Skip to content

gversluis/nerf

 
 

Repository files navigation

NeRF: Neural Radiance Fields

Tensorflow implementation of optimizing a neural representation for a single scene and rendering new views.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution

Setup

Python 3 dependencies:

  • Tensorflow 1.15
  • matplotlib
  • numpy
  • imageio
  • configargparse

The LLFF data loader requires ImageMagick.

You will also need the LLFF code (and COLMAP) set up to compute poses if you want to run on your own real data.

Running code

Optimizing a NeRF

Run

bash download_example_data.sh

to get the our synthetic Lego dataset and the LLFF Fern dataset. To optimize a low-res Fern NeRF:

python run_nerf.py --config config_fern.txt

To optimize a low-res Lego NeRF:

python run_nerf.py --config config_lego.txt

Rendering a NeRF

Run

bash download_example_weights.sh

to get a pretrained high-res NeRF for the Fern dataset. Now you can use the render_demo.ipynb to render new views.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 94.0%
  • Python 6.0%