forked from graykode/nlp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update consisteny of all jupyter notebook files
- Loading branch information
Showing
20 changed files
with
2,958 additions
and
2,956 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,115 +1,115 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"id": "4dTc8F-IObVT", | ||
"colab_type": "code", | ||
"colab": { | ||
"name": "NNLM-Tensor.ipynb", | ||
"version": "0.3.2", | ||
"provenance": [], | ||
"collapsed_sections": [] | ||
"base_uri": "https://localhost:8080/", | ||
"height": 125.0 | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"accelerator": "GPU" | ||
}, | ||
"cells": [ | ||
"outputId": "20bfe275-33af-4655-b2ee-cecdea69cce7" | ||
}, | ||
"outputs": [ | ||
{ | ||
"metadata": { | ||
"id": "4dTc8F-IObVT", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 125 | ||
}, | ||
"outputId": "20bfe275-33af-4655-b2ee-cecdea69cce7" | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"# code by Tae Hwan Jung @graykode\n", | ||
"import tensorflow as tf\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"tf.reset_default_graph()\n", | ||
"\n", | ||
"sentences = [ \"i like dog\", \"i love coffee\", \"i hate milk\"]\n", | ||
"\n", | ||
"word_list = \" \".join(sentences).split()\n", | ||
"word_list = list(set(word_list))\n", | ||
"word_dict = {w: i for i, w in enumerate(word_list)}\n", | ||
"number_dict = {i: w for i, w in enumerate(word_list)}\n", | ||
"n_class = len(word_dict) # number of Vocabulary\n", | ||
"\n", | ||
"# NNLM Parameter\n", | ||
"n_step = 2 # number of steps ['i like', 'i love', 'i hate']\n", | ||
"n_hidden = 2 # number of hidden units\n", | ||
"\n", | ||
"def make_batch(sentences):\n", | ||
" input_batch = []\n", | ||
" target_batch = []\n", | ||
"\n", | ||
" for sen in sentences:\n", | ||
" word = sen.split()\n", | ||
" input = [word_dict[n] for n in word[:-1]]\n", | ||
" target = word_dict[word[-1]]\n", | ||
"\n", | ||
" input_batch.append(np.eye(n_class)[input])\n", | ||
" target_batch.append(np.eye(n_class)[target])\n", | ||
"\n", | ||
" return input_batch, target_batch\n", | ||
"\n", | ||
"# Model\n", | ||
"X = tf.placeholder(tf.float32, [None, n_step, n_class]) # [batch_size, number of steps, number of Vocabulary]\n", | ||
"Y = tf.placeholder(tf.float32, [None, n_class])\n", | ||
"\n", | ||
"input = tf.reshape(X, shape=[-1, n_step * n_class]) # [batch_size, n_step * n_class]\n", | ||
"H = tf.Variable(tf.random_normal([n_step * n_class, n_hidden]))\n", | ||
"d = tf.Variable(tf.random_normal([n_hidden]))\n", | ||
"U = tf.Variable(tf.random_normal([n_hidden, n_class]))\n", | ||
"b = tf.Variable(tf.random_normal([n_class]))\n", | ||
"\n", | ||
"tanh = tf.nn.tanh(d + tf.matmul(input, H)) # [batch_size, n_hidden]\n", | ||
"model = tf.matmul(tanh, U) + b # [batch_size, n_class]\n", | ||
"\n", | ||
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))\n", | ||
"optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)\n", | ||
"prediction =tf.argmax(model, 1)\n", | ||
"\n", | ||
"# Training\n", | ||
"init = tf.global_variables_initializer()\n", | ||
"sess = tf.Session()\n", | ||
"sess.run(init)\n", | ||
"\n", | ||
"input_batch, target_batch = make_batch(sentences)\n", | ||
"\n", | ||
"for epoch in range(5000):\n", | ||
" _, loss = sess.run([optimizer, cost], feed_dict={X: input_batch, Y: target_batch})\n", | ||
" if (epoch + 1)%1000 == 0:\n", | ||
" print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))\n", | ||
"\n", | ||
"# Predict\n", | ||
"predict = sess.run([prediction], feed_dict={X: input_batch})\n", | ||
"\n", | ||
"# Test\n", | ||
"input = [sen.split()[:2] for sen in sentences]\n", | ||
"print([sen.split()[:2] for sen in sentences], '->', [number_dict[n] for n in predict[0]])" | ||
], | ||
