forked from yizhongw/self-instruct
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
open source the scripts for data generation.
- Loading branch information
Showing
12 changed files
with
1,385 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
TRAIN_FILE=$1 | ||
EXPERIMENT_NAME=$2 | ||
|
||
openai tools fine_tunes.prepare_data -f $TRAIN_FILE | ||
|
||
openai api fine_tunes.create \ | ||
--training_file $TRAIN_FILE \ | ||
--model davinci \ | ||
--suffix $EXPERIMENT_NAME \ | ||
--n_epochs 2 \ | ||
--prompt_loss_weight 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
batch_dir=data/gpt3_generations/ | ||
|
||
python self_instruct/generate_instances.py \ | ||
--batch_dir ${batch_dir} \ | ||
--input_file machine_generated_instructions.jsonl \ | ||
--output_file machine_generated_instances.jsonl \ | ||
--max_instances_to_gen 5 \ | ||
--engine "davinci" \ | ||
--request_batch_size 5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
batch_dir=data/gpt3_generations/ | ||
|
||
python self_instruct/bootstrap_instructions.py \ | ||
--batch_dir ${batch_dir} \ | ||
--num_instructions_to_generate 50000 \ | ||
--seed_tasks_path data/seed_tasks.jsonl \ | ||
--engine "davinci" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
batch_dir=data/gpt3_generations/ | ||
|
||
python self_instruct/identify_clf_or_not.py \ | ||
--batch_dir ${batch_dir} \ | ||
--engine "davinci" \ | ||
--request_batch_size 5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
batch_dir=data/gpt3_generations/ | ||
|
||
python self_instruct/prepare_for_finetuning.py \ | ||
--instance_files ${batch_dir}/machine_generated_instances.jsonl \ | ||
--classification_type_files ${batch_dir}/is_clf_or_not_davinci_template_1.jsonl \ | ||
--output_dir ${batch_dir}/finetuning_data \ | ||
--include_seed_tasks \ | ||
--seed_tasks_path data/seed_tasks.jsonl |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
import os | ||
import json | ||
import random | ||
import re | ||
import string | ||
import tqdm | ||
import argparse | ||
import numpy as np | ||
import pandas as pd | ||
from multiprocessing import Pool | ||
from functools import partial | ||
from rouge_score import rouge_scorer | ||
from gpt3_api import make_requests as make_gpt3_requests | ||
|
||
|
||
random.seed(42) | ||
|
||
|
||
def encode_prompt(prompt_instructions, classification=False): | ||
"""Encode multiple prompt instructions into a single string.""" | ||
if classification: | ||
prompt = "Come up with a series of classification tasks. Try to specify the possible output labels when possible.\n" | ||
else: | ||
prompt = "Come up with a series of tasks:\n" | ||
for idx, instruction in enumerate(prompt_instructions): | ||
instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":") | ||
prompt += f"{idx+1}. {instruction}\n" | ||
prompt += f"{len(prompt_instructions) + 1}." | ||
return prompt | ||
|
||
|
||
def sample_machine_instructions(machine_instructions, similarities, n): | ||
"""Sample n machine instructions from a list of machine instructions.""" | ||
return random.sample(machine_instructions, min(n, len(machine_instructions))) | ||
|
||
|
||
def find_word_in_string(w, s): | ||
return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search(s) | ||
|
||
|
||
def post_process_gpt3_response(response): | ||
if response is None or response["choices"][0]["finish_reason"] == "length": | ||
return [] | ||
raw_instructions = re.split(r"\n\d+\s?\. ", response["choices"][0]["text"]) | ||
instructions = [] | ||
for inst in raw_instructions: | ||
inst = re.sub(r"\s+", " ", inst).strip() | ||
inst = inst.strip().capitalize() | ||
if inst == "": | ||
continue | ||
# filter out too short or too long instructions | ||
if len(inst.split()) <= 3 or len(inst.split()) > 150: | ||
continue | ||
# filter based on keywords that are not suitable for language models. | ||
if any(find_word_in_string(word, inst) for word in ["image", "images", "graph", "graphs", "picture", "pictures", "file", "files", "map", "maps", "draw", "plot", "go to"]): | ||
continue | ||
# We found that the model tends to add "write a program" to some existing instructions, which lead to a lot of such instructions. | ||
# And it's a bit comfusing whether the model need to write a program or directly output the result. | ||
# Here we filter them out. | ||
# Note this is not a comprehensive filtering for all programming instructions. | ||
if inst.startswith("Write a program"): | ||
continue | ||
# filter those starting with punctuation | ||
if inst[0] in string.punctuation: | ||
continue | ||
# filter those starting with non-english character | ||
if not inst[0].isascii(): | ||
continue | ||
instructions.append(inst) | ||
return instructions | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--batch_dir", | ||
type=str, | ||
required=True, | ||
default="data/gpt3_generations/", | ||
help="The directory where the batch is stored.", | ||
) | ||
