Skip to content

Commit

Permalink
update maintainer, minor fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
andrewwbutler committed Jan 26, 2021
1 parent 537002b commit 737d80c
Show file tree
Hide file tree
Showing 16 changed files with 26 additions and 26 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,17 @@ Date: 2020-01-24
Title: Tools for Single Cell Genomics
Description: A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>, Macosko E, Basu A, Satija R, et al (2015) <doi:10.1016/j.cell.2015.05.002>, Stuart T, Butler A, et al (2019) <doi:10.1016/j.cell.2019.05.031>, and Hao, Hao, et al (2020) <doi:10.1101/2020.10.12.335331> for more details.
Authors@R: c(
person(given = "Rahul", family = "Satija", email = "[email protected]", role = c("aut", "cre"), comment = c(ORCID = "0000-0001-9448-8833")),
person(given = "Andrew", family = "Butler", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0003-3608-0463")),
person(given = "Saket", family = "Choudhary", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0001-5202-7633")),
person(given = "Charlotte", family = "Darby", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0003-2195-5300")),
person(given = "Jeff", family = "Farrell", email = "[email protected]", role = "ctb"),
person(given = "Christoph", family = "Hafemeister", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0001-6365-8254")),
person(given = "Yuhan", family = "Hao", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0002-1810-0822")),
person(given = "Paul", family = "Hoffman", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0002-7693-8957")),
person(given = "Paul", family = "Hoffman", email = "[email protected]", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7693-8957")),
person(given = "Jaison", family = "Jain", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0002-9478-5018")),
person(given = "Efthymia", family = "Papalexi", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0001-5898-694X")),
person(given = "Patrick", family = "Roelli", email = "[email protected]", role = "ctb"),
person(given = "Rahul", family = "Satija", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0001-9448-8833")),
person(given = "Karthik", family = "Shekhar", email = "[email protected]", role = "ctb"),
person(given = "Avi", family = "Srivastava", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0001-9798-2079")),
person(given = "Tim", family = "Stuart", email = "[email protected]", role = "ctb", comment = c(ORCID = "0000-0002-3044-0897")),
Expand Down
2 changes: 1 addition & 1 deletion vignettes/cell_cycle_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ library(ggplot2)
plot <- DimPlot(marrow) +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/cell_cycle_vignette.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/cell_cycle_vignette.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

We score single cells based on the scoring strategy described in [Tirosh *et al*. 2016](http://science.sciencemag.org/content/352/6282/189). See `?AddModuleScore()` in Seurat for more information, this function can be used to calculate supervised module scores for any gene list.
Expand Down
1 change: 1 addition & 0 deletions vignettes/conversion_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@ Seurat can also read in `loom` files connected via [loomR](https://github.com/mo
l6.immune <- Connect(filename = '../data/l6_r1_immune_cells.loom', mode = 'r')
l6.immune
l6.seurat <- as.Seurat(l6.immune)
Idents(l6.seurat) <- "ClusterName"
VlnPlot(l6.seurat, features = c('Sparc', 'Ftl1', 'Junb', 'Ccl4'), ncol = 2)
# Always remember to close loom files when done
l6.immune$close_all()
Expand Down
2 changes: 1 addition & 1 deletion vignettes/dim_reduction_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ FeatureScatter(pbmc, feature1 = "MDS_1", feature2 = "PC_1")
```{r save.img, include=FALSE}
library(ggplot2)
plot <- DimPlot(pbmc, reduction = "mds", pt.size = 0.5)
ggsave(filename = "../output/images/pbmc_mds.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/pbmc_mds.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

```{r save.times, include = FALSE}
Expand Down
2 changes: 1 addition & 1 deletion vignettes/integration_introduction.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ DotPlot(immune.combined, features = markers.to.plot, cols = c('blue', 'red'), do
library(ggplot2)
plot <- DotPlot(immune.combined, features = markers.to.plot, cols = c('blue', 'red'),
dot.scale = 6, split.by = "stim") + RotatedAxis()
ggsave(filename = "../output/images/pbmc_alignment.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/pbmc_alignment.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

