-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
106 changed files
with
78,194 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# demonstrate the 3D models | ||
import numpy as np | ||
import pickle | ||
import json | ||
import os, glob | ||
import math | ||
|
||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
from matplotlib import cm | ||
from matplotlib.ticker import LinearLocator, FormatStrFormatter | ||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
import pdb | ||
|
||
def valid_region_I(cfg, I): | ||
resolution = [[cfg[i]['szy_sensor'], cfg[i]['szx_sensor']] for i in range(len(cfg))] | ||
rows_cut = int(\ | ||
((cfg[-1]['gauss'].shape[0]-1)/2+\ | ||
(cfg[-1]['ext_f'].shape[1]-1)/2)*\ | ||
resolution[0][0]/resolution[-1][0] | ||
) | ||
cols_cut = int(\ | ||
((cfg[-1]['gauss'].shape[1]-1)/2+\ | ||
(cfg[-1]['ext_f'].shape[2]-1)/2)*\ | ||
resolution[0][1]/resolution[-1][1] | ||
) | ||
|
||
rows = cfg[0]['szx_sensor'] | ||
cols = cfg[0]['szy_sensor'] | ||
|
||
I = \ | ||
I[ | ||
cols_cut:cols-cols_cut, | ||
rows_cut:rows-rows_cut | ||
] | ||
return I | ||
|
||
# depth_file = "./models/"+\ | ||
# "121.pickle" #74 start of shield #88 start of take 2 with shield | ||
depth_file = "./models/quad/"+\ | ||
"125.pickle" | ||
|
||
with open(depth_file,'rb') as f: | ||
depth_data = pickle.load(f) | ||
|
||
x = np.arange(depth_data['Zf'].shape[1]) | ||
y = np.arange(depth_data['Zf'].shape[0]) | ||
[X,Y] = np.meshgrid(x,y) | ||
|
||
# read data | ||
I_0 = depth_data['I_0'] | ||
I_1 = depth_data['I_1'] | ||
Z = depth_data['Zf'] | ||
conf = depth_data['conff'] | ||
|
||
# set the depth range | ||
dmin = -2.0 | ||
dmax = -0.8 | ||
Z[np.where(Z <= dmin)] = np.NaN | ||
Z[np.where(Z >= dmax)] = np.NaN | ||
|
||
|
||
|
||
cfg_file = "./opt_results/pyConfLensFlowNetFast_ext/"+\ | ||
"1x1t-text34-py4-setup5-one-sequential-regularize-nothreshold.pickle" | ||
with open(cfg_file,'rb') as f: | ||
cfg_data = pickle.load(f) | ||
cfg = cfg_data['cfg'] | ||
I_0 = valid_region_I(cfg[0:-1], I_0) | ||
I_1 = valid_region_I(cfg[0:-1], I_1) | ||
|
||
# draw the captured image | ||
fig = plt.figure() | ||
ax = fig.add_subplot(1,3,1, title="First image") | ||
plt.imshow(I_0, cmap = 'gray',vmin=0, vmax=255) | ||
plt.axis('off') | ||
ax = fig.add_subplot(1,3,2, title="Second image") | ||
plt.imshow(I_1, cmap = 'gray',vmin=0, vmax=255) | ||
plt.axis('off') | ||
# plt.imshow(conf, cmap= 'gray') | ||
|
||
# confidence threshold | ||
conf_thre = [0.999] | ||
for i in range(len(conf_thre)): | ||
Z_cut = Z | ||
Z_cut[np.where(conf<= conf_thre[i])] = np.NaN | ||
# Z_cut[np.where(Z<=dmin)] = np.NaN | ||
# Z_cut[np.where(Z>=dmax)] = np.NaN | ||
|
||
ax = fig.add_subplot(1,3,i+3, title="Depth map, conf > "+str(conf_thre[i]), projection='3d') | ||
Z_cut = Z_cut[::-1] | ||
# plt.imshow(Z_cut, cmap='jet', origin='low', vmin=dmin, vmax=dmax) | ||
Z_cut[np.where(Z_cut>dmax)] = np.NaN | ||
Z_cut[np.where(Z_cut<dmin)] = np.NaN | ||
xx,yy = np.meshgrid(np.arange(Z_cut.shape[1]),np.arange(Z_cut.shape[0])) | ||
pdb.set_trace() | ||
ax.plot_surface(xx,yy,Z_cut) | ||
# plt.colorbar() | ||
plt.axis('off') | ||
plt.show() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# demonstrate the 3D models | ||
import numpy as np | ||
import pickle | ||
import json | ||
import os, glob | ||
import math | ||
|
||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
from matplotlib import cm | ||