"execution_count": 1, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch: 1000 cost = 0.468996\n", | ||
"Epoch: 2000 cost = 0.125292\n", | ||
"Epoch: 3000 cost = 0.045533\n", | ||
"Epoch: 4000 cost = 0.020888\n", | ||
"Epoch: 5000 cost = 0.010938\n", | ||
"[['i', 'like'], ['i', 'love'], ['i', 'hate']] -> ['dog', 'coffee', 'milk']\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch: 1000 cost = 0.468996\n", | ||
"Epoch: 2000 cost = 0.125292\n", | ||
"Epoch: 3000 cost = 0.045533\n", | ||
"Epoch: 4000 cost = 0.020888\n", | ||
"Epoch: 5000 cost = 0.010938\n", | ||
"[['i', 'like'], ['i', 'love'], ['i', 'hate']] -> ['dog', 'coffee', 'milk']\n" | ||
] | ||
} | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# code by Tae Hwan Jung @graykode\n", | ||
"import tensorflow as tf\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"tf.reset_default_graph()\n", | ||
"\n", | ||
"sentences = [ \"i like dog\", \"i love coffee\", \"i hate milk\"]\n", | ||
"\n", | ||
"word_list = \" \".join(sentences).split()\n", | ||
"word_list = list(set(word_list))\n", | ||
"word_dict = {w: i for i, w in enumerate(word_list)}\n", | ||
"number_dict = {i: w for i, w in enumerate(word_list)}\n", | ||
"n_class = len(word_dict) # number of Vocabulary\n", | ||
"\n", | ||
"# NNLM Parameter\n", | ||
"n_step = 2 # number of steps ['i like', 'i love', 'i hate']\n", | ||
"n_hidden = 2 # number of hidden units\n", | ||
"\n", | ||
"def make_batch(sentences):\n", | ||
" input_batch = []\n", | ||
" target_batch = []\n", | ||
"\n", | ||
" for sen in sentences:\n", | ||
" word = sen.split()\n", | ||
" input = [word_dict[n] for n in word[:-1]]\n", | ||
" target = word_dict[word[-1]]\n", | ||
"\n", | ||
" input_batch.append(np.eye(n_class)[input])\n", | ||
" target_batch.append(np.eye(n_class)[target])\n", | ||
"\n", | ||
" return input_batch, target_batch\n", | ||
"\n", | ||
"# Model\n", | ||
"X = tf.placeholder(tf.float32, [None, n_step, n_class]) # [batch_size, number of steps, number of Vocabulary]\n", | ||
"Y = tf.placeholder(tf.float32, [None, n_class])\n", | ||
"\n", | ||
"input = tf.reshape(X, shape=[-1, n_step * n_class]) # [batch_size, n_step * n_class]\n", | ||
"H = tf.Variable(tf.random_normal([n_step * n_class, n_hidden]))\n", | ||
"d = tf.Variable(tf.random_normal([n_hidden]))\n", | ||
"U = tf.Variable(tf.random_normal([n_hidden, n_class]))\n", | ||
"b = tf.Variable(tf.random_normal([n_class]))\n", | ||
"\n", | ||
"tanh = tf.nn.tanh(d + tf.matmul(input, H)) # [batch_size, n_hidden]\n", | ||
"model = tf.matmul(tanh, U) + b # [batch_size, n_class]\n", | ||
"\n", | ||
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))\n", | ||
"optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)\n", | ||
"prediction =tf.argmax(model, 1)\n", | ||
"\n", | ||
"# Training\n", | ||
"init = tf.global_variables_initializer()\n", | ||
"sess = tf.Session()\n", | ||
"sess.run(init)\n", | ||
"\n", | ||
"input_batch, target_batch = make_batch(sentences)\n", | ||
"\n", | ||
"for epoch in range(5000):\n", | ||
" _, loss = sess.run([optimizer, cost], feed_dict={X: input_batch, Y: target_batch})\n", | ||
" if (epoch + 1)%1000 == 0:\n", | ||
" print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))\n", | ||
"\n", | ||
"# Predict\n", | ||
"predict = sess.run([prediction], feed_dict={X: input_batch})\n", | ||
"\n", | ||
"# Test\n", | ||
"input = [sen.split()[:2] for sen in sentences]\n", | ||
"print([sen.split()[:2] for sen in sentences], '->', [number_dict[n] for n in predict[0]])" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"name": "NNLM-Tensor.ipynb", | ||
"version": "0.3.2", | ||
"provenance": [], | ||
"collapsed_sections": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"accelerator": "GPU" | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.