-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit bee3b72
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import torch | ||
# import trochvision | ||
import torch.utils.data | ||
import argparse | ||
import onnxruntime | ||
from mtcnn.core.models import PNet,RNet,ONet # 加载自己的网络模型 | ||
import os | ||
import os | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" | ||
import cv2 | ||
import numpy as np | ||
from torch.autograd import Variable | ||
from onnxruntime.datasets import get_example | ||
|
||
|
||
def main(args): | ||
# p_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/pnet_epoch.pt' | ||
# r_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/rnet_epoch.pt' | ||
# o_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/onet_epoch.pt' | ||
# print("the version of torch is {}".format(torch.__version__)) | ||
dummy_input=getInput(args.img_size)#获得网络的输入 | ||
# 加载模型 | ||
model = PNet() | ||
#model = RNet() | ||
#model = ONet() | ||
model.load_state_dict(torch.load(args.model_path)) | ||
#model_dict = model.state_dict() | ||
#model_dict = pnet.load_state_dict(torch.load(p_model_path)) | ||
# if args.model_path: | ||
# if os.path.isfile(args.model_path): | ||
# print(("=> start loading checkpoint '{}'".format(args.model_path))) | ||
# # state_dict = torch.load(args.model_path) | ||
# # print("the best acc is {} in epoch:{}".format( | ||
# # state_dict['epoch_acc'], state_dict['epoch'])) | ||
# # params = state_dict["model_state_dict"] | ||
# # # params={k:v for k,v in state_dict.items() if k in model_dict.keys()} | ||
# # # model_dict.update(params) | ||
# # # model.load_state_dict(model_dict) | ||
# model.load_state_dict(args.model_path) | ||
# print("load cls model successfully") | ||
# else: | ||
# print(("=> no checkpoint found at '{}'".format(args.model_path))) | ||
# return | ||
model.to('cpu') | ||
model.eval() | ||
pre=model(dummy_input) | ||
print("the pre:{}".format(pre)) | ||
#保存onnx模型 | ||
torch2onnx(args,model,dummy_input) | ||
|
||
def getInput(img_size): | ||
input = cv2.imread('/data/guoch_workspace/mtcnn-pytorch-master/test_dl_data/sample.jpg') | ||
input = cv2.resize(input, (12, 12)) # hwc bgr # pnet12, 12 / rnet 24 24 / onet 48 48 | ||
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) # hwc rgb | ||
# [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
input = np.transpose(input, (2, 0, 1)).astype(np.float32) # chw rgb | ||
# input=input/255.0 | ||
print("befor the input[0,0,0]:{}".format(input[0, 0, 0])) | ||
print("the size of input[0,...] is {}".format(input[0, ...].shape)) | ||
print("the size of input[1,...] is {}".format(input[1, ...].shape)) | ||
print("the size of input[2,...] is {}".format(input[2, ...].shape)) | ||
input[0, ...] = ((input[0, ...]/255.0)-0.485)/0.229 | ||
input[1, ...] = ((input[1, ...]/255.0)-0.456)/0.224 | ||
input[2, ...] = ((input[2, ...]/255.0)-0.406)/0.225 | ||
print("after input[0,0,0]:{}".format(input[0, 0, 0])) | ||
|
||
now_image1 = Variable(torch.from_numpy(input)) | ||
dummy_input = now_image1.unsqueeze(0) | ||
return dummy_input | ||
|
||
|
||
def torch2onnx(args,model,dummy_input): | ||
input_names = ['input']#模型输入的name | ||
output_names = ['output']#模型输出的name | ||
# return | ||
torch_out = torch.onnx._export(model, dummy_input, os.path.join(args.save_model_path,"pnet.onnx"), | ||
verbose=True, input_names=input_names, output_names=output_names) | ||
# test onnx model | ||
example_model = get_example(os.path.join(args.save_model_path,"pnet.onnx")) | ||
session = onnxruntime.InferenceSession(example_model) | ||
# get the name of the first input of the model | ||
input_name = session.get_inputs()[0].name | ||
print('Input Name:', input_name) | ||
result = session.run([], {input_name: dummy_input.data.numpy()}) | ||
# np.testing.assert_almost_equal( | ||
# torch_out.data.cpu().numpy(), result[0], decimal=3) | ||
print("the result is {}".format(result)) | ||
#结果对比--有点精度上的损失 | ||
# pytorch tensor([[ 5.8738, -5.4470]], device='cuda:0') | ||
# onnx [ 5.6525207 -5.2962923] | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="PyTorch model to onnx and ncnn") | ||
parser.add_argument('--model_path', type=str, default="/data/guoch_workspace/mtcnn/mtcnn-pytorch-zh/model_store/v2/bs512_lre2/pnet_epoch_9.pt", | ||
help="For training from one model_file") | ||
parser.add_argument('--save_model_path', type=str, default="/data/guoch_workspace/mtcnn/mtcnn-pytorch-zh/model_store/v2/rnet/bs128_lre3/", | ||
help="For training from one model_file") | ||
# parser.add_argument('--onnx_model_path', type=str, default="/data/guoch_workspace/mtcnn-pytorch-master/model_store/copy/rnet_epoch.onnx", | ||
# help="For training from one model_file") | ||
parser.add_argument('--img_size', type=int, default=48, | ||
help="the image size of model input") | ||
args = parser.parse_args() | ||
main(args) | ||
|