderPic

Requirements

  • Python 3.6 (I recommend Anaconda)
  • Pytorch
  • CUDA (recommended version is 8.0)

Getting Started

Run unittests first

The code is intended to run on GPU. Last test can take a minute or two.

$ python -m unittest test/data_layer_tests.py
$ python -m unittest test/test_model.py

Get the data

Netflix prize

  • $ mkdir -p ~/Recommendations you can use any other folder name
  • Download from here to ~/Recommendations
  • $ cd ~/Recommendations
  • $ tar -xvf nf_prize_dataset.tar.gz
  • $ tar -xf download/training_set.tar
  • Create necessary folders
mkdir -p Netflix/N3M_TRAIN
mkdir -p Netflix/N3M_VALID
mkdir -p Netflix/N3M_TEST
mkdir -p Netflix/N6M_TRAIN
mkdir -p Netflix/N6M_VALID
mkdir -p Netflix/N6M_TEST
mkdir -p Netflix/N1Y_TRAIN
mkdir -p Netflix/N1Y_VALID
mkdir -p Netflix/N1Y_TEST
mkdir -p Netflix/NF_TRAIN
mkdir -p Netflix/NF_VALID
mkdir -p Netflix/NF_TEST
  • $ python ~/repos/DeepRecoEncoders/data_utils/netflix_data_convert.py training_set Netflix. Here ```~/repos/DeepRecoEncoders''' is a path to this repo.

Data stats

Dataset Netflix 3 months Netflix 6 months Netflix 1 year Netflix full
Ratings train 13,675,402 29,179,009 41,451,832 98,074,901
Users train 311,315 390,795 345,855 477,412
Items train 17,736 17,757 16,907 17,768
Time range train 2005-09-01 to 2005-11-31 2005-06-01 to 2005-11-31 2004-06-01 to 2005-05-31 1999-12-01 to 2005-11-31
-------- ---------------- ----------- ------------
Ratings test 2,082,559 2,175,535 3,888,684 2,250,481
Users test 160,906 169,541 197,951 173,482
Items test 17,261 17,290 16,506 17,305
Time range test 2005-12-01 to 2005-12-31 2005-12-01 to 2005-12-31 2005-06-01 to 2005-06-31 2005-12-01 to 2005-12-31

Train the model

In this example, the model will be trained for 12 epochs. In paper we train for 102.

python ~/repos/DeepRecoEncoders/run.py --gpu_ids 0 \
--path_to_train_data Netflix/NF_TRAIN \
--path_to_eval_data Netflix/NF_VALID \
--hidden_layers 512,512,1024 \
--non_linearity_type selu \
--batch_size 128 \
--logdir model_save \
--drop_prob 0.8 \
--optimizer momentum \
--lr 0.005 \
--weight_decay 0 \
--aug_step 1 \
--noise_prob 0 \
--num_epochs 12 \
--summary_frequency 1000

Note that you can run Tensorboard in parallel

$ tensorboard --logdir=model_save

Run inference on the Test set

python ~/repos/DeepRecoEncoders/infer.py \
--path_to_train_data Netflix/NF_TRAIN \
--path_to_eval_data Netflix/NF_TEST \
--hidden_layers 512,512,1024 \
--non_linearity_type selu \
--save_path model_save/model.epoch_11 \
--drop_prob 0.8 \
--predictions_path preds.txt

Compute Test RMSE

python ~/repos/DeepRecoEncoders/compute_RMSE.py --path_to_predictions=preds.txt

After 12 epochs you should get RMSE around 0.927. Train longer to get below 0.92

Results

It should be possible to achieve the following results. Iterative output re-feeding should be applied once during each iteration.

(exact numbers will vary due to randomization)

DataSet RMSE Model Architecture
Netflix 3 months 0.9373 n,128,256,256,dp(0.65),256,128,n
Netflix 6 months 0.9207 n,256,256,512,dp(0.8),256,256,n
Netflix 1 year 0.9225 n,256,256,512,dp(0.8),256,256,n
Netflix full 0.9099 n,512,512,1024,dp(0.8),512,512,n

About

Training Deep AutoEncoders for Collaborative Filtering

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%