Skip to content
forked from Morgan243/PyCAIM

Python implementation of the LAIM (label-attribute interdependence maximization) algorithm. Requires Pandas and Numpy.

Notifications You must be signed in to change notification settings

gustavo-vm/PyLAIM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LAIM is a supervised discretization method for multi label data [1] and Python-LAIM is a implementation of LAIM. It is an adaptation of Python-CAIM.

CLI Options

usage: caim.py [-h] [-t TARGET_FIELD] [-o OUTPUT_PATH] [-H] [-q] input_file

LAIM Algorithm Command Line Tool and Library

positional arguments:
  input_file            CSV input data file

optional arguments:
  -h, --help            show this help message and exit
  -t TARGET_FIELD, --target-field TARGET_FIELD
                        Target field as an integer (0-indexed) or string
                        corresponding to column name. Negative indices (e.g.
                        -1) are allowed.
  -o OUTPUT_PATH, --output-path OUTPUT_PATH
                        File path to write discretized form of data in CSV
                        format
  -H, --header          Use first row as column/field names
  -q, --quiet           Minimal information is printed to STDOUT

Interval Output

Intervals are printed in the form:

[ 0.13  0.34  0.39  0.66]

Which should be interpretted as:

[0.13, 0.34](0.34, 0.39](0.39, 0.66]

The output dataset will use the right-end of each interval as the discretized value.

[1] Cano, A., Luna, J. M., Gibaja, E. L., & Ventura, S. (2016). LAIM discretization for multi-label data. Information Sciences, 330, 370-384.

About

Python implementation of the LAIM (label-attribute interdependence maximization) algorithm. Requires Pandas and Numpy.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%