from matplotlib.ticker import LinearLocator, FormatStrFormatter | ||
import pdb | ||
|
||
def valid_region_I(cfg, I): | ||
resolution = [[cfg[i]['szy_sensor'], cfg[i]['szx_sensor']] for i in range(len(cfg))] | ||
rows_cut = int(\ | ||
((cfg[-1]['gauss'].shape[0]-1)/2+\ | ||
(cfg[-1]['ext_f'].shape[1]-1)/2)*\ | ||
resolution[0][0]/resolution[-1][0] | ||
) | ||
cols_cut = int(\ | ||
((cfg[-1]['gauss'].shape[1]-1)/2+\ | ||
(cfg[-1]['ext_f'].shape[2]-1)/2)*\ | ||
resolution[0][1]/resolution[-1][1] | ||
) | ||
|
||
rows = cfg[0]['szx_sensor'] | ||
cols = cfg[0]['szy_sensor'] | ||
|
||
I = \ | ||
I[ | ||
cols_cut:cols-cols_cut, | ||
rows_cut:rows-rows_cut | ||
] | ||
return I | ||
|
||
depth_file = "./models/"+\ | ||
"leopard.pickle" | ||
with open(depth_file,'rb') as f: | ||
depth_data = pickle.load(f) | ||
|
||
x = np.arange(depth_data['Z'].shape[1]) | ||
y = np.arange(depth_data['Z'].shape[0]) | ||
[X,Y] = np.meshgrid(x,y) | ||
|
||
# read data | ||
I_0 = depth_data['I_0'] | ||
I_1 = depth_data['I_1'] | ||
Z = depth_data['Z'] | ||
conf = depth_data['conf'] | ||
|
||
# set the depth range | ||
dmin = -0.88 | ||
dmax = -0.48 | ||
Z[np.where(Z <= dmin)] = np.NaN | ||
Z[np.where(Z >= dmax)] = np.NaN | ||
|
||
cfg_file = "./opt_results/pyConfLensFlowNetFast_ext/"+\ | ||
"1x1t-text34-py4-setup5-one-sequential-regularize-nothreshold.pickle" | ||
with open(cfg_file,'rb') as f: | ||
cfg_data = pickle.load(f) | ||
cfg = cfg_data['cfg'] | ||
I_0 = valid_region_I(cfg, I_0) | ||
I_1 = valid_region_I(cfg, I_1) | ||
|
||
# confidence threshold | ||
conf_thre = 0.99 | ||
|
||
# draw the captured image | ||
fig = plt.figure() | ||
|
||
ax = fig.add_subplot(5,3,1, title="First image") | ||
plt.imshow(I_0, cmap = 'gray') | ||
plt.axis('off') | ||
|
||
ax = fig.add_subplot(5,3,2, title="Second image") | ||
plt.imshow(I_1, cmap = 'gray') | ||
plt.axis('off') | ||
|
||
ax = fig.add_subplot(5,3,3, title="$Z$") | ||
Z_cut = Z | ||
Z_cut[np.where(conf<= conf_thre)] = np.NaN | ||
Z_cut = Z_cut[::-1] | ||
plt.imshow(Z_cut, interpolation='bilinear', origin='low') | ||
plt.colorbar() | ||
plt.axis('off') | ||
|
||
fig_name = [ | ||
"$Z^{0,0,0}$", | ||
"$Z^{0,1,0}$", | ||
"$Z^{0,0,1}$", | ||
"$Z^{1,0,0}$", | ||
"$Z^{1,1,0}$", | ||
"$Z^{1,0,1}$", | ||
"$Z^{2,0,0}$", | ||
"$Z^{2,1,0}$", | ||
"$Z^{2,0,1}$", | ||
"$Z^{3,0,0}$", | ||
"$Z^{3,1,0}$", | ||
"$Z^{3,0,1}$", | ||
] | ||
for i in range(12): | ||
ax = fig.add_subplot(5,3,i+4, title=fig_name[i]) | ||
Z_cut = depth_data['Z'+str(i)] | ||
conf = depth_data['conf'+str(i)] | ||
Z_cut[np.where(conf<= conf_thre)] = np.NaN | ||
Z_cut[np.where(Z_cut <= dmin)] = np.NaN | ||
Z_cut[np.where(Z_cut >= dmax)] = np.NaN | ||
|
||
Z_cut = Z_cut[::-1] | ||
plt.imshow(Z_cut, interpolation='bilinear', origin='low') | ||
plt.colorbar() | ||
plt.axis('off') | ||
plt.show() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
% Arrange the CUReT dataset so that all textures are arranged from 0 to | ||
% 5611 | ||
infolder = 'curetgrey'; | ||
outfolder = 'Qi_curetgrey'; | ||
samples = dir(infolder); | ||
samples(1:2) = []; | ||
num = 1; | ||
idx = 0; | ||
for i = 1:length(samples) | ||
images = dir(fullfile(infolder,samples(i).name,'*.png')); | ||
for j = 1:length(images) | ||
img = imread(fullfile(infolder,samples(i).name,images(j).name)); | ||
imwrite(img, fullfile(outfolder,sprintf('%04d.png',idx))); | ||
idx = idx + 1; | ||
end | ||
num = num + length(images); | ||
end |
Oops, something went wrong.