### Identify differential expressed genes across conditions
Expand Down
2 changes: 1 addition & 1 deletion vignettes/integration_large_datasets.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ library(ggplot2)
plot <- DimPlot(bm280k.integrated, group.by = "orig.ident") + xlab("UMAP 1") + ylab("UMAP 2") +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/bm280k_integrated.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/bm280k_integrated.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

```{r save.times, include = FALSE}
Expand Down
2 changes: 1 addition & 1 deletion vignettes/integration_mapping.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ saveRDS(pancreas.integrated, file = "pancreas_integrated.rds")
plot <- DimPlot(pancreas.integrated, reduction = "umap", label = TRUE, label.size = 4.5) + xlab("UMAP 1") + ylab("UMAP 2") +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "pancreas_integrated_umap.png", height = 7, width = 12, plot = plot)
ggsave(filename = "pancreas_integrated_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

# Cell type classification using an integrated reference
Expand Down
2 changes: 1 addition & 1 deletion vignettes/integration_rpca.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ plot <- DimPlot(immune.combined, group.by = "stim") +
xlab("UMAP 1") + ylab("UMAP 2") +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/rpca_integration.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/rpca_integration.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

Now that the datasets have been integrated, you can follow the previous steps in the [introduction to scRNA-seq integration vignette](integration_introduction.html) to identify cell types and cell type-specific responses.
Expand Down
2 changes: 1 addition & 1 deletion vignettes/mixscape_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -310,7 +310,7 @@ VlnPlot(

