Experiments of coordinate-based MLPs based on Pytorch-lightning
graph LR
1[x]-->3[P.E.]-->4[Linear layers + activation<br>256]-->5[Linear layers + activation<br>256]-->6[Linear layers + activation<br>256]-->7[Linear layers + Sgmoid<br>256]
2[y]-->3[P.E.]
7-->8[R]
7-->9[G]
7-->10[B]
Positional Encoding | Equation |
---|---|
Fourier feature mapping | |
Fourier feature mapping (Gaussian distribution) | |
Activation function | Equation |
ReLU | |
Siren | |
Gaussian | |
Quadratic | |
Multi Quadratic | |
Laplacian | |
Super-Gaussian | |
ExpSin |
- build a directory "data/"
- make sure your own images put in "data/"
- Data used in My Experiment: Pluto image: NASA
# raw MLPs with RuLU activation function without positional encoding
python train.py --arch=relu --use_pe=False --exp_name=raw_mlps_800*800_1024
# run exp with defualt setting: Image_wh=800*800 batch_size=1024
bash exp.sh
# run exp with setting: Image_wh=800*800 batch_size=800*800
bash exp_640000.sh
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 33.262 | 21.601 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 22.405 | 16.957 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 31.523 | 24.383 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 30.004 | 25.222 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.585 | 7.146 |
As Siren dependent on quality of initialization, in this experiment I didn't initialize it specially, so the outputs are bad.
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.767 | 22.326 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.36 | 8.61 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 30.677 | 23.899 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.347 | 9.494 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 30.644 | 24.183 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 9.589 | 9.259 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 24.268 | 9.204 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.273 | 9.268 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 31.283 | 24.006 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.417 | 8.572 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 31.222 | 23.861 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 8.448 | 8.846 |
Image size 800*800, batch size 1024 | Image size 800*800, batch size 800*800 | |
---|---|---|
MAX_PSNR | 30.355 | 23.944 |
- Implicit Neural Representations with Periodic Activation Functions
- Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
- Beyond Periodicity: Towards a Unifying Framework for Activations in Coordinate-MLPs
- Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction & Pose Estimation
- Spline Positional Encoding for Learning 3D Implicit Signed Distance Fields
Thanks for kwea123's wonderful live stream and his repo