Skip to content

Experiment of coordinate based MLPs Network with Pytorch-Lightning

Notifications You must be signed in to change notification settings

fusheng-ji/Coordinate_based_MLPs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Coordinate_based_MLPs

Intro

Experiments of coordinate-based MLPs based on Pytorch-lightning

graph LR
	1[x]-->3[P.E.]-->4[Linear layers + activation<br>256]-->5[Linear layers + activation<br>256]-->6[Linear layers + activation<br>256]-->7[Linear layers + Sgmoid<br>256]
	2[y]-->3[P.E.]
	7-->8[R]
	7-->9[G]
	7-->10[B]
Loading
Positional Encoding Equation
Fourier feature mapping $\gamma(v) = [..., \text{cos}(2\pi \sigma^{\frac{j}{m}}v), \text{sin}(2\pi \sigma^{\frac{j}{m}}v), ...]^T \ \text{for j in } [0, m-1]$
Fourier feature mapping (Gaussian distribution) $\gamma(v) = [..., \text{cos}(2\pi Bv), \text{sin}(2\pi Bv), ...]^T \text{where each entry in B} \in \mathbb{R}^{m\times d} \text{is sampled from }\mathcal{N}(0, \sigma^2)$
Activation function Equation
ReLU $\text{max}(0,x)$
Siren $\text{sin}(w_0\times W_x + b)$
Gaussian $e^{\frac{-0.5x^2}{a^2}}$
Quadratic $\frac{1}{1+(ax)^2}$
Multi Quadratic $\frac{1}{\sqrt{1+(ax)^2}}$
Laplacian $e^{\frac{-\lvert x \rvert}{a}}$
Super-Gaussian $\left [ e^{\frac{-0.5x^2}{a^2}}\right ]^b$
ExpSin $e^{-\text{sin}(ax)}$

How to run?

Data preparation

  • build a directory "data/"
  • make sure your own images put in "data/"
  • Data used in My Experiment: Pluto image: NASA

Run single experiment

# raw MLPs with RuLU activation function without positional encoding
python train.py --arch=relu --use_pe=False --exp_name=raw_mlps_800*800_1024

Run all experiments at once

# run exp with defualt setting: Image_wh=800*800 batch_size=1024
bash exp.sh
# run exp with setting: Image_wh=800*800 batch_size=800*800
bash exp_640000.sh

Experiment logs

ReLU P.E.(Fourier Mapping)

Without Positional Encoding

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 33.262 21.601

With Positional Encoding

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 22.405 16.957

ReLU Fourier Mapping( Gaussian distribution)

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 31.523 24.383

20π

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 30.004 25.222

200π

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.585 7.146

Siren activation

As Siren dependent on quality of initialization, in this experiment I didn't initialize it specially, so the outputs are bad.

omega_0 = 30

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.767 22.326

Gaussian activation

a=0.1 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.36 8.61

a=0.1 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 30.677 23.899

Super-Gaussian activation

a=0.1 b=2 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.347 9.494

a=0.1 b=2 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 30.644 24.183

ExpSin activation

a=0.1 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 9.589 9.259

a=01 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 24.268 9.204

Laplacian activation

a=0.1 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.273 9.268

a=0.1 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 31.283 24.006

Quadratic activation

a=10 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.417 8.572

a=10 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 31.222 23.861

Multi-Quadratic activation

a=20 with P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 8.448 8.846

a=20 without P.E.

Image size 800*800, batch size 1024 Image size 800*800, batch size 800*800
MAX_PSNR 30.355 23.944

Related papers

Acknowledgment

Thanks for kwea123's wonderful live stream and his repo

About

Experiment of coordinate based MLPs Network with Pytorch-Lightning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published