```{r save.img, include=FALSE}
p <- VlnPlot(object = eccite, features = "adt_PDL1", idents = c("NT","JAK2","STAT1","IFNGR1","IFNGR2", "IRF1"), group.by = "gene", pt.size = 0.2, sort = T, split.by = "mixscape_class.global", cols = c("coral3","grey79","grey39")) +ggtitle("PD-L1 protein") +theme(axis.text.x = element_text(angle = 0, hjust = 0.5))
ggsave(filename = "../output/images/mixscape_vignette.png", height = 7, width = 12, plot = p)
ggsave(filename = "../output/images/mixscape_vignette.jpg", height = 7, width = 12, plot = p, quality = 50)
```

# Visualizing perturbation responses with Linear Discriminant Analysis (LDA)
Expand Down
2 changes: 1 addition & 1 deletion vignettes/multimodal_reference_mapping.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ FeaturePlot(pbmc3k, features = c("pDC", "CD16 Mono", "Treg"), reduction = "ref.
library(ggplot2)
plot <- FeaturePlot(pbmc3k, features = "CD16 Mono", reduction = "ref.umap", cols = c("lightgrey", "darkred")) + ggtitle("CD16 Mono") + theme(plot.title = element_text(hjust = 0.5, size = 30)) + labs(color = "Prediction Score") + xlab("UMAP 1") + ylab("UMAP 2") +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18), legend.title = element_text(size = 25))
ggsave(filename = "../output/images/multimodal_reference_mapping.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/multimodal_reference_mapping.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

We can verify our predictions by exploring the expression of canonical marker genes. For example, CLEC4C and LIRA4 have been [reported](https://pubmed.ncbi.nlm.nih.gov/30395816/) as markers of pDC identity, consistent with our predictions. Similarly, if we perform differential expression to identify markers of Tregs, we identify a set of [canonical markers](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761514/) including RTKN2, CTLA4, FOXP3, and IL2RA.
Expand Down
2 changes: 1 addition & 1 deletion vignettes/multimodal_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ plot3 <- FeatureScatter(pbmc10k, feature1 = 'adt_CD3', feature2 = 'CD3E', pt.siz
```{r save.img, include = FALSE}
plot <- FeatureScatter(cbmc, feature1 = "adt_CD19", feature2 = "adt_CD3") + NoLegend() +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18))
ggsave(filename = "../output/images/citeseq_plot.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/citeseq_plot.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

```{r save.times, include = FALSE}
Expand Down
2 changes: 1 addition & 1 deletion vignettes/pbmc3k_tutorial.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -365,7 +365,7 @@ library(ggplot2)
plot <- DimPlot(pbmc, reduction = "umap", label = TRUE, label.size = 4.5) + xlab("UMAP 1") + ylab("UMAP 2") +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/pbmc3k_umap.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)
```
```{r save.rds, eval=FALSE}
Expand Down
2 changes: 1 addition & 1 deletion vignettes/spatial_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ SpatialFeaturePlot(brain, features = c("Hpca", "Ttr"))
library(ggplot2)
plot <- SpatialFeaturePlot(brain, features = c("Ttr")) +
theme(legend.text = element_text(size = 0), legend.title = element_text(size = 20), legend.key.size = unit(1, "cm"))
ggsave(filename = "../output/images/spatial_vignette_ttr.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/spatial_vignette_ttr.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

The default parameters in Seurat emphasize the visualization of molecular data. However, you can also adjust the size of the spots (and their transparency) to improve the visualization of the histology image, by changing the following parameters:
Expand Down
20 changes: 10 additions & 10 deletions vignettes/vignettes.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,19 +4,19 @@
name: pbmc3k_tutorial
summary: |
A basic overview of Seurat that includes an introduction to common analytical workflows.
image: pbmc3k_umap.png
image: pbmc3k_umap.jpg

- title: Multimodal analysis
name: multimodal_vignette
summary: |
An introduction to working with multi-modal datasets in Seurat.
image: citeseq_plot.png
image: citeseq_plot.jpg

- title: Analysis of spatial datasets
name: spatial_vignette
summary: |
Learn to explore spatially-resolved transcriptomic data with examples from 10x Visium and Slide-seq v2.
image: spatial_vignette_ttr.png
image: spatial_vignette_ttr.jpg

- category: Data Integration
vignettes:
Expand All @@ -36,13 +36,13 @@
name: integration_rpca
summary: |
Example workflow for integrating dataset with RPCA.
image: rpca_integration.png
image: rpca_integration.jpg

- title: Tips for integrating large datasets
name: integration_large_datasets
summary: |
Example workflow for integrating large datasets
image: bm280k_integrated.png
image: bm280k_integrated.jpg

- title: Integrating scRNA-seq and scATAC-seq data
name: atacseq_integration_vignette
Expand All @@ -54,21 +54,21 @@
name: multimodal_reference_mapping
summary: |
Analyze query data in the context of multimodal reference atlases.
image: multimodal_reference_mapping.png
image: multimodal_reference_mapping.jpg

- category: New Statistical Approaches
vignettes:
- title: Weighted Nearest Neighbor Analysis
name: weighted_nearest_neighbor_analysis
summary: |
Analyze multimodal single-cell data with weighted nearest neighbor analysis in Seurat v4
image: weighted_nearest_neighbor_analysis.png
image: weighted_nearest_neighbor_analysis.jpg

- title: Mixscape
name: mixscape_vignette
summary: |
Explore new methods to analyze pooled single-celled perturbation screens.
image: mixscape_vignette.png
image: mixscape_vignette.jpg

- title: SCTransform
name: sctransform_vignette
Expand All @@ -82,13 +82,13 @@
name: visualization_vignette
summary: |
An overview of the major visualization functionality within Seurat.
image: visualization_vignette.png
image: visualization_vignette.jpg

- title: Cell Cycle Regression
name: cell_cycle_vignette
summary: |
Mitigate the effects of cell cycle heterogeneity by computing cell cycle phase scores based on marker genes
image: cell_cycle_vignette.png
image: cell_cycle_vignette.jpg

- title: Differential Expression Testing
name: de_vignette
Expand Down
2 changes: 1 addition & 1 deletion vignettes/visualization_vignette.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ library(ggplot2)
plot <- baseplot + DarkTheme() +
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) +
guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/visualization_vignette.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/visualization_vignette.jpg", height = 7, width = 12, plot = plot, quality = 50)
```

# Interactive plotting features
Expand Down
3 changes: 1 addition & 2 deletions vignettes/weighted_nearest_neighbor_analysis.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -138,10 +138,9 @@ library(ggplot2)
plot <- VlnPlot(bm, features = "RNA.weight", group.by = 'celltype.l2', sort = TRUE, pt.size = 0.1) +
NoLegend() + xlab("") + ggtitle("RNA Modality Weights") + theme(plot.title = element_text(hjust = 0.5, size = 30), axis.text = element_text(size = 20))
ggsave(filename = "../output/images/weighted_nearest_neighbor_analysis.png", height = 7, width = 12, plot = plot)
ggsave(filename = "../output/images/weighted_nearest_neighbor_analysis.jpg", height = 7, width = 12, plot = plot, quality = 50)
```


# PBMC - RNA & ATAC

Here, we demonstrate the use of WNN analysis to a second multimodal technology, the 10x multiome RNA+ATAC kit. We use a dataset that is publicly available on the 10x website, where paired transcriptomes and ATAC-seq profiles are measured in 10,412 PBMCs.
Expand Down

0 comments on commit 737d80c

Please sign in to comment.