parser.add_argument( | ||
"--seed_tasks_path", | ||
type=str, | ||
required=True, | ||
default="data/seed_tasks.jsonl", | ||
help="The path to the human written data.", | ||
) | ||
parser.add_argument( | ||
"--num_instructions_to_generate", | ||
type=int, | ||
default=100, | ||
help="th", | ||
) | ||
parser.add_argument( | ||
"--use_clf_seed_tasks_only", | ||
action="store_true", | ||
help="If specified, we will only use the classification seed tasks to prompt new instructions. This will lead to more classification instructions.", | ||
) | ||
parser.add_argument( | ||
"--engine", | ||
type=str, | ||
default="davinci", | ||
help="The engine to use." | ||
) | ||
parser.add_argument( | ||
"--num_prompt_instructions", | ||
type=int, | ||
default=8, | ||
help="The number of instructions to use in the prompt." | ||
) | ||
parser.add_argument( | ||
"--request_batch_size", | ||
type=int, | ||
default=5, | ||
help="The number of requests to send to GPT-3 at a time." | ||
) | ||
parser.add_argument( | ||
"--api_key", | ||
type=str, | ||
help="The API key to use. If not specified, the key will be read from the environment variable OPENAI_API_KEY." | ||
) | ||
parser.add_argument( | ||
"--organization", | ||
type=str, | ||
help="The organization to use. If not specified, the default organization id will be used." | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
seed_tasks = [json.loads(l) for l in open(args.seed_tasks_path, "r")] | ||
if args.use_clf_seed_tasks_only: | ||
seed_tasks = [t for t in seed_tasks if t["is_classification"]] | ||
seed_instructions = [t["instruction"] for t in seed_tasks] | ||
print(f"Loaded {len(seed_instructions)} human-written seed instructions") | ||
|
||
os.makedirs(args.batch_dir, exist_ok=True) | ||
request_idx = 0 | ||
# load the LM-generated instructions | ||
machine_instructions = [] | ||
if os.path.exists(os.path.join(args.batch_dir, "machine_generated_instructions.jsonl")): | ||
with open(os.path.join(args.batch_dir, "machine_generated_instructions.jsonl"), "r") as fin: | ||
for line in fin: | ||
instruction_info = json.loads(line) | ||
machine_instructions.append(instruction_info["instruction"]) | ||
request_idx = instruction_info["request_idx"] + 1 | ||
print(f"Loaded {len(machine_instructions)} machine-generated instructions") | ||
|
||
# similarities = {} | ||
scorer = rouge_scorer.RougeScorer(["rougeL"], use_stemmer=False) | ||
|
||
# now let's generate new instructions! | ||
progress_bar = tqdm.tqdm(total=args.num_instructions_to_generate) | ||
if machine_instructions: | ||
progress_bar.update(len(machine_instructions)) | ||
|
||
with open(os.path.join(args.batch_dir, "machine_generated_instructions.jsonl"), "a") as fout: | ||
while len(machine_instructions) < args.num_instructions_to_generate: | ||
batch_inputs = [] | ||
for _ in range(args.request_batch_size): | ||
# sample machine instructions from the pool | ||
prompt_instructions = sample_machine_instructions( | ||
machine_instructions, | ||
similarities=None, | ||
n=2) | ||
# sample human instructions from the pool | ||
prompt_instructions += random.sample(seed_instructions, args.num_prompt_instructions - len(prompt_instructions)) | ||
random.shuffle(prompt_instructions) | ||
prompt = encode_prompt(prompt_instructions, classification=args.use_clf_seed_tasks_only) | ||
batch_inputs.append(prompt) | ||
results = make_gpt3_requests( | ||
engine="davinci", | ||
prompts=batch_inputs, | ||
max_tokens=1024, | ||
temperature=0.7, | ||
top_p=0.5, | ||
frequency_penalty=0, | ||
presence_penalty=2, | ||
stop_sequences=["\n\n", "\n16", "16.", "16 ."], | ||
logprobs=1, | ||
n=1, | ||
best_of=1, | ||
api_key=args.api_key, | ||
organization=args.organization, | ||
) | ||
instructions = [] | ||
all_metadata = [] | ||
for result in results: | ||
new_instructions = post_process_gpt3_response(result["response"]) | ||
instructions += new_instructions | ||
all_metadata += [result] * len(new_instructions) | ||
|
||
for inst, metadata in zip(instructions, all_metadata): | ||
with Pool(4) as p: | ||
rouge_scores = p.map(partial(scorer.score, inst), seed_instructions + machine_instructions) | ||
rouge_scores = [score["rougeL"].fmeasure for score in rouge_scores] | ||
# rouge_scores = [scorer.score(inst, e_inst)["rougeL"].fmeasure for e_inst in human_instructions + machine_instructions] | ||
if max(rouge_scores) > 0.7: | ||
continue | ||
all_instructions = seed_instructions + machine_instructions | ||
most_similar_instructions = { | ||
all_instructions[i] : rouge_scores[i] for i in np.argsort(rouge_scores)[-10:][::-1] | ||
} | ||
machine_instructions.append(inst) | ||
fout.write(json.dumps({ | ||
"instruction": inst, | ||
"most_similar": most_similar_instructions, | ||
"avg_similarity_score": float(np.mean(rouge_scores)), | ||
"metadata": metadata, | ||
"request_idx": request_idx | ||
}) + "\n") | ||
progress_bar.update(1) | ||
request_idx += 1 |
Oops, something went